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Abstract   VLSI circuits design allows today to consider new modes of implementation for electrical 
controls. However, design techniques require an adaptation effort that few designers, too accustomed to the 
software approach, provide. The authors of this article propose to develop a methodology to guide the 
electrical designers towards optimal performances of control algorithms implementation. Thus, they were 
based on two concepts: modular design and algorithm architecture adequation. An exemple of DTC control 
implemented in an ASIC circuit is presented and the results of the integration performances valid our 
methodology. 
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به هر حال، روش . است يکيالکتر يکنترل ها يراه انداز يد برايجد يحالت VLSI يمدارها يطراحامروزه،    دهيچک

. دکنن يجاد مي، آن را اينرم افزار ياز طراحان خوگرفته به روش ها ياز دارد که تعدادين يتطابق يشبه تلا يطراح يها
 يراه انداز يبرا يانتخاب يبه سمت عملکردها يکيت طراحان الکتريهدا يبرارا  يروش ن مقاله، توسعهيسندگان اينو

تمام . تميالگور يمدولار و معمار يطراح: و مفهوم هستنده دين، آنها بر پايبنابرا. کنند يشنهاد ميپ يکنترل يتم هايالگور
کپارچه، روش ما را معتبر ي يج عملکردهايش داده شده است و نتاينما ASICدر مدار  DTCکنترل  يراه انداز ينمونه ها

 .ساخته است
  

1. INTRODUCTION 

 
Power electronics and electrical drive controls are 
generally implemented by microprocessors or 
digital signal processor (DSP) solutions. Specific 
microprocessor architectures, including dedicated 
control and calculation functions for motor 
applications, have been developed by processor 
manufacturing [1]. From these software solutions, 
we can take advantage of fixed hardware 
architecture and extensive software flexibility 
which reduces the development cost. 

A very large scale integration (VLSI) 
application has improved control implementation 
performance [2]. Indeed, an application of specific 
integrated circuit (ASIC) solution can exploit 
efficiently specificities of the control algorithms 
that fixed hardware architecture can not do. For 
example, parallel calculation cannot be included in 

a software solution based on sequential processing 
[3]. In addition, ASIC can reduce wire and 
electromagnetic field interference by a fully 
system on a chip (SoC) integration. 

However, there are still two main drawbacks 
to an integrated circuit solution: design complexity 
and reuse difficulty. This is true even with 
programmable logic device (PLD) solutions. 
Conception aid developer (CAD) combined with 
hardware description languages (HDL) and VLSI 
design methodology have accelerated conception 
and reuse [4]. Nevertheless, the main problem of 
integrated circuit design is to define the hardware 
architecture; this is particularly true for 
heterogeneous algorithm structures such as 
electrical controllers. 
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2. ELECTRICAL DRIVES STRUCTURE  

To succeed ASIC integration of electrical 
controllers, the designer should take into account 
the heterogeneous algorithmic structures of 
electrical system, power environment and also 
integrated circuit constraints.  

Figure 1 presents the structure of electrical 
systems. In the figure, the power environment and 
analogue interface are given as power source 
supply, controlled power converter, electrical load, 
sensors, amplifications, drivers and analogue to 
digital converters. The control algorithm is 
decomposed on four main functional blocks. Each 
block is done according its function and the 
hierarchy in the control algorithm [5]. The blocks 
are composed of independent and specific sub-
algorithms which can be described by: 
• treatment block: including sub-algorithms of 

treatment and transformation models (as direct 
or reverse Concordia transformation, direct or 
reverse Park transformation, ...). 

• estimation block :  including sub-algorithms 
of system estimation models (as flux and 
torque estimations, …). 

• regulation block: including sub-algorithms of 
regulation and control models (as hysteresis 
controller, PI controller, ...). 

