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Abstract In this paper, the dynamic response of a three-rotor flexible coupling to the angular
misalignment has been studied. The coupling is a power transmission agent between the motor and
gearbox, in the power transmission system of SAG Mill (semi autogenously mill) in the Gol-e-Gohar
iron ore complex in Sirjan, Iran. Degrees of freedom of the system are the model's |ateral deflections
and the rigid-body linear motions. The equations of motion are obtained by using the Lagrange
equations through successive partial differentiation of the kinetic and potential energies. In the
dynamic model, the middle rotor is considered as an eccentric flexible Jeffcott rotor. The gearbox
input shaft is considered to be angularly misaligned with respect to the motor shaft. Diagrams of the

amplitudes versus the frequency ratio revead the system dynamic response to the angular
misalignment.
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1. INTRODUCTION

Couplings are widdy used in industry to transmit
the power from the driver to the driven rotors.
Generally, there are two types of connections in
couplings: rigid and flexible. Rigid couplings have
low deflections; however, they insert additional
force and moments on the system equipments such
as motor, bearings and gearbox. Flexible couplings
are used to diminate the additional force and
moments; however, their position changes may be
resulted in high level vibrations that can damage
the system and lead to shutdown.
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Misalignment of the connected rotors is one of the
most common defects that may be encountered. It
may cause undesired vibrations. Many factors
affect the vibration behavior of a misaligned
system. Therefore the phenomenon must be wdl
understood so that it can be detected and adjusted
at theinitial stages of its appearance.

Thereare alot of discussions in industry regarding
the interpretation of the vibration signals
introduced due to misalignment, but there is not
enough academic research to explain the
phenomenon in a simple way.

Al-Hussain [1] studied the dynamic behavior of a
two-rotor rigid coupling model exposed to parald
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misalignment, to aid turbo machinery diagnostic
engineers in understanding the dynamic response
of a misaligned system. He proposed future works
such as angular misalignment and axial mations.
Lorenzen et a. [2] compared the critical speeds of
a high-speed high-power compressor train that
aternatively equipped with the solid couplings,
flexibledisc and gear-type couplings. They
showed that the solid couplings can cause the rotor
to be more stable. Sekhar and Prabhu [3] explained
the effect of the coupling misalignment on the
turbo machinery vibrations. They showed that the
location of the coupling has a strong influence on
the level of vibrations. A theoretical modd of a
complete system of the motor-flexible coupling
rotor was presented by Xu and Marangoni [4].
They assumed that the flexible coupling behaves
exactly like a universal joint to take the
misalignment effect into account. Prabhu [5]
experimentally  investigated the effect  of
misalignment on the cylindrical and three-lobe
journal bearings. He showed that an increase in the
angular misalignment caused change in the second
harmonic of the vibration response. Simon [6]
predicted the behavior of a large imbalanced turbo
machine, imposed by the misalignment. He
computed numerically the vibration, excited by the
coupling, using the assumed values for the
coupling reaction force and moments.

Diagnostic engineers of the Gol-e-Gohar industry
aimed to devedop a VCM (vibration condition
monitoring) process on the power transmission
system of the SAG Mill. Misalignment is one of
the common system defects, so its dynamic effects
must be good understood. In the present work the
system dynamic response to the angular
misalignment has been investigated.

2. GEOMETRY DESCRIPTION

The system that transmits power between a 3Mwaitt-
motor and the gearbox of a SAG Mill is studied here. It
is composed of output motor-side shaft, flexible
coupling and gearbox input shaft. The flexible coupling
isillustrated in Figure 1. The motor shaft and gearbox
input shaft are located inside the hubs 1 and 3
respectively. The geometrical system properties are
shown in Table 1.
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TABLE 1. Geometrica system properties

Length . Length to
Shat (mm) Diameter (mm) diameter ratios
Motor shaft 320 220 1.45
Flexible shaft 1260 D, =368, D; =324 3.42
Gearbox shaft 240 220 11
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Figure 1. Coupling with steel plates as the flexible elements

3. DYNAMIC MODEL

The system model with angular misalignment is
illustrated in Figure 2. The angular misalignment
of the gearbox input shaft relative to the motor
output shaft is taken as a pure rotation around the y
axis as shown in Figure 2. In this figure, vy is the
angular misalignment magnitude and o is the
orientation change of rotor 2 due to the

misalignment.

