
IJE Transactions B: Applications Vol. 24, No. 2, July 2011 - 107

MODULAR APPROACH FOR AN ASIC INTEGRATION OF
ELECTRICAL DRIVE CONTROLS

Y. Kebbati*

Universiy of Orléans, OSUC Observatoire des Sciences de l’Univers en Région Centre
Campus Géosciences 1 A rue de la Férolerie 45071 ORLEANS CEDEX (France)

kebbati@cnrs-orleans.fr

*Corresponding Author

 (Received: November 12, 2009– Accepted in Revised Form: June 22, 2011)

Abstract VLSI circuits design allows today to consider new modes of implementation for electrical
controls. However, design techniques require an adaptation effort that few designers, too accustomed to the
software approach, provide. The authors of this article propose to develop a methodology to guide the
electrical designers towards optimal performances of control algorithms implementation. Thus, they were
based on two concepts: modular design and algorithm architecture adequation. An exemple of DTC control
implemented in an ASIC circuit is presented and the results of the integration performances valid our
methodology.

Keywords ASIC, FPGA, Electrical System Control, Modular Design, Algorithm Architecture Adequation,
Direct Torque Control.

به هر حال، روش . است يکيالکتر يکنترل ها يراه انداز يد برايجد يحالت VLSI يمدارها يطراحامروزه، دهيچک

. دکنن يجاد مي، آن را اينرم افزار ياز طراحان خوگرفته به روش ها ياز دارد که تعدادين يتطابق يشبه تلا يطراح يها
 يراه انداز يبرا يانتخاب يبه سمت عملکردها يکيت طراحان الکتريهدا يبرارا يروش ن مقاله، توسعهيسندگان اينو

تمام . تميالگور يمدولار و معمار يطراح: و مفهوم هستنده دين، آنها بر پايبنابرا. کنند يشنهاد ميپ يکنترل يتم هايالگور
کپارچه، روش ما را معتبر ي يج عملکردهايش داده شده است و نتاينما ASICدر مدار DTCکنترل يراه انداز ينمونه ها

 .ساخته است

1. INTRODUCTION

Power electronics and electrical drive controls are
generally implemented by microprocessors or
digital signal processor (DSP) solutions. Specific
microprocessor architectures, including dedicated
control and calculation functions for motor
applications, have been developed by processor
manufacturing [1]. From these software solutions,
we can take advantage of fixed hardware
architecture and extensive software flexibility
which reduces the development cost.

A very large scale integration (VLSI)
application has improved control implementation
performance [2]. Indeed, an application of specific
integrated circuit (ASIC) solution can exploit
efficiently specificities of the control algorithms
that fixed hardware architecture can not do. For
example, parallel calculation cannot be included in

a software solution based on sequential processing
[3]. In addition, ASIC can reduce wire and
electromagnetic field interference by a fully
system on a chip (SoC) integration.

However, there are still two main drawbacks
to an integrated circuit solution: design complexity
and reuse difficulty. This is true even with
programmable logic device (PLD) solutions.
Conception aid developer (CAD) combined with
hardware description languages (HDL) and VLSI
design methodology have accelerated conception
and reuse [4]. Nevertheless, the main problem of
integrated circuit design is to define the hardware
architecture; this is particularly true for
heterogeneous algorithm structures such as
electrical controllers.

Archive of SID

www.SID.ir

mailto:kebbati@cnrs-orleans.fr
www.SID.ir

108 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

2. ELECTRICAL DRIVES STRUCTURE

To succeed ASIC integration of electrical
controllers, the designer should take into account
the heterogeneous algorithmic structures of
electrical system, power environment and also
integrated circuit constraints.

Figure 1 presents the structure of electrical
systems. In the figure, the power environment and
analogue interface are given as power source
supply, controlled power converter, electrical load,
sensors, amplifications, drivers and analogue to
digital converters. The control algorithm is
decomposed on four main functional blocks. Each
block is done according its function and the
hierarchy in the control algorithm [5]. The blocks
are composed of independent and specific sub-
algorithms which can be described by:
• treatment block: including sub-algorithms of

treatment and transformation models (as direct
or reverse Concordia transformation, direct or
reverse Park transformation, ...).

• estimation block : including sub-algorithms
of system estimation models (as flux and
torque estimations, …).

• regulation block: including sub-algorithms of
regulation and control models (as hysteresis
controller, PI controller, ...).

• modulation block: including sub-algorithms of
power modulation models (as three-phase sine
function, space vector PWM, ...).

Xv

Xi

A
D

A
D

A
D

A
D

A
D

Ω,θ

v

i

Sensors&
Am

plificators

ADC

Amplificators &
Drivers

XΩ

Xθ

Digital Signals

Analog Signals : i (current) , v (voltage), Ω et Θ (speed and mechanical position)
Digital Signals : Xi (current), Xv (voltage), XΩ, et XΘ (speed and mechanical position)

Controller Algorithm

Controlled
Power

Converter

Controlled
Power

Converter

Electrical
Load

Electrical
Load

Sc

Sb

Sa

Analog Signals

VLSI Digital Circuit Analog
Interface

SoC Integration Approach

Regulation
Sub-algorithm

Blocks

Modulation
Sub-algorithm

Blocks

Treatment
Sub-algorithm

Blocks

Estimation
Sub-algorithm

Blocks

Reference
+-

Power
Source
Supply

Power
Source
Supply

Figure 1. General structure of electrical system

3. MODULAR METHODOLOGY

3.1 Architectural Approach IC architecture
proposal is one of the most important hardware
design steps. There are two main architecture
approaches: the automatic and the dedicated
approach.