• modulation block: including sub-algorithms of 
power modulation models (as three-phase sine 
function, space vector PWM, ...). 
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Figure 1. General structure of electrical system  

3. MODULAR METHODOLOGY  

3.1 Architectural Approach     IC architecture 
proposal is one of the most important hardware 
design steps. There are two main architecture 
approaches: the automatic and the dedicated 
approach.  

Nowadays, designers generally use methods 

based on behavioral synthesis principles to 
automatically extract a controller and an operative 
part by allocating operators and by arranging 
operations according to architecture constraints 
[6]. Behavioral synthesis is particularly adapted to 
improve designer productivity and design quality, 
but is not considered universal for all applications 
and algorithms. Indeed, we can only generate 
optimized hardware amount and processing time 
for homogeneous algorithm structures. 
Consequently, the automatic approach is not a 
suitable solution for an IC-based electrical 
controller. Indeed, control algorithms used in most 
electrical drive applications are heterogeneous 
structures. All these technical restrictions can be 
resolved with a dedicated approach. However, it 
requires a longer development time and real 
designer know-how.  

Finally, in order to generate an optimal 
architecture for an electrical controller and from 
electrical drives structure, we combined both 
approaches by applying modular principles 
generally used in IC conception. 

 
 
3.2 Modular Principles     For very 

complex designs, modular conception is generally 
used to reduce design cycle. This methodology is 
based on hierarchy and regularity concepts. 
Hierarchy is used to divide a large or complex 
design into sub-parts that are more manageable. 
Regularity is aimed to maximize the reuse of 
already designed components and subsystems [7]. 
The modular partitioning is generally guided by 
precise rules that are resumed in three main steps 
in design-flow [6]: 

 
• Partitioning: The partitioning can be applied 

in order to split the system into simpler 
modules. This step allows producing a 
hierarchical modular decomposition of the 
initial system. 

• Module design: Each module generated can be 
designed independently using a specific library 
of components. It may include either existing 
functional units or specific modules that have 
been designed during previous steps for 
example, arithmetic operators as multiplier, 
divider … etc. 

• Module abstraction: The abstraction of the 
module has to be done in order to enable its 
reuse as a complex library element. 

 
The result of such a design flow is a modular 

architecture made up of control unit (called the top 
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controller) managing a set of modules (functional 
units FU) and linked by a communication network 
as illustrated in Figure 2. This architecture may be 
hierarchical and the composition of each 
functional unit may consist of another control unit 
and another set of functional units, and so on. The 
hierarchy ends with functional unit without local 
control, such as a basic arithmetic operator.  
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Figure 2. Modular design flow 

 
4. MODULAR DESIGN FOR ELECTRICAL 

CONTROLLER 
Like presented earlier, the idea of the modular 
methodology is to decompose the algorithm into 
modules that are separately designed, tested and 
included in the architecture. It means to reduce the 
development cost of complex algorithms as 
electrical controller. However, it is necessary to 
adapt the methodology to particular constraints of 
this application. To show the specificity of 
electrical controller, we will introduce an 
algorithmic partitioning how to structure the 
algorithm of electrical drives and after we will 
apply the modular principles to define a suitable 
architecture. 

4.2 Modular Principles for Electrical 
Controller 
4.2.1 Partitioning 

For the electrical controller, the partitioning step is 
split into two stages called algorithmic and 
architectural partitioning.    
 4.2.1.1 Algorithmic partitioning 

The most current approach, used by VLSI IC 
designers to describe an algorithm before to 
propose the suitable architecture, is to apply Data 
Flow Graph DFG principles [8]. We briefly 
present the DFG representation mode, then 

provide specific rules used for describe general 
electrical controller algorithms. Finally, a DFG-
based algorithm example will be studied.  