Figure 2. Model of the misaligned system

Rotor 2 is considered as an imbalanced flexible
Jeffcott rotor. Figure 3 shows the position of the
area and mass centers of rotor 2 at an instant of the
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motion, and the point o corresponds to the end
position of rotor 2 at this instant. The length-
diameter ratios of rotors 1 and 3 are such that they
can be considered asrigid cylinders.

4. KINETIC AND POTENTIAL ENERGIES

The Lagrange energy method is used to obtain the
equations of motion. The generalized coordinates
for the 13 degrees of freedom of the system are:

0= {X1, Y1,z 1, %0, Yo, Zo, X2, Yr2, X3, Y3, Z, S}t (1)

Figure 3. Position of rotor 2 a an instant of the motion

Independent coordinates, r and f,=wt, specify the
position of center mass of rotor 2 with respect to its
ends but, in the present study, they have been
replaced by the coordinates x, and y;, respectively.
So, the position of the center of mass of rotor 2
with respect to its static state is specified as
follows:

Xo= Xo + X2 )
Y2= Yot Yr2 3)
Xr2 = I Sinwt + & Sin(wt+¢) (4)
Vio = T COSwt + & cos(wt+g) ®)

The rotations of rotor 2 around the x and y axes
have been ignored. Therefore:

=2 (6)
the system kinetic energy is:
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T:T1+T2+T3 (7)
T=lm 2+ ¥+ )+ 2187
2 2
1
+Em2[()&o + ﬁrz)z + (&o + glrz)2 + &g]

$ITB2 + 2 my (1 + 42 + 22) + 21582
2 2 2 (8)

and the potential energy is:

U =Upm + Upg+ Up + Uy + Ugp 9)

It is assumed that the bearings are linearly flexible and
their potential energy is as follows[1]:

u,, = %kbmx x2 +%kbmy y? +%kbmz 22 (10)
Usy = 2K X+ iy Vi + 2Ky 22 (11)

The potential energy of the flexible connections is
due to the relative motion of the ends of rotor 2
with respect to the rotors 1 and 3 [7]. The end
displacements of rotor 2 in direction of rotors 1
and 3 can be written by using unit vectors as:

Feo1= (o COSI —Z, SiNA)iy + Yo j1 + (% SiNa + Z, cosa)k; (12)

Feo3 = [%o COS(y - @) =2 SIN(y - @)]is + Yo js + [Xo SIN(y -
) + 2, cos(y - a)] ks (13
then, the potential energy of the connection is:

U,y :%kcx{xo cosa - z,sna - x}°

+%(yo - y)? +%kcz{XoSina +27,cosa - 2}?

(14)

U023 :%kcx{xo COS(g - a)
- z,8n(g-a)- X}’

1 , 1 .
+Ekcy(yo - y3) +E{Xosn(g' a)
+2z,c08g-a)- z5}° (15)
Bending potential energy of rotor 2 is:
U = 2kr? = Zkf [, - esin(wt +) )
+1Y,, - ecos(wt +j )I%} (16)

Total potential energy of the system is the sum of
al potential energies, is:
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U = 2 K X+ Koy Vi 4 Ko 22

1 , 1 , 1 ,
+Ekng X3 +Ekbgy Y3 +Ekbgz

1 .
+Ekcx{x0 cosa - z,sina - X,}°

1 1 .
+Ekw(yo - y,)? +Eka{xosma +
2, 0082 - 2}7 + ZKo{x, 009 - a)