Nowadays, designers generally use methods

based on behavioral synthesis principles to
automatically extract a controller and an operative
part by allocating operators and by arranging
operations according to architecture constraints
[6]. Behavioral synthesis is particularly adapted to
improve designer productivity and design quality,
but is not considered universal for all applications
and algorithms. Indeed, we can only generate
optimized hardware amount and processing time
for homogeneous algorithm structures.
Consequently, the automatic approach is not a
suitable solution for an IC-based electrical
controller. Indeed, control algorithms used in most
electrical drive applications are heterogeneous
structures. All these technical restrictions can be
resolved with a dedicated approach. However, it
requires a longer development time and real
designer know-how.

Finally, in order to generate an optimal
architecture for an electrical controller and from
electrical drives structure, we combined both
approaches by applying modular principles
generally used in IC conception.

3.2 Modular Principles For very

complex designs, modular conception is generally
used to reduce design cycle. This methodology is
based on hierarchy and regularity concepts.
Hierarchy is used to divide a large or complex
design into sub-parts that are more manageable.
Regularity is aimed to maximize the reuse of
already designed components and subsystems [7].
The modular partitioning is generally guided by
precise rules that are resumed in three main steps
in design-flow [6]:

• Partitioning: The partitioning can be applied

in order to split the system into simpler
modules. This step allows producing a
hierarchical modular decomposition of the
initial system.

• Module design: Each module generated can be
designed independently using a specific library
of components. It may include either existing
functional units or specific modules that have
been designed during previous steps for
example, arithmetic operators as multiplier,
divider … etc.

• Module abstraction: The abstraction of the
module has to be done in order to enable its
reuse as a complex library element.

The result of such a design flow is a modular

architecture made up of control unit (called the top

Archive of SID

www.SID.ir

www.SID.ir

IJE Transactions B: Applications Vol. 24, No. 2, July 2011 -109

controller) managing a set of modules (functional
units FU) and linked by a communication network
as illustrated in Figure 2. This architecture may be
hierarchical and the composition of each
functional unit may consist of another control unit
and another set of functional units, and so on. The
hierarchy ends with functional unit without local
control, such as a basic arithmetic operator.

Module abstraction

Module design

Partitioning

Algorithm

Library of reuse
components

Top
controller

C
TR

L FU FU FUModule 1
(FU)

Module 2
(FU)

Communication network

….

Modular architecture

Module abstraction

Module design

Partitioning

Algorithm

Library of reuse
components

Top
controller

C
TR

L FU FU FUModule 1
(FU)

Module 2
(FU)

Communication network

….

Modular architecture

Top
controller

C
TR

L FU FU FU

C
TR

L FU FU FUModule 1
(FU)

Module 2
(FU)

Communication network

….

Modular architecture

Figure 2. Modular design flow

4. MODULAR DESIGN FOR ELECTRICAL

CONTROLLER
Like presented earlier, the idea of the modular
methodology is to decompose the algorithm into
modules that are separately designed, tested and
included in the architecture. It means to reduce the
development cost of complex algorithms as
electrical controller. However, it is necessary to
adapt the methodology to particular constraints of
this application. To show the specificity of
electrical controller, we will introduce an
algorithmic partitioning how to structure the
algorithm of electrical drives and after we will
apply the modular principles to define a suitable
architecture.

4.2 Modular Principles for Electrical
Controller
4.2.1 Partitioning

For the electrical controller, the partitioning step is
split into two stages called algorithmic and
architectural partitioning.
 4.2.1.1 Algorithmic partitioning

The most current approach, used by VLSI IC
designers to describe an algorithm before to
propose the suitable architecture, is to apply Data
Flow Graph DFG principles [8]. We briefly
present the DFG representation mode, then

provide specific rules used for describe general
electrical controller algorithms. Finally, a DFG-
based algorithm example will be studied.

 Data Flow Graph approach
In the basic version of a DFG, each node
represents an operation which consumes data
before its execution and produces data after its
execution. This approach introduces an order
between the reading of data’s on all inputs and the
writing of resulting data’s on all output. An
algorithm description of an electrical controller
depends obviously on a very large variety of DFG.
Indeed, the choice of the granularity is not without
consequence on the controller performances. The
thicker granularity (thick granularity) enjoys the
facilities for an algorithm implementation and the
design should be improved in terms of time to
market. However, this approach not only increases
the execution time but also the hardware amount.
On the other hand, a thin granularity offers a good
implementation potential in terms of low cost and
control performances, but naturally complicates
strongly the design.

 DFG description rules
From previous considerations, and to help the
designer to describe the suitable DFG of his
algorithm, we elaborated five DFG description
rules, as given by:

• Rule 1: First, give a DFG description of each
sub-algorithm block as referenced in the
general structure of electrical controller,
according to the following rules 2, 3 and 4.

• Rule 2: The nodes of the final DFG will
exclusively correspond to:
- basic arithmetic operators (thin granularity),

- complex operators (thick granularity),
existing in library,

- complex operators not in library, if those
represent a homogeneous iterative algorithm
(for example, an integration by
accumulation...) and can be easily evolved.