 Data Flow Graph approach 
In the basic version of a DFG, each node 
represents an operation which consumes data 
before its execution and produces data after its 
execution. This approach introduces an order 
between the reading of data’s on all inputs and the 
writing of resulting data’s on all output. An 
algorithm description of an electrical controller 
depends obviously on a very large variety of DFG. 
Indeed, the choice of the granularity is not without 
consequence on the controller performances. The 
thicker granularity (thick granularity) enjoys the 
facilities for an algorithm implementation and the 
design should be improved in terms of time to 
market. However, this approach not only increases 
the execution time but also the hardware amount. 
On the other hand, a thin granularity offers a good 
implementation potential in terms of low cost and 
control performances, but naturally complicates 
strongly the design. 

  DFG description rules 
From previous considerations, and to help the 
designer to describe the suitable DFG of his 
algorithm, we elaborated five DFG description 
rules, as given by: 

• Rule 1: First, give a DFG description of each 
sub-algorithm block as referenced in the 
general structure of electrical controller, 
according to the following rules 2, 3 and 4.  

• Rule 2: The nodes of the final DFG will 
exclusively correspond to: 
- basic arithmetic operators (thin granularity), 

- complex operators (thick granularity), 
existing in library, 

- complex operators not in library, if those 
represent a homogeneous iterative algorithm 
(for example, an integration by 
accumulation...) and can be easily evolved. 

• Rule 3: Between an existing thick grain and its 
representation in thin granularity, the existing 
one should always be considered first. 
Moreover, when the constraints on execution 
time (delay) or integration density (hardware 
amount) are strong, the development in thin 
granularity is used. Thus, not only the 
hardware amount is reduced by sharing 
common hardware resources but also 
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execution time by increasing parallelisms of 
the algorithm. 

• Rule 4: Analyze the parallelism of the 
algorithm from its DFG representation. It 
often generates periodic repetitions of 
identical motifs operating on different data. 
These motifs give the possibility of a 
hardware optimization by sharing the data-
path, i.e. Functional Units (FU). 

Case of the three-phases to two-phases 
transformation algorithm 

To illustrate these description rules 
previously defined, we propose to compose from 
an algorithm commonly applied in electrical 
systems to transform a model expressed in three-
phases (X1, X2, X3) to two-phases (Xα, Xβ), as 
given by the relation (1): 
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 This algorithm can be described at different 
levels of granularity according to the existing 
modules and to the conception constraints. So as 
seen in Figure 3, using the proceeding rules 2 & 3, 
the relationship (1) can be represented by a unique 
top. This top is the biggest existing operator in our 
library, i.e. the matrix product PMij (i: row, j: 
column) with i=2 and j=3, as given by the relation 
(2): 
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 However, to respect the delay and resource 
constraints, it could be necessary to decompose 
the operator in thinner granularity as multipliers 
and adders. At this new granularity level, 
respecting rules 2 and 4, we first try to parallelize 
the algorithm as much as possible. We can see 
such in the graph (a) of the Figure 3, which uses 6 
parallel branches of multipliers and adders. 
Afterwards, by factorizing this repetitive pattern 
we obtain the graph (b) of the Figure 3, which 
reduces the hardware amount but in other hand 
increase the execution time. We can note that it is 
naturally possible to go down to lower level (i.e. 
logic gates). The final graph is thus a compromise 
between calculation time and resource amount, 
between factorization and dyfactorization (without 
factorization). 
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Figure 3. DFG representation of the relation (1)  
 
 4.2.1.2 Architectural partitioning 

At the architectural partitioning stage the hardware 
amount of modules is allowed. Thus, independent 
modules, which compose final modular 
architecture, are extracted by regrouping the 
different sub-algorithms previously identified in 
algorithmic partitioning. Five rules are proposed 
to define architectural partitioning. These rules 
take into account the main constraints of the final 
IC: processing time, chip size, control 
performance, design flexibility, integration 
perspective and reusability.  

Finally, the five rules are: 

• regrouping in the same module sub-algorithms 
obtained from the similar functional block. The 
module thus developed can be proposed as a 
reused component of a design library. 