. 2 1 2
- z,sin(g - a)- X} +Ek"‘/(y° - Ys)
+%ka{xosin(g-a)+20008(g-a)
© 2} 4 2Ho{(x,, - esin(wt +] )

+ (Y, - ecos(wt +j )) %} 17
5. EQUATIONS OF MOTION

Equation (18) ( Lagranges equation) is used to
obtain the equations of motion.

d T, U 9T

98 0 g 1T (19
dt(ﬂ@i)+ﬂqi o Q. 1=123...n

where, n is the number of generalized coordinates and
Q isthe generalized force(or moment) in direction of g.

d fT,, TuU 9T

E(E)Jrﬂ_ E:Qxl

d . (19)
gt (M) + KomeX, - Ko{X, COSa - Z, 8N - X} =-Cuk,

mM& +Cok + (Ko + Ko )X, =K, (X, COsa - Z,sina)

rnlwl + Cylg{l + (k‘omy + kcy)yl = kcyyo (20)
rn_’L@l + Czlﬁi + (kbzm + kcz)zl = (21)
K, (x,sna + z, cosa)

ITI3WL3 + Cx3f(3 + (kng + kcx)X3 =

kcx[Xo COS(g -a ) - Z S'n(g - a)] (22)
rnS% +Cy3&3 + (kbgy + kQ/)yS = kQ/yo (23)
m3w3 + Czsﬁs + (kbgz + kcz)ZS =

kcz[xog-n(g_ a)+zo COS(g- a)] (24)

It can be inferred from Equations (19)-(24) that the
dynamic of rotors 1 and 3 is highly dependent on
the end movement of rotor 2.

Equations of motion of rotor 2 are;
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d, 9T W 9T

— + - =

dt (ﬂﬁrz) ﬂXrZ ﬂsz er2

mz(8&2+8&0)+k2[xr2- eSin(Wt +j )]:0 (25)

Substituting %, from Equation (4) into Equation
(25) leads to:

m,& =m,w?[rsinwt +esin(wt +j )]
- k,rsinwt (26)

At the steady state, r and ¢ are independent of time
and can be expressed as Equations (27). [10]
W
e(—)°

n2

\/(2x2 Vye+@- (yzy
w w

n2 n2

rw)=

x,
i W) = tan 2 ]
1- (—)?
Wy, (27)
where
k, C
W, = |2 andy = 2 (28
m, k,m,

are the bending natural frequency and damping
ratio of rotor 2.

Therefore, the solution of Equation (26) can be
given as.

X, (t,w) = X, (w) cosirt - q,,) (29)

where

X, (w) :\/[r(%)2 - r- ecosj |*+e’sin?j
" (30)

r(%)z- r - ecosj

W 1
- esinj

The egquation of motion of rotor 2 in direction of y

is solved in the same way as that for direction of x,

to obtain the end displacement, y,, as a function of

time and rotational frequency.

m, &, =mw?[r coswt +e cos(wt +j )] -

k,r coswt by, (t,w) =Y, (w)cos(wt - q

where

Oy (W) =tan ™[

w) (31)
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nmo=ﬁmﬂﬂf-r-eam12+ésnﬁ
W

. esinj
0,0 W) = tan™'[ )

W ]
r(W”Z)2 - I - e00s] 32

6. SOLUTIONS

Substituting Equations (29) and (31) into
Equations (19) to (24):

rnl&l + Cyl&l + (kbmy + kcy)yl =

(33)
Ky Y, (W) coswt - q,,)
It is assumed that:
yi(t.w) =Real(Ye") (34)

where i = V-1. Substituting yi(t,w) from Equation
(34) into the Equation (33) leads to:

[-W? +i S, (k“my *hy Ny, = &Yo(w)e' D (39)
m m

solution of Equation (35) for Yy, gives:

Ky Y.
1, o(W)
Y,(w) = kbmy g @) (36)
w K w
2 2011+ o (Y22
J( o, VTG )
where
k C
Wy, = [ Xy = ——2
m, 2 kbmym1
w
Ky~
qyl = tan-l[ k B ] (37)
1+ Yy ( W )2
bmy nly
Therefore
LA (38)

k
y,(t,w) = o cog(wt - d, - d,,)
w k w
(X —)? +[1+ - (—)°]°
w, K,

nly my nly

Equation (19), which is a couple equation of X3, X,
and z,, is solved to determine x,(t,w). A reasonable
assumption that z, is a harmonic function in phase
with %, simplifies the solution of Equation (19).
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zo(t1W) = Zo COS(Nt - qxo) (39)
Substituting Equations (39) and (29) into Equation
(19), leads to:

Cxl kb + kcx — kcx
+ =L+ (A —=)x, = —=[X, (W) cosa
& m % m T (40)
- Z,sina]cos(wt - q,,)

A solution for the Equation (40) would be:

X (tw) =Real(X,(We") (41)

Substituting Equation (41) into Equation (40) leads
to:

k%[xo(mcoa - Z,sina] 42)
Xi(t!W) = me K:X W COS(Nt - qxo - qn)
\/(Z(xlw)z +[1+|‘1T - (W*)Z]2
Where
W
X
k= Ot gt e
2 KoM 1+& - (ﬂy (43)
I(‘omx Wnlx

m

Solution of Equation (21) by the same method as
Equation (19) leads to:

e [X,(w)sina +Z, cosa] (44)
z,(tw) = ""‘ZW : T cosiM - g, - 0,4)
(2><an) HI+—- (—)7]
nlz bz nz
where
k
X, - -4 y W, = _tbmz.
2\ KoMy m,
o W (45)
a
- Wn V4
qzl = tan 1[ k ! ] 1
l+ cz _ ( W )2
k
bmz Wnlz

Thisresearch is carried out in areal system, so the
real mechanical parameters which have been listed
in Table 2 should be used for the numerical
analysis.
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TABLE 2. System mechanica parameters

Kex Key Kz
1.22 GN/m 1.22 GN/m 0.735GN/m
m; m, ms
313 kg 313 kg 289 kg

Equation (46) is used to calculate the stiffness of
roller bearings [8].

Keq = 3x10°N°°L28P*1cos™a, (Ib/in) (46)
Therefor the stiffness of the motor-side bearing
would be:

Kom = 3%x10°x19%°x 1.97°8x 1046.4°! = 146.4% 10°
Ib/in= 2.53 GN/m (47)

Bending stiffness of rotor 2, as abeam, can be
calculated asfollow: [9]

_ 48El,
12

K, =3.6*10°N/m (49)

7.NUMERICAL RESULTS

To study the effect of rotational frequency on the
dynamic response of the system, results of the case
study where ZyJe = 2 and a =7 degrees were
calculated. It should be noted that o is not the
angular misalignment magnitude, and is the rotor 2
orientation change due to the misalignment.
Dimensionless form of the amplitude function of
rotor 1 indirection of z iswritten as:

&' T Wia \Wizyo T o o 5 49
M:kmh“a\/[e(wn ey L cog vy +Zocosa] (49)
€ w

.
P

1z

)2+[1+kki- (ﬂ

'bmz nlz

)1

In the Equation (49), r and ¢ depend on the
rotational velocity, eccentricity value, damping
ratio and bending dtiffness of rotor 2. After
substituting Equation (27) into Equation (49), the
dimensionless amplitude Z;/e would be a function
of the rotating frequency only. The dimensionless
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amplitude of rotor 1 in x and y directions as the
functions of rotational frequency can be obtained
by the same procedure as that of z direction.
Variations of the dimensionless amplitudes versus
the frequency ratio, for damping ratios of 0.05-1,
have been illustrated in Figures 4 to 8.

dimensinnlass deflactinn af rotar 2
w

f I I I I
0 0.5 1 15 2 25 3

Frequency ratio (w/wny)

Figure 4. Dimensi onless amplitude of rotor 1 in z direction
(Z4/¢), versus the frequency ratio (w/wniz)