• Rule 3: Between an existing thick grain and its
representation in thin granularity, the existing
one should always be considered first.
Moreover, when the constraints on execution
time (delay) or integration density (hardware
amount) are strong, the development in thin
granularity is used. Thus, not only the
hardware amount is reduced by sharing
common hardware resources but also

Archive of SID

www.SID.ir

www.SID.ir

110 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

execution time by increasing parallelisms of
the algorithm.

• Rule 4: Analyze the parallelism of the
algorithm from its DFG representation. It
often generates periodic repetitions of
identical motifs operating on different data.
These motifs give the possibility of a
hardware optimization by sharing the data-
path, i.e. Functional Units (FU).

Case of the three-phases to two-phases
transformation algorithm

To illustrate these description rules
previously defined, we propose to compose from
an algorithm commonly applied in electrical
systems to transform a model expressed in three-
phases (X1, X2, X3) to two-phases (Xα, Xβ), as
given by the relation (1):

=

3

2

1

232221

131211

X

X

X

CCC

CCC

X

X
*

β

α (1)

 This algorithm can be described at different
levels of granularity according to the existing
modules and to the conception constraints. So as
seen in Figure 3, using the proceeding rules 2 & 3,
the relationship (1) can be represented by a unique
top. This top is the biggest existing operator in our
library, i.e. the matrix product PMij (i: row, j:
column) with i=2 and j=3, as given by the relation
(2):

=

232221

131211
23 CCC

CCC
PM (2)

 However, to respect the delay and resource
constraints, it could be necessary to decompose
the operator in thinner granularity as multipliers
and adders. At this new granularity level,
respecting rules 2 and 4, we first try to parallelize
the algorithm as much as possible. We can see
such in the graph (a) of the Figure 3, which uses 6
parallel branches of multipliers and adders.
Afterwards, by factorizing this repetitive pattern
we obtain the graph (b) of the Figure 3, which
reduces the hardware amount but in other hand
increase the execution time. We can note that it is
naturally possible to go down to lower level (i.e.
logic gates). The final graph is thus a compromise
between calculation time and resource amount,
between factorization and dyfactorization (without
factorization).

Ij + Cij*Xj

C11 C12 C13

Xj

X1 X2 X3

X(α,β)

C21*X1 + C22*X2 + C23*X3

C1j C2j

‘0’

C11*X1 + C12*X2 + C13*X3

PM23

Basic operators :
+,-, LUT, registers…

Reducing Execution Time Increasing

Increasing Hardware Resources Reducing

** ** ** ** ** **
++ ++ ++ ++ ++ ++

Matrix Product
Operator

Th
ic

k
Th

in

X
C

X

G
ra

nu
la

rit
y

=

Cij

‘0’‘0’

DyfactorizationDyfactorization

FactorizationFactorization

C21 C23C22

X(α,β)

Xj

Cij*Xj

**

++

X

C

Cij

Acc

Library
of

Operators
Ci

X

(b)
C X

(a)

Figure 3. DFG representation of the relation (1)

 4.2.1.2 Architectural partitioning

At the architectural partitioning stage the hardware
amount of modules is allowed. Thus, independent
modules, which compose final modular
architecture, are extracted by regrouping the
different sub-algorithms previously identified in
algorithmic partitioning. Five rules are proposed
to define architectural partitioning. These rules
take into account the main constraints of the final
IC: processing time, chip size, control
performance, design flexibility, integration
perspective and reusability.

Finally, the five rules are:

• regrouping in the same module sub-algorithms
obtained from the similar functional block. The
module thus developed can be proposed as a
reused component of a design library.

• regrouping in the same module, sub-algorithms
using the most constrained hardware amount or
processing time.

• regrouping in the same module, sub-algorithms
involve in analogue to digital and digital to
analogue signal treatments, in a perspective of
mixed analogue/digital integrated circuit.

• regrouping in the same module, sub-algorithms
which can be applied to improve control
performance.

• regrouping in the same module, sub-algorithms
with homogeneous DFG. The aim is to use
behavior synthesis to generate the architecture
of this module.

Generally, these rules can not be used in same
time because they are contradictory. In fact, the
designer chooses the right one according to design
constraints.

Archive of SID

www.SID.ir

www.SID.ir

IJE Transactions B: Applications Vol. 24, No. 2, July 2011 -111

4.2.2 Module design Partitioning and
module design are closely inter-related. The
hierarchical decomposition may be influenced by
the set of already existing modules in the library
of reuse components (regularity concept). On the
other side, the selection of the modules is
influenced by the hierarchical decomposition of
the design. The power and flexibility of such
scheme depend on the range of components that
may be used in the library. For the electrical
designer, the problem is summed up to initialize
the design flow by defining an appropriate library
of reuse components.

From the sub-algorithms order defined at
algorithmic partitioning, we have built a library of
reuse components with two main categories as
shown in Figure 4.

High level
of granularity

Low level
of granularity

Concordia/Park

PWM

Digital Filter

Parallel
Multiplier Serial

Multiplieur

CORDIC

Figure 4. Library of reuse components

The first category is dedicated to complexes
electrical controller sub-algorithms (thick grain)
[9]. In our case, we have defined three
components for standard electrical sub-algorithms
of each algorithmic block, defined in electrical
drives structure, as:

• Concordia/Park component corresponding to
treatment block.

• Digital filter component corresponding to
estimation and regulation blocks.

• PWM (Pulse Width Modulation) component
corresponding to modulation block.