• regrouping in the same module, sub-algorithms 
using the most constrained hardware amount or 
processing time.  

• regrouping in the same module, sub-algorithms 
involve in analogue to digital and digital to 
analogue signal treatments, in a perspective of 
mixed analogue/digital integrated circuit. 

• regrouping in the same module, sub-algorithms 
which can be applied to improve control 
performance. 

• regrouping in the same module, sub-algorithms 
with homogeneous DFG. The aim is to use 
behavior synthesis to generate the architecture 
of this module.  

Generally, these rules can not be used in same 
time because they are contradictory. In fact, the 
designer chooses the right one according to design 
constraints. 
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4.2.2 Module design      Partitioning and 
module design are closely inter-related. The 
hierarchical decomposition may be influenced by 
the set of already existing modules in the library 
of reuse components (regularity concept). On the 
other side, the selection of the modules is 
influenced by the hierarchical decomposition of 
the design. The power and flexibility of such 
scheme depend on the range of components that 
may be used in the library. For the electrical 
designer, the problem is summed up to initialize 
the design flow by defining an appropriate library 
of reuse components. 

From the sub-algorithms order defined at 
algorithmic partitioning, we have built a library of 
reuse components with two main categories as 
shown in Figure 4. 

High level 
of granularity

Low level
of granularity

Concordia/Park

PWM

Digital Filter

Parallel 
Multiplier Serial

Multiplieur
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Figure 4. Library of reuse components 
 

The first category is dedicated to complexes 
electrical controller sub-algorithms (thick grain) 
[9]. In our case, we have defined three 
components for standard electrical sub-algorithms 
of each algorithmic block, defined in electrical 
drives structure, as: 

• Concordia/Park component corresponding to 
treatment block. 

• Digital filter component corresponding to 
estimation and regulation blocks. 

• PWM (Pulse Width Modulation) component 
corresponding to modulation block. 

The second category is dedicated to arithmetic 
operators (thin grain) [10] as: 

• Parallel multiplier based on Booth2 algorithm. 
This algorithm allows reducing multiplier 
execution time but increase hardware amount. 

• Serial multiplier based on Baught-Wooley 
algorithm. The serial multiplier has an 
optimized area rather than execution time. 

• CORDIC (COordinate Rotational Integrated 
Circuit) operator which execute rotational 
operation, dividing operation, logarithmic 
operation, ...  

In order to validate each component of the 
library, an ASIC or FPGA integration of a 
prototype was made and results were resumed in 
Table 1 here after. 

 
TABLE 1. The hardware integration results of reuse 
components  

Component Technology Data 
Format 

(bits) 

Hardware 
amount 
(mm2) 

Concordia/Park ASIC AMS 0.6 
µm 

16  2.2 

PWM ASIC AMS 0.6 
µm 

12 2.5  

Digital Filter FPGA 
EPF10k250AGC5

99-1 

16 6799 LCs 

Parallel 
Multiplier 

ASIC AMS 0.6 
µm 

16 1.5 

Serial 
Multiplier  

ASIC AMS 0.6 
µm 

16 0.43 

CORDIC ASIC AMS 0.6 
µm 

16 1.25 

 LC : Logic Cell 

 
To reduce development cost, the library also 

includes a set of basic reused components as: 
storage units (memories, registers …) and 
communication units (multiplexers, switches …). 
All of the reuse components are described in 
VHDL language at register transfer level. 
 

4.2.3 Module abstraction     The design reuse 
consists to reuse components of any degree of 
complexity. In our case, these components are 
developed in VHDL at register transfer level. 
Thus; they can be reused as black boxes or macro-
blocks such a design situation is illustrated in 
Figure 5.  