0.4 X: 0.381
Y:0.2614

dimensionless amplitude in direction of x

-0.8 ]

X:1.221
Y:-0.796

0 0.5 1 1.5 2 25 3
Frequency ratio (w/wnix)

Figure 5. Dimens onless amplitude of rotor 1 in x direction
(X4/e), versus the frequency ratio (w/wnix)
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L
= ||
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i
5 Of
£
0.05f
0 ‘ ‘ ‘
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Frequenéy ratio (&/mniy) -
Figure 6. Dimens onless amplitude of rotor 1iny direction
(Y4/e), versus the frequency ratio (o/mpy)

dimenainnless deflection af ratar 2
o

| . . . .
0 0. 1 1. 2 2. 3
Frequency ratio (o/on)

Figure 7. Dimens onless deflection of rotor 2 (r/e), versusthe
frequency ratio (o/myy)

0.9

0.8

0.7+

0.61

0.5

0.4r

0.3

0.2

dimengionlezs amplilude of the end of rolor 2

0.19

. . . .
0 0.5 1 15 2 25 3
Frequency ratio (w/wy)

Figure 8. Dimens onless end movement of rotor 2 (X,/¢),
versus the frequency ratio (w/w,y)
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Figures 4-6 show resonances on the frequency
spectrums of rotor 1 that corresponds to the
frequency ratios of 0.38 and 1.2 for the spectrums
of x and y directions, and the frequency ratio of
1.32 for the spectrum of z direction. The resonance
frequency ratios of the x and y directions are equal
because:

ko= Key and Kom= Komy.

As is shown in Figure 8, when w/w,p=1 then
Xole=1 Thereason is clear from the Equation (50).

X, W) _
%l -

”'%ZV )] (50)
£« ) cosj ) +sin?)
J(2x2 )2+ (L- (—)2)?

Wn2 Wn2

The first harmonic of Figures 5 and 6 is similar to
that of Figure 8. This is because the first resonance
arises from the excitation source harmonic, i.e., the
rotor 2 harmonic. So, when the rotational
frequency approaches the natural frequency of
rotor 2, the resonance behavior of rotor 1 is similar
to that of the end of rotor 2. Thisis not clear on the
frequency spectrum of z direction in Figure(4),
because the level of its second resonance is very
high reative to the first one due to reatively high
sdected value for Zge. Variation of the
dimensionless amplitude of rotor 1 in z direction
versus the frequency ratio and Z,/¢ has been
illustrated in Figure 9. It can be seen in this figure
that for the small values of Ze, the frequency
spectrum of z direction is the same as the
spectrums of x and y directions.

[ = =
B b =

=

Dwens ioniless amplinide 2,/ o

=
=

Figure 9. Dimens onless frequency spectrum of rotor 1inz
direction, versus Z/e¢ and frequency ratio
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It can be seen in Figures 4 to 6 that the resonance
frequency ratios do not correspond to the "1x" or
"2x" of the rotational frequency, response
characteristics commonly observed in the fidd of
misaligned rotating shaft systems. The first
harmonic at the spectrums corresponds to the case
that m=wmn,, however, it corresponds to the case that
o/omn= ©/on,=0.38. The second harmonic also
corresponds to the case:

1+ Xe (W2 g (51)
I‘(bmz Wnlz

So, the harmonic of the frequency spectrums of

rotor 1 do not correspond to the frequency ratios of

1.

8. VARIATION OF THE MISALIGNMENT
ANGLE

In this section, the effect of the angular
misalignment on the system dynamic is
investigated by providing the three dimensional
amplitude diagrams versus the orientation change
of rotor 2 (o) and the frequency ratio. In these
diagrams, the large variation interval of o, [0,
0.4]... has been used so that its effects can be
clearly shown. Otherwise, the value of «=0.4
radian is practicaly a very high angular
misalignment value.