The second category is dedicated to arithmetic
operators (thin grain) [10] as:

• Parallel multiplier based on Booth2 algorithm.
This algorithm allows reducing multiplier
execution time but increase hardware amount.

• Serial multiplier based on Baught-Wooley
algorithm. The serial multiplier has an
optimized area rather than execution time.

• CORDIC (COordinate Rotational Integrated
Circuit) operator which execute rotational
operation, dividing operation, logarithmic
operation, ...

In order to validate each component of the
library, an ASIC or FPGA integration of a
prototype was made and results were resumed in
Table 1 here after.

TABLE 1. The hardware integration results of reuse
components

Component Technology Data
Format

(bits)

Hardware
amount
(mm2)

Concordia/Park ASIC AMS 0.6
µm

16 2.2

PWM ASIC AMS 0.6
µm

12 2.5

Digital Filter FPGA
EPF10k250AGC5

99-1

16 6799 LCs

Parallel
Multiplier

ASIC AMS 0.6
µm

16 1.5

Serial
Multiplier

ASIC AMS 0.6
µm

16 0.43

CORDIC ASIC AMS 0.6
µm

16 1.25

 LC : Logic Cell

To reduce development cost, the library also

includes a set of basic reused components as:
storage units (memories, registers …) and
communication units (multiplexers, switches …).
All of the reuse components are described in
VHDL language at register transfer level.

4.2.3 Module abstraction The design reuse
consists to reuse components of any degree of
complexity. In our case, these components are
developed in VHDL at register transfer level.
Thus; they can be reused as black boxes or macro-
blocks such a design situation is illustrated in
Figure 5.

Starting from a main algorithm and
partitioning steps, the designer use a set of
components instances to build the modular
architecture. From this design scheme, reused
components with thick granularity are used as
coprocessors in order to execute operations of
main algorithm. In fact for the modular
architecture, the synchronization is much less rigid
than in the flat architecture as each module may
run independently and in parallel with any other

Archive of SID

www.SID.ir

www.SID.ir

112 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

module of the architecture. Communication
between modules and the top controller allows
exchanging data according to predefined
protocols. We assume that all modules share a
common clock. However, each module may have
other local clocks. For a reused components with
thin granularity (arithmetic operators), these
components are used as a macro-blocks because
they are defined as a functional unit without
controller.

From this design flow, the main pieces of
information necessary for the abstraction of a
module for its reuse are:

- the operations it can execute,
- the communication protocol: control

signals, clock, …
- the timing scheme,
- the synthesis constraints.

Module abstraction

Module design

Main Algorithm

Top
controller

C
TR

L cpnt FU FUModule 1
(FU) Reused Compnt

Communication network

….

Modular architecture

cpnt

cpnt

cpnt

Compnt

Compnt

Partitioning

Algorithmic

Architectural

Thick granularity

Thin granularity

Algorithmic & architectural
partitioning rules

Library of reuse
components

Module abstraction

Module design

Main Algorithm

Top
controller

C
TR

L cpnt FU FUModule 1
(FU) Reused Compnt

Communication network

….

Modular architecture

Top
controller

C
TR

L cpnt FU FUModule 1
(FU) Reused Compnt

Communication network

….

Modular architecture

cpnt

cpnt

cpnt

Compnt

Compnt

cpnt

cpnt

cpnt

Compnt

Compnt

Partitioning

Algorithmic

Architectural

Partitioning

Algorithmic

Architectural

Thick granularity

Thin granularity

Algorithmic & architectural
partitioning rules

Library of reuse
components

 Figure 5. Modular design flow for electrical

controller

5. MODULAR DESIGN VALIDATION

5.1 DTC Modular Decomposition To
validate modular design flow for electrical
controllers, we developed a modular architecture
for an ASIC-based DTC (Direct Torque Control)
algorithm of an asynchronous motor. Since, DTC
structure is simple; it can be used to several AC
motor types (asynchronous, synchronous ...). This
control method insures excellent speed or torque
control without any mechanical information.
Moreover, sensitivity to machine parameters is
lower for the DTC in comparison with classic
vector control structures [11].

To make the validation, we consider a set of
integration constraints such as:

- Integrate DTC controller into ASIC target
in a perspective of mixed analogue/digital
integrated circuit.

- Increase the DTC control performances
using the specificity of hardware
integration.

- Improve development time

From the DTC algorithm and DFG description
rules previously presented (paragraph 3.2.1.1), we
define at algorithmic partitioning step 4 sub-
algorithm blocks as illustrated in data flow graph
of Figure 6.

sbsa

Uo

sc

Drivers – Inverter
Interface

12

sasbsc

16 1616
16

ϕ 2

ref

2 level
comparator

Operator

Switching Look -Up
Table Operator

ADC Output/
ASIC Input

PMij PMij

Isa Isb
Γref*

LUT

16

2 level
comparator

Operator

12 12 12

-

Isd IsqVsq

-

Vsd

ϕsd
ϕsq

*
*

+

*
Qi

ϕs
2

*

-

Isq*ϕsd ϕsq

1
3 2
5 6

* * * *
Qvd Qid QiqQvq

Γelm*

∫
t

0
dtX ∫

t

0
dtX ∫

t

0
dtX ∫

t

0
dtX

Sector
position
Operator

ϕsd
ϕs

2

acc
+

z-1

X(t)

acc
+

z-1

X(t)