Starting from a main algorithm and 
partitioning steps, the designer use a set of 
components instances to build the modular 
architecture. From this design scheme, reused 
components with thick granularity are used as 
coprocessors in order to execute operations of 
main algorithm. In fact for the modular 
architecture, the synchronization is much less rigid 
than in the flat architecture as each module may 
run independently and in parallel with any other 
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module of the architecture. Communication 
between modules and the top controller allows 
exchanging data according to predefined 
protocols. We assume that all modules share a 
common clock.  However, each module may have 
other local clocks. For a reused components with 
thin granularity (arithmetic operators), these 
components are used as a macro-blocks because 
they are defined as a functional unit without 
controller. 

From this design flow, the main pieces of 
information necessary for the abstraction of a 
module for its reuse are: 

- the operations it can execute, 
- the communication protocol: control 

signals, clock, … 
- the timing scheme, 
- the synthesis constraints. 
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  Figure 5. Modular design flow for electrical 

controller 

5. MODULAR DESIGN VALIDATION  
 

5.1 DTC Modular Decomposition    To 
validate modular design flow for electrical 
controllers, we developed a modular architecture 
for an ASIC-based DTC (Direct Torque Control) 
algorithm of an asynchronous motor. Since, DTC 
structure is simple; it can be used to several AC 
motor types (asynchronous, synchronous ...). This 
control method insures excellent speed or torque 
control without any mechanical information. 
Moreover, sensitivity to machine parameters is 
lower for the DTC in comparison with classic 
vector control structures [11]. 

To make the validation, we consider a set of 
integration constraints such as: 

- Integrate DTC controller into ASIC target 
in a perspective of mixed analogue/digital 
integrated circuit. 

- Increase the DTC control performances 
using the specificity of hardware 
integration. 

- Improve development time 

From the DTC algorithm and DFG description 
rules previously presented (paragraph 3.2.1.1), we 
define at algorithmic partitioning step 4 sub-
algorithm blocks as illustrated in data flow graph 
of Figure 6. 
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Figure 6. Data flow graph of DTC algorithm 

 
The treatment block encloses two Concordia 
transformations which are represented with thick 
grain operators. These operators correspond to the 
matrix product of Concordia.   

The estimation block includes sub-
algorithms which compute flux (ϕs, ϕsd,q), torque 
(Γelm) and flux sector position (δ). The DFG of 
this block is defined with thin grain arithmetic 
operators as: adder, multiplier… 

The regulation block contains two similar 
sub-algorithms, torque and flux hysterisis 
comparators, characterized with thick grain 
operators called 2 level comparator operator. 

The modulation block includes drivers switching 
table. It represented with thick grain operator 
named switching look-up table operator.       
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The DTC algorithm is implemented with 16 bits 
data format. We choose this format following 
previous study presented in [12, 13]. 

Now, the design constrains and DFG of DTC 
algorithm are fixed, we regroup, at architectural 
partitioning step, the four sub-algorithm blocks in 
three modules according to the rules presented in 
paragraph 3.2.1.2.       

• Interface module: the direct Concordia 
transformation sub-algorithm is proposed to 
build a unique module called the interface 
module. Indeed, this sub-algorithms is 
involved, via the sensors/amplifiers and the 
ADC of the control system, in an analogue to 
digital signal treatment. Thus, the module can 
be considered in a viewpoint of mixed 
analogue/digital integrated circuit. Moreover, 
in reuse perspective, the sub-algorithm can be 
included in a generic module regrouping other 
transformation algorithms used in electrical 
control algorithms as Clarke or Park 
transformations. The architecture of the 
module contains a functional unit and a local 
control unit. The functional unit is composed 
by a look-up table (LUT) and a set of reuse 
thin grain components as: adder/substractor, 
shift register …. Thus, the hardware amount of 
the architecture is optimized. In fact, the LUT 
and shift register avoid using the multiplier 
operator to compute the matrix product. The 
local control unit is employed to manage the 
ADC and the data in the FU.        