Damensionbess amplinde (7. 5
L]

P |
;o
o g .:,_Eq-rﬁ“'

Figure 10. Three dimensional diagram of rotor 1 amplitudein
z direction
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Figure 11. Three dimensional diagram of rotor 1 amplitudein

x direction

In Figure 11, the amplitude of x direction has been
multiplied by "-1" so that its variation can be better
shown. Figures 10 and 11 show that increasing of
the misalignment angle increases the amplitude of
rotor 1 dlightly in z direction while, it increases
significantly in x direction. The reason is due to the
sdected value of Z e. the three dimensiona
diagram of amplitude in z direction for Z,/e=.05 is
illustrated in Figure 12, and shows the same
response to misalignment as that in x direction.

dimensimnless amplisde [23/e)

it 0D roa

Figure 12. Threedi rﬁensi onal diagram of rotor 1 amplitudein
z direction for Z,/¢=0.05

Rotors 1 and 3 have the same positions in the
modd (Figure 2) and hence their amplitude
response would be similar. So, the amplitude
responses of rotor 3 have been studied in details.
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9. SUMMARY AND CONCLUSIONS

In this study, a mode for the lateral vibrations of
three rotors subjected to the pure angular
misalignment has been developed. The degrees of
freedom of the system are the lateral deflections
and the rigid-body rotation. The equations of
motion of the system are obtained using the
Lagrange eguations through successive partial
differentiations of the kinetic and potential
energies. The equations of motion are coupled in
the stiffness matrix and the force vector as a result
of the presence of misalignment. The frequency
spectrums revealed harmonics at the vibration
amplitudes.

It is interesting that the foregoing study did not
provide any evidence of the presence of harmonics
of (1x) and (2x) which observed in the fidd of
misaligned rotating systems.

Three dimensional diagrams of Figures 10 to 12,
revealed that the angular misalignment would
increase the axial and lateral vibration amplitudes.
It is suggested that the nonlinearities of the
bearing, rotation of rotor 2 around the y axis and
the dynamic response of the paralle misalignment
be studied. Work is currently underway to mode
the influence of these parameters on the vibration
response of the system.
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Nomenclature

E Modulus of easticity

P Area moment of inertia of rotor 2

I p Polar mass moment of inertia of rotor p,
p=123

Keg Roller bearing's stiffness
ko Bending stiffness of rotor 2
Kep Connection stiffness in direction of p,
P=XY,Z
Komp Stiffness of the Motor side bearing in
direction of p, p=XxY,Z

Kogp Stiffness of the Gearbox side bearing in
directionof p, p=XxVy,2z

IJE Transactions B: Applications

P Length of rotor 2

L Length of therollers of roller bearing

N Number of rollers of theroller bearings
P Load that isinserted on theroller
bearing

leo1 Displacement vector of end of rotor 2 in
direction of rotor 1 unit vectors

leos Displacement vector of end of rotor 2 in
direction of rotor 3 unit vectors

T Kinetic energy of rotor p,

p=123

U Total potential energy

U, Bending potential energy of rotor 2

Ubm Potential energy of the motor side
bearing

Uhg Potential energy of the gearbox side
bearing

Ucas Potential energy of the connection of the
rotors 1 and 2

Ucos Potential energy of the connection of the

rotors2 and 3

Xo, Yp» Zo  Displacement of rotor p in directions of
X, yand z p=1,23

Xor Yor Zo  ROtOr 2 end displacements in direction
of x, yand z

X2, Yrz  Réative displacements of the center of
mass and the end of rotor 2

Greek symbols

€ Eccentricity magnitude of rotor 2

y Angular misalignment magnitude

a Crientation change of the spacer dueto
the angular misalignment

7 Phase delay of the deflection relative to
the eccentricity of rotor 2

Bo Rotation angle of rotor p p=
1,23

Sip Damping ratio of rotor p in direction of
i p=123 i=xV,2

& Damping ratio of therotor 2

Wrip Natural frequency of rotor p in direction
of i, p=123 i=xYV,z2

Wn2 Natural frequency of rotor 2
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