4

*

*
Isd*

Qi

ASIC Output

Estimation
Block

Traitement
Block

Regulation
Block

Modulation
Block

Basic Operators

Library of reuse
components

sbsa

Uo

sc

Drivers – Inverter
Interface

12

sasbsc

16 1616
16

ϕ 2

ref

2 level
comparator

Operator

Switching Look -Up
Table Operator

ADC Output/
ASIC Input

PMij PMij

Isa Isb
Γref*

LUT

16

2 level
comparator

Operator

12 12 12

-

Isd IsqVsq

-

Vsd

ϕsd
ϕsq

*
*

+

*
Qi

ϕs
2

*

-

Isq*ϕsd ϕsq

1
3 2
5 6

* * * *
Qvd Qid QiqQvq

Γelm*

∫
t

0
dtX ∫

t

0
dtX ∫

t

0
dtX ∫

t

0
dtX

Sector
position
Operator

ϕsd
ϕs

2

acc
+

z-1

X(t)

acc
+

z-1

X(t)

4

*

*
Isd*

Qi

ASIC Output

Estimation
Block

Traitement
Block

Regulation
Block

Modulation
Block

Basic Operators

Library of reuse
components

Figure 6. Data flow graph of DTC algorithm

The treatment block encloses two Concordia
transformations which are represented with thick
grain operators. These operators correspond to the
matrix product of Concordia.

The estimation block includes sub-
algorithms which compute flux (ϕs, ϕsd,q), torque
(Γelm) and flux sector position (δ). The DFG of
this block is defined with thin grain arithmetic
operators as: adder, multiplier…

The regulation block contains two similar
sub-algorithms, torque and flux hysterisis
comparators, characterized with thick grain
operators called 2 level comparator operator.

The modulation block includes drivers switching
table. It represented with thick grain operator
named switching look-up table operator.

Archive of SID

www.SID.ir

www.SID.ir

IJE Transactions B: Applications Vol. 24, No. 2, July 2011 -113

The DTC algorithm is implemented with 16 bits
data format. We choose this format following
previous study presented in [12, 13].

Now, the design constrains and DFG of DTC
algorithm are fixed, we regroup, at architectural
partitioning step, the four sub-algorithm blocks in
three modules according to the rules presented in
paragraph 3.2.1.2.

• Interface module: the direct Concordia
transformation sub-algorithm is proposed to
build a unique module called the interface
module. Indeed, this sub-algorithms is
involved, via the sensors/amplifiers and the
ADC of the control system, in an analogue to
digital signal treatment. Thus, the module can
be considered in a viewpoint of mixed
analogue/digital integrated circuit. Moreover,
in reuse perspective, the sub-algorithm can be
included in a generic module regrouping other
transformation algorithms used in electrical
control algorithms as Clarke or Park
transformations. The architecture of the
module contains a functional unit and a local
control unit. The functional unit is composed
by a look-up table (LUT) and a set of reuse
thin grain components as: adder/substractor,
shift register …. Thus, the hardware amount of
the architecture is optimized. In fact, the LUT
and shift register avoid using the multiplier
operator to compute the matrix product. The
local control unit is employed to manage the
ADC and the data in the FU.

• Computation module: motor model sub-
algorithms require the most important
hardware operator resource in opposite to the
others controller sub-systems. Therefore, we
choose to regroup all these sub-systems in one
module, called computation module, in order to
optimize the hardware amount of the final chip.
To design this module, only one functional unit
describes the architecture of the computation
module which is composed by: an Arithmetic
Logic Unit ALU (32-bit/32-bit
Adder/Susbtractor, a 32*16-bit Multiplier
based on reuse parallel multiplier and a
transmission operator to transfer data’s
between registers), a specific register-file (8
registers of 16-bit and 4 registers of 32-bit),
and finally a ROM of constants.

• Control module: output data’s of the switching
logic table sub-algorithm are involved, via the
amplifiers and inverter drivers, in a digital to
analogue signal treatment. Furthermore, the
two simple hysteresis controllers are similar

sub-algorithms. They can be regrouped with
the flux zone position and the switching logic
table sub-systems in a same module in order to
improve control performances of DTC
algorithm such as presented here. The
architecture is built with a functional unit
without control and composed of 3 operators: a
position estimator, a hysteresis controller and a
LUT.

The top controller of the modular architecture

is applied to control the FU of computation
module. It also used to manage data transmission
with the two other modules (Interface and
Control). In order to optimize the top controller
architecture and circuit debugging, a programming
approach by microcode is proposed [14]. Also in
order to compare the performances of the
architecture, two kinds of controller were
developed: controller with finite state machine
(FSM) and controller with pipeline. The pipeline
controller works at 25 MHz (1 instruction/40ns
clock cycle). The figure 7 shows the modular
architecture of DTC algorithm.

Communication Network (Bus, Multiplexers, …)

S1

S3 S2

S1

S3 S2

To
p

Co
nt

ro
lle

r

PCIR

ROM
Prog.

FU
ROMRegister Files

ALU
+ / - / *
ALU

+ / - / *

Computation
Module

W ai t_Ini t

Fet ch_0

Fetch_1E rror_Ovf

Décode

E xe c Wa it_Re a dyB rea q_NB rea q_Z

Re a dy = 0

Re se t = 0

W ai t_Ini t

Fet ch_0

Fetch_1E rror_Ovf

Décode

E xe c Wa it_Re a dyB rea q_NB rea q_Z

Communication Network (Bus, Multiplexers, …)

S1

S3 S2

S1

S3 S2

To
p

Co
nt

ro
lle

r

PCIR

ROM
Prog.