• Computation module: motor model sub-
algorithms require the most important 
hardware operator resource in opposite to the 
others controller sub-systems. Therefore, we 
choose to regroup all these sub-systems in one 
module, called computation module, in order to 
optimize the hardware amount of the final chip. 
To design this module, only one functional unit 
describes the architecture of the computation 
module which is composed by: an Arithmetic 
Logic Unit ALU (32-bit/32-bit 
Adder/Susbtractor, a 32*16-bit Multiplier 
based on reuse parallel multiplier and a 
transmission operator to transfer data’s 
between registers), a specific register-file (8 
registers of 16-bit and 4 registers of 32-bit), 
and finally a ROM of constants.  

• Control module: output data’s of the switching 
logic table sub-algorithm are involved, via the 
amplifiers and inverter drivers, in a digital to 
analogue signal treatment. Furthermore, the 
two simple hysteresis controllers are similar 

sub-algorithms. They can be regrouped with 
the flux zone position and the switching logic 
table sub-systems in a same module in order to 
improve control performances of DTC 
algorithm such as presented here. The 
architecture is built with a functional unit 
without control and composed of 3 operators: a 
position estimator, a hysteresis controller and a 
LUT.  

 
The top controller of the modular architecture 

is applied to control the FU of computation 
module. It also used to manage data transmission 
with the two other modules (Interface and 
Control). In order to optimize the top controller 
architecture and circuit debugging, a programming 
approach by microcode is proposed [14]. Also in 
order to compare the performances of the 
architecture, two kinds of controller were 
developed: controller with finite state machine 
(FSM) and controller with pipeline. The pipeline 
controller works at 25 MHz (1 instruction/40ns 
clock cycle). The figure 7 shows the modular 
architecture of DTC algorithm. 
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Figure 7. DTC modular architecture 
 

5.2 DTC Validation     To validate the DTC 
modular architecture, we have developed a mixed 
analogue/digital simulation based on HDL 
languages for the DTC controller and its electrical 
environment [15]. In fact, the power environment 
and analogue interface (sensors, analogue to 
digital converter, load…) are described in 
SpectreHDL and DTC architecture in VHDL.     

5.2.1 Improving Torque Control by DTC 
architecture modification 

 Identification of DTC control defaults 

In order to respect technical constraints of power 
inverter, the sample period of the controller should 
never exceed the switching limit given by the 
manufacturer. However, it is well-known that in 
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those sampling conditions, precision of control 
and stability are not satisfactory. It is particular 
true in the case of the DTC which used hysteresis 
controllers to correct torque regulation. Thus, 
ripples can be observed on the controlled torque 
which can be reflected on the driving shaft and 
caused damage on the structure [16]. Many 
researches in literature propose several control 
strategies or new structures to limit those effects 
[17- 19]. However, the proposed solutions always 
increase the controller algorithm complexity 
which is restricting for ASIC integration in terms 
of hardware amount and execution time. 

New DTC strategy based on hardware 
solution 

To improve DTC regulation and decrease torque 
ripples, we propose to reduce the sampling period 
of the controller, as much as possible. Thus, 
torque derivation could change faster than 
previously, avoiding consequently important 
torque overtaking. In the other hand, latency of 
electrical systems, using power inverter, is not low 
enough to justify high sampling frequency. 
However, by including an authorization mode in 
the original DTC strategy, only suitable and 
required signals will be propose to control 
switches of the inverter associated to the induction 
motor. Thus, a minimal sampling period (Tcom) 
should be fixed and never be shorter than a 
sampling period multiple (k Te). In the opposite 
case, the control signal transmission would not be 
authorized, as shown in the Figure 8. 

:  no switching authorized zone
: effective switching order(phase x)

Γref

Γref - ∆Γ

Γelm

k Te ≥ Tcom

Γref + ∆Γ

Te

t

∆du

∆dl

Tcom ≥ k Te

: available switching order (phase x)  
Figure 8. Torque response based on new DTC 

strategy 
  

New control module architecture 
Control Module architecture must be composed in 
part with elements of the previous DTC 
architecture, as torque and flux hysteresis 
comparators, position flux estimator and switching 
control Look-Up Table (LUT). And in another 

part with elements of the new architecture which 
can be carried out from rudimentary components, 
as shown in the Figure 9. 
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Figure 9. Control Module architecture 

 
Three new elements will be added to the 

previous Control Module architecture, so called 
decision block, authorization blocks, and 
difference bocks. The decision block receives 
information from authorization blocks and 
difference bocks. Thus, difference blocks allow to 
detect difference between switching control 
signals Sa,b,c at sampling periods (k-1) and (k). In 
case of difference, the decision bock will applied 
the new control signal, on condition that 
authorization blocks authorize signal generation. 
In the opposite, the control decision will be 
reported at the next sampling period (k+1). Once 
switching control signal sent, authorization bocks 
is fixed to prevent any new sending during a 
minimal switching period (Tcom) which is given in 
specification of the control system.  

 Validation results 

Figures 10(a) and 10(b) show torque regulation 
performances with previous and new DTC 
strategy. The torque is controlled around its 
reference 10 N.m with a simple hysteresis 
correction: +/- 0.25 N.m for a flux reference: 0.8 
Wb. In case of new control method, sampling and 
minimal switching periods are respectively given 
by Te= 2µs and Tcom= 30µs.  
To validate contribution of new DTC strategy in 
torque control performances, a torque resultant 
value was estimated. Thus, a significant reduction 
of torque overtaking can be observed since it 
reaches only 0.25 % instead of 6.75 % with classic 
DTC method. 
Finally, the modular structure allows improving 
performances of the whole modular architecture 
by a simple local modification. In a perspective, 
many applications can be considered with the 
modular approach as predict control. 
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Figure 10. Instantaneous torque response obtained 

from HDL models  

 (a) classic DTC method ; (b) DTC with new control 
strategy 

 

Experimental validation 

The architecture was validated by using the test-
bench engine of the Figure 11-a. This bench is 
mainly constituted by an asynchronous engine 
(Figure 11-c) and an in-house card based on 
ATERA Flex 10K100A RC240-1 FPGA (Figure 
11-b).  

a)

b)
c)

a)

b)
c)

 
 

Figure 11. Experimental test-bench 

 (a)test-bench ; (b) in-house FPGA electronic card ; 
(c) engine 

 

The Figure 12 presents experimental results. 
Figures 12-a and 12-b show the starting up until 
the established phase, the evolution of torque and 
rotor flux constituents φq and φd, respectively. The 
Figure 12-c presents φq = fct (φd) 

a) b) c)a) b) c)  
Figure 12. Experimental results 

 (a) torque ; (b) rotor flux φq and φd ; (c) φq = fct (φd) 

 

5.2.2 Hardware Implementation Results 
The Table 2 compares FPGA and ASIC hardware 
solutions by implementing modular DTC 
architecture on an Altera Flex 10K100 FPGA (3V, 
25 MHz) and on a AMS 0.6 µm ASIC (3.3V, 25 
MHz). In the case of FPGA target, we also 
compare, for computation module, the 
performances obtained with LPM multiplier from 
Altera’s library of parameterized modules and our 
reuse multiplier based on Booth2 algorithm. 

The FPGA hardware resources rate is nearly 
56% with approximately 2496 logic cells used for 
4992 available. The execution time of the circuit 
can reach 2.3µs (pipeline controller) for at least 
4,48µs (FSM controller). As expected, ASIC 
implementation results are much better in term of 
speed processing with 1.8 µs (pipeline controller) 
for at least 3.44µs (FSM controller). In term of 
integration density, a useful integrated surface 
reaches 4.5 mm2.  