FU
ROMRegister Files

ALU
+ / - / *
ALU

+ / - / *

Computation
Module

W ai t_Ini t

Fet ch_0

Fetch_1E rror_Ovf

Décode

E xe c Wa it_Re a dyB rea q_NB rea q_Z

Re a dy = 0

Re se t = 0

W ai t_Ini t

Fet ch_0

Fetch_1E rror_Ovf

Décode

E xe c Wa it_Re a dyB rea q_NB rea q_Z

Re a dy = 0

Re se t = 0

40 instruction
program lines in
Assembler Code

S1

S3 S2

S1

S3 S2

Controller

FSM

Interface Module

FU

LUT

Local Communication

Control Module

FU 2

FU 1

FU 3LUT

FU 4

FSM
Graph

Flexibility

Mixed/Reuse

Integration
Performance
Optimization

Control
Performance
Optimization

Figure 7. DTC modular architecture

5.2 DTC Validation To validate the DTC
modular architecture, we have developed a mixed
analogue/digital simulation based on HDL
languages for the DTC controller and its electrical
environment [15]. In fact, the power environment
and analogue interface (sensors, analogue to
digital converter, load…) are described in
SpectreHDL and DTC architecture in VHDL.

5.2.1 Improving Torque Control by DTC
architecture modification

 Identification of DTC control defaults

In order to respect technical constraints of power
inverter, the sample period of the controller should
never exceed the switching limit given by the
manufacturer. However, it is well-known that in

Archive of SID

www.SID.ir

www.SID.ir

114 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

those sampling conditions, precision of control
and stability are not satisfactory. It is particular
true in the case of the DTC which used hysteresis
controllers to correct torque regulation. Thus,
ripples can be observed on the controlled torque
which can be reflected on the driving shaft and
caused damage on the structure [16]. Many
researches in literature propose several control
strategies or new structures to limit those effects
[17- 19]. However, the proposed solutions always
increase the controller algorithm complexity
which is restricting for ASIC integration in terms
of hardware amount and execution time.

New DTC strategy based on hardware
solution

To improve DTC regulation and decrease torque
ripples, we propose to reduce the sampling period
of the controller, as much as possible. Thus,
torque derivation could change faster than
previously, avoiding consequently important
torque overtaking. In the other hand, latency of
electrical systems, using power inverter, is not low
enough to justify high sampling frequency.
However, by including an authorization mode in
the original DTC strategy, only suitable and
required signals will be propose to control
switches of the inverter associated to the induction
motor. Thus, a minimal sampling period (Tcom)
should be fixed and never be shorter than a
sampling period multiple (k Te). In the opposite
case, the control signal transmission would not be
authorized, as shown in the Figure 8.

: no switching authorized zone
: effective switching order(phase x)

Γref

Γref - ∆Γ

Γelm

k Te ≥ Tcom

Γref + ∆Γ

Te

t

∆du

∆dl

Tcom ≥ k Te

: available switching order (phase x)
Figure 8. Torque response based on new DTC

strategy

New control module architecture
Control Module architecture must be composed in
part with elements of the previous DTC
architecture, as torque and flux hysteresis
comparators, position flux estimator and switching
control Look-Up Table (LUT). And in another

part with elements of the new architecture which
can be carried out from rudimentary components,
as shown in the Figure 9.

Sa

Sc(k)

δ

1
0

π

1

0

1
654

3 2 1
654

3 2

Switching

Look-up

Table

π

τ

Γelm

ϕs

ϕsd,q

ϕs

Γref

ϕref
τ

Mux D QMux D Q

Rudimentary components

Rudimentary components

Mux D QMux D Q

Sb

Sc
Sb(k)

Sa(k)

Tc omTc om

TcomTcom

Tc omTc om

≠≠
≠≠

≠≠

Sc(k-1)
Sb(k-1)

Sa(k-1)

Au
th

or
iza

tio
n

Bl
oc

k

Comparison
Block

Decision

Block

Figure 9. Control Module architecture

Three new elements will be added to the

previous Control Module architecture, so called
decision block, authorization blocks, and
difference bocks. The decision block receives
information from authorization blocks and
difference bocks. Thus, difference blocks allow to
detect difference between switching control
signals Sa,b,c at sampling periods (k-1) and (k). In
case of difference, the decision bock will applied
the new control signal, on condition that
authorization blocks authorize signal generation.
In the opposite, the control decision will be
reported at the next sampling period (k+1). Once
switching control signal sent, authorization bocks
is fixed to prevent any new sending during a
minimal switching period (Tcom) which is given in
specification of the control system.

 Validation results

Figures 10(a) and 10(b) show torque regulation
performances with previous and new DTC
strategy. The torque is controlled around its
reference 10 N.m with a simple hysteresis
correction: +/- 0.25 N.m for a flux reference: 0.8
Wb. In case of new control method, sampling and
minimal switching periods are respectively given
by Te= 2µs and Tcom= 30µs.
To validate contribution of new DTC strategy in
torque control performances, a torque resultant
value was estimated. Thus, a significant reduction
of torque overtaking can be observed since it
reaches only 0.25 % instead of 6.75 % with classic
DTC method.
Finally, the modular structure allows improving
performances of the whole modular architecture
by a simple local modification. In a perspective,
many applications can be considered with the
modular approach as predict control.

Archive of SID

www.SID.ir

www.SID.ir

IJE Transactions B: Applications Vol. 24, No. 2, July 2011 -115

Figure 10. Instantaneous torque response obtained

from HDL models

 (a) classic DTC method ; (b) DTC with new control
strategy

Experimental validation

The architecture was validated by using the test-
bench engine of the Figure 11-a. This bench is
mainly constituted by an asynchronous engine
(Figure 11-c) and an in-house card based on
ATERA Flex 10K100A RC240-1 FPGA (Figure
11-b).

a)

b)
c)

a)

b)
c)

Figure 11. Experimental test-bench

 (a)test-bench ; (b) in-house FPGA electronic card ;
(c) engine

The Figure 12 presents experimental results.
Figures 12-a and 12-b show the starting up until
the established phase, the evolution of torque and
rotor flux constituents φq and φd, respectively. The
Figure 12-c presents φq = fct (φd)

a) b) c)a) b) c)
Figure 12. Experimental results

 (a) torque ; (b) rotor flux φq and φd ; (c) φq = fct (φd)

5.2.2 Hardware Implementation Results
The Table 2 compares FPGA and ASIC hardware
solutions by implementing modular DTC
architecture on an Altera Flex 10K100 FPGA (3V,
25 MHz) and on a AMS 0.6 µm ASIC (3.3V, 25
MHz). In the case of FPGA target, we also
compare, for computation module, the
performances obtained with LPM multiplier from
Altera’s library of parameterized modules and our
reuse multiplier based on Booth2 algorithm.

The FPGA hardware resources rate is nearly
56% with approximately 2496 logic cells used for
4992 available. The execution time of the circuit
can reach 2.3µs (pipeline controller) for at least
4,48µs (FSM controller). As expected, ASIC
implementation results are much better in term of
speed processing with 1.8 µs (pipeline controller)
for at least 3.44µs (FSM controller). In term of
integration density, a useful integrated surface
reaches 4.5 mm2.

As planned, size of the computation module
of the DTC architecture is much bigger than
Interface Module and Control Module. In detail,
adder/subtraction and multiplier operators used in
the Computation module are respectively based on
Carry Look-Ahead and Booth2 algorithms which
constitute respectively 10% and 75% of the size
chip. Moreover, the execution time of the
computation module given in Table 2 represents
the time for a multiplication operation with the
result stored in the register file.

Archive of SID

www.SID.ir

www.SID.ir

116 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

TABLE 2. FPGA and ASIC Integration results for DTC implementation

Architecture Execution Time (µs) Integration Density
Modules Types FPGA ASIC FPGA

-amount
resources- (%)

ASIC
-useful surface-

(mm2)
Interface
Module

Multiplexer
data-path type

with FSM controller

1.2 0.8 8.57 0.7

Control
Module

Multiplexer
data-path type

0.3 0.24 4.5 0.4

Computation
Module

Multiplexer

data-path type

Mult.
LPM

0.84 - 38.6 -

Mult.
Booth 2

0.87 0.08 33.31 3

DTC
Modular

Architecture

Multiplexer data-
path type
with FSM
controller

Mult.

Booth 2

4.48 3.44 56 4.5

Multiplexer data-
path type

with pipeline
controller

2.3 1.8 56 4.5

The different hardware results show that the
developed architecture is in excellent
appropriateness with the modular partitioning
applied to DTC algorithm. The Figure 11 shows
the final DTC ASIC layout with the new control
strategy for AMS 0,6µm technology. Benefit of
the modular approach is shown.

Computation
M odule

Control
M odule

Interface
M odule

Top
Controller

Computation
M odule

Control
M odule

Interface
M odule

Top
Controller

5.2.3 Reuse results In order to prove the
interest of the modular methode to reduce
conception time, we have developed a DTC
architecture based on reuse Concordia/Park
component (thick grain in the library of reuse
components). Thus, the interface module was
replaced with Concordia/Park component without
modification of the other modules. In order to
measure the profit in conception time, we use the
simple relation (3) given by:

()Number of modules * 100
Profit=

Number of reused modules
 (3)

In the case of DTC controller, the profit reaches
33%.

Table 3 compares the ASIC results for both
DTC architectures.

Figure 11. Final ASIC Layout of DTC modular

architecture

Archive of SID

www.SID.ir

www.SID.ir

IJE Transactions B: Applications Vol. 24, No. 2, July 2011 -117

TABLE 3. ASIC integration results for DTC architecture based on with/without reuse Concordia/Park component.

DTC Technology Data
(bits) Clk (ns) Execution Time (µs) Hardware Amount

(mm2)
Without thick

grain
AMS 0.6 µm 16 20 1.8 8.7

With thick
grain

AMS 0.6 µm 16 20 1.8 11

The results are in accordance with the
granularity effect developed in 3.2.1.1. In fact,
the thicker Concordia/Park component allows
reducing design time but increasing the hardware
amount of the final architecture.