As planned, size of the computation module 
of the DTC architecture is much bigger than 
Interface Module and Control Module. In detail, 
adder/subtraction and multiplier operators used in 
the Computation module are respectively based on 
Carry Look-Ahead and Booth2 algorithms which 
constitute respectively 10% and 75% of the size 
chip. Moreover, the execution time of the 
computation module given in Table 2 represents 
the time for a multiplication operation with the 
result stored in the register file.  
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TABLE 2.    FPGA and ASIC Integration results for DTC implementation 

Architecture Execution Time (µs ) Integration Density    
Modules Types FPGA  ASIC  FPGA  

-amount 
resources- (% ) 

ASIC 
-useful surface- 

(mm2) 
Interface 
Module 

Multiplexer  
data-path type  

with FSM controller 

1.2  0.8 8.57        0.7         

Control 
Module 

Multiplexer  
data-path type  

0.3 0.24 4.5         0.4         

Computation 
Module 

 
Multiplexer  

data-path type 

Mult. 
LPM 

0.84  - 38.6     - 

Mult. 
Booth 2 

0.87  0.08 33.31    3          

DTC 
Modular 

Architecture 

Multiplexer data-
path type  
with FSM 
controller 

 
Mult. 

Booth 2 

4.48  3.44  56     4.5         

Multiplexer data-
path type  

with pipeline 
controller 

2.3  1.8  56    4.5          

 

The different hardware results show that the 
developed architecture is in excellent 
appropriateness with the modular partitioning 
applied to DTC algorithm. The Figure 11 shows 
the final DTC ASIC layout with the new control 
strategy for AMS 0,6µm technology. Benefit of 
the modular approach is shown.  

Computation
M odule

Control 
M odule

Interface
M odule

Top
Controller

Computation
M odule

Control 
M odule

Interface
M odule

Top
Controller

 

 

5.2.3 Reuse results     In order to prove the 
interest of the modular methode to reduce 
conception time, we have developed a DTC 
architecture based on reuse Concordia/Park 
component (thick grain in the library of reuse 
components). Thus, the interface module was 
replaced with Concordia/Park component without 
modification of the other modules. In order to 
measure the profit in conception time, we use the 
simple relation (3) given by: 
 

( )Number of modules * 100
Profit=

Number of reused modules
   (3) 

   
In the case of DTC controller, the profit reaches 
33%. 

Table 3 compares the ASIC results for both 
DTC architectures.  

Figure 11. Final ASIC Layout of DTC modular 

architecture 
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TABLE 3. ASIC integration results for DTC architecture based on with/without reuse Concordia/Park component. 
 

DTC Technology Data 
(bits) Clk (ns) Execution Time (µs) Hardware Amount 

(mm2) 
Without thick 

grain 
AMS 0.6 µm 16  20 1.8 8.7 

With thick 
grain 

AMS 0.6 µm 16 20 1.8 11 

 
 

The results are in accordance with the 
granularity effect developed in 3.2.1.1. In fact, 
the thicker Concordia/Park component allows 
reducing design time but increasing the hardware 
amount of the final architecture. 
 
 

6. CONCLUSION  
 
In this paper, the authors develop a new 
architecture approach for electrical controllers. 
They propose to apply modular design principles 
quite well-known nowadays in microelectronic 
industry. Specific modular partitioning principles 
were defined, and then these modules are 
regrouped into a modular architecture. The 
methodology developed is principally based on a 
library of reuse components. In fact, we have 
developed library of reuse components in two 
categories: high and low level of granularity. This 
approach was then used to design an ASIC 
integrated solution for a vector control structure 
called DTC. Three modules are identified and the 
architecture of each of them described. In order to 
reduce debugging time and improve design 
flexibility, a specific programmable architecture 
based on a microcode is proposed. Finally, the 
modular architecture optimized both hardware 
amount and processing time, making easier 
design reuse of circuit was presented. This 
example of modular development is shown to 
prove the contribution of the proposed approach 
in improving hardware results, controller 
performances and conception time that reach 33% 
compared with classic design.  
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