6. CONCLUSION

In this paper, the authors develop a new
architecture approach for electrical controllers.
They propose to apply modular design principles
quite well-known nowadays in microelectronic
industry. Specific modular partitioning principles
were defined, and then these modules are
regrouped into a modular architecture. The
methodology developed is principally based on a
library of reuse components. In fact, we have
developed library of reuse components in two
categories: high and low level of granularity. This
approach was then used to design an ASIC
integrated solution for a vector control structure
called DTC. Three modules are identified and the
architecture of each of them described. In order to
reduce debugging time and improve design
flexibility, a specific programmable architecture
based on a microcode is proposed. Finally, the
modular architecture optimized both hardware
amount and processing time, making easier
design reuse of circuit was presented. This
example of modular development is shown to
prove the contribution of the proposed approach
in improving hardware results, controller
performances and conception time that reach 33%
compared with classic design.

7. REFERENCES
1. Cecati, C., “Microprocessors for Power Electronics and

Electrical Drives Applications”, Newsletter, IES
Industrial Electronics, Vol. 46, No. 3, (1999).

2. Le-Huy, H., “Microprocessors and Digital IC’s for Motion
Control”, proceedings of the IEEE, Vol. 82, (1994),
1140-1163.

3. Tzou, Y.Y. and Jyang, J.Y., “A programmable current
vector control IC for AC motor drives”, The
International Conference on Industrial Electronics,
Control and Instrumentation (IEEE IECON’99), San
Jose, USA, (1999), 216-221.

4. Riesgo, T., Torroja, Y. and Dela Torre, E., “Design
Methodologies Based on Hardware Description
Languages”, IEEE Transactions on Industrial
Electronics, Vol. 46, (1999), 3-12.

5. De Doncher, R. and Novotny, D.W., “The universal field
oriented controller”, The Industry Applications Society
conference (IEEE IAS’88), (1988), 450-456.

6. Jerraya, A.A., Ding, H., Kission, P. and Rahmouni, M.,
“Behavioral synthesis and component reuse with
VHDL” ,Kluwer Academic Publishers, (1997).

7. Trimberger, T., Rowson, J.A., Lang, C.R. and Gray, J.p.,
“A structured design methodology and associated
software tools”, The IECS conference (IECS’1981),
Vol. 28, No. 7, (1981).

8. Lavarenne C., et Sorel Y., Modèle Unifié pour la
Conception Conjointe Logiciel-Matériel », Revue
Traitement du Signal, Vol. 14, No. 6, (1997), 569-578.

9. Kebbati, Y., “Développement d’une méthodologie de
conception matériel à base de modules génériques
VHDL-VHDL-AMS en vue d’une intégration de
systèmes de commande électriques”, Phd Thesis,
Strasbourg, France, (2002).

10. Souffi, H., “Conception d’opérateurs numériques
réutilisables: application à une méthodologie
d’implantation rapide et optimale d’algorithmes de
commandes”. Phd Thesis, Strasbourg, France, (2002).

11. Takahashi, I. and Noguchi, T., “A new quick response
and high efficiency control strategy of an induction
motor” The Industry Applications Society conference
(IEEE IAS'1985), (1985), 495-502.

12. Chapuis, Y.A., Girerd, C., Aubepart, F., Blonde, J.P., et
Braun F., “Quantization Problem Analyze on ASIC-
Based Direct Torque Control of an Induction Machine”,
Actes de IEEE Industrial Electronics, Control and
Instrumentation (IECON), Aachen, Germany, (1998),
1527-1532.

13. Kebbati, Y., Girerd, C., Chapuis, Y.A., et Braun F.,
“Advances in FPGA/ASIC Digital Integration Solutions
for Vectors Control of Motor Drive”, Actes de IEE
International Power Electronics and Converter
Conference (IPEC), (2000), 1177-1182.

Archive of SID

www.SID.ir

www.SID.ir

118 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications

14. Kebbati, Y., Girerd, C., Chapuis, Y.A., et Braun F.,
“Advances in FPGA/ASIC digital integration solutions
for vector control of motor drive” The International
Power Electronics and Converter conference (IEEE
IPEC'2000), Tokyo, Japan, (2000), 1177-1182.

15. Girerd C., Aubépart F., Poure P., Blondé J.P., Chapuis
Y.A., et Braun F., « Modélisation VHDL/Spectre HDL
et Simulation Mixte sous Cadence : Conception d’un
ASIC de Commande de Moteur Asynchrone », Actes
des Journées Thématiques sur l’Adéquation
Algorithme Architecture du GDR ISIS, (1999).

16. Casadei D., Grandi G., Serra G., et Tani A., « Effects
of Flux and Torque of Induction Machines Based on
Stator Flux Vector Control », Actes de IEEE
Industrial Electronics, Control and Instrumentation
(IECON), Bologna, Italia, (1994), 299-304.

17. Kang, J.K. and Sul, S.K., “New Direct Torque Control
of Induction Motor for Minimum Torque Ripple and
Constant Switching Frequency”, IEEE Transactions
on Industrial Applications, Vol. 35, (1999), 1076-
1082.

18. Martin, C.A., Roboam, X., Meynard, T.A. and
Carvalho, A.S., “Multi-level Direct Torque Control
with imposed switching frequency and reduced
ripples”, IEEE Power Electronics Specialists
Confrence (IEEE PESC’2000), Galway, Ireland,
(2000).

19. Vaez-Zadeh, S. and Mazarei, G.H. “On Line
Determination of Optimal Hysteresis Band Amplitudes
in Direct Torque Control of Induction Motor Drives”
International Journal of Engineering, Transactions
A: Basics, Vol. 15, No. 4, (2002), 329-338.

Archive of SID

www.SID.ir

www.SID.ir

