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In this paper, the effect of anisotropy on the free vibration of laminated rectangular plate supporting a
localized patch mass is investigated. The two variable refined plate theory is applied to define the third
order displacement field of a composite rectangular plate. The plate is considered to have smply
supported boundaries. The equations of motion for rectangular plate are obtained by calculus of
variation. Parametric study of non-dimensional natural frequencies is carried out and the influences of
geometrical parameters such as aspect ratio of the plate, size and location of the patch mass on these
frequencies are also studied. Firgt, the results obtained are compared with those reported using several
plate theories. In the next step, the effect of anisotropy on free vibration of plates for different types of
lamination are studied. The numerical results are found to be in a very good agreement with well
known published papers for the case of vibration analysis of loaded and unloaded plates.
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1. INTRODUCTION

Composite materials are simply. a combination of
two or more different materids that may provide
superior and unique mechanica and physical properties.
These materids have high drength to weight ratio
compared with other materids. Practicaly, these
materials are exposed to various loading conditions such
as distributed patch mass, transverse and in-plane
loadings and etc. hence it is necessary to investigate
their response to these loading conditions. Srinivas and
Rao [1] studied the bending, vibration and buckling
behavior of simply ‘supported thick orthotropic
rectangular laminated plates and obtained norma and
shear stresses under the effect of uniformly distributed
transverse load. Withney and Pagano [2] investigated
free vibration response of a composite plate using first
order shear deformation theory (FSDT) and employed
the Yang-NorrisStavski (YNS) theory to study the
cylinrica bending of anti-symmetric cross-ply and
angle-ply plate strips with sinusoidal 1oading. Bert and
Chen [3] presented a closed form solution for the free
vibration of smply supported anti-symmetric
rectangular plates based on the YNS theory. Shankara
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and lyengar [4] obtained finite element solutions for
free vibration of laminated composite plates by higher-
order shear deformation theory. Reddy [5] carried out
free vibration analysis of anti-symmetric angle-ply
laminated plates considering the effect of transverse
shear deformation using finite element method (FEM).
In other work, Reddy [6] classified a set of equilibrium
equations for the kinematic models proposed by
Levinson and Murthy. Khdeir and Reddy [7] obtained
the free vibration response of angle-ply and cross-ply
laminated composite plate using second order shear
deformation theory. Wong [8] studied the effect of
distributed patch mass on the plate vibration response.
In his work, the effects of shear deformation and rotary
inertia were not considered and Rayleigh-Ritz method
was used to find the response of a rectangular plate.
Shimpi and Patel [9-10] used the two variable refined
plate theory for smply supported orthotropic plates and
the results obtained were compared with non-
dimensional central displacement in the through
thickness direction. Alibeigloo et al. [11] studied the
vibration response of anti-symmetric rectangular plates
with distributed patch mass using third order shear
deformation theory (TSDT) and obtained the first
natural frequency of the plate considering the size and
location of the distributed mass on the top surface of the
plate. Alibeigloo and Kari [12] also studied the forced
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vibration response of anti-symmetric laminated
rectangular plates with distributed patch mass. Seung-
Eock et al. [13] employed the two variable refined plate
theory (RPT2) for plates which are under the action of
the transverse and in-plane forces and obtained the
stiffness and mass matrices using Hamilton principle.
They compared the non-dimensional deflection obtained
by various theories namely the classical laminate plate
theory, the first order shear deformation theory, the
higher order shear deformation theory and the refined
plate theory. They showed that the RPT2 gives more
accurate results of deflection and buckling load than the
HSDT in comparison with the three-dimensiona
eadticity solution. Seung-Eock et a. [14] also carried
out buckling analysis of isotropic and orthotropic plates
using the two variable refined plate theory. A closed
form solution of a smply supported rectangular plate
subjected to in-plane loading was obtained using
Navier's method. In this paper, the non-dimensional first
natural frequency of vibration with simply supported
boundary conditions and under the effect of a patch
mass in arbitrary dimensions and positions is obtained.
The effect of various parameters such as position of the
patch mass and the aspect ratio of the plate on free
vibration are also studied.

2. BASIC FORMULATION

A rectangular plate with length, width and thickness
equal to a, b and h respectively is considered.. The plate
supports a distributed patch mass, M __, with
dimensions equal to ¢ and d in the x ‘and y-direction,
respectively which is located in arbitrary position
(X,y") inFigure 1. The massis considered to be placed
on the upper surface of the plate. The global Cartesian
coordinate system is chosen'with the origin at the corner
and on the middle plane of the plate, z=0. Therefore, the
domain of plate is defined as 0<x<a, 0<y<b and
-h/2<z<h/2.

In order to proceed with the formulation of the
problem using the two variable refined plate theory
(RPT2), it is assumed that the displacements (U, Vv, w)
of the plate are small in comparison with the thickness
of the plate, hence the strains involved are considered to
be infinitesimal. On the other hand, the transverse
normal stress in the zdirection,c_, is very small in

comparison with the in-plane stresses, 6, and 6, . Asa

conseguence of the above definition, the gress—strain
relations can be reduced from a 6x6 matrix toa 5x5
matrix which can reduce the complexity of the problem.
The total displacement of the platein the z-direction (W)
is assumed to be consisting of three components, w,

(extension), w, (bending) and w, (shear) which are
functionsof X, Y and thetime [13].

WX Y, 1) =W, (X ;1) + W, (X ;1) + W, (X, Y1) @
The displacements in the x and y-directions are also

defined as[13]:

U(xy, zt)=ulx y,t)+u, (X, y,t) +u, (X y,t)

V(X Y, Z,t) =v(X ¥, t) +V, (X Y, 1) +V (X, V1) (@)
The bending components of displacements i.e. u,

and v, ae considered to be smilar to their

corresponding components of displacements, u and v
(component of extension) as defined in the classical
plate theory (CPT). It meansthat:
u, = —Z(@Wb/ax), v, =—z(6wb/8y) (3
Considering the fact that the shear stresses 1, and
T, are zeo at upper and lower faces of the plate,
z=+h/2 and. z=-h/2, respectively, the shear
displacement ug and'v, can bewritten as [13]:

L_5(z)"|aw, {1 5(z)|ow,
USZ{Z_E(F]]E’ V*_Z[4 3(hnay @

Each layer is assumed to have orthotropic material
property, hence the dress-strain relations in the
direction of the principle axes of orthotropy are found to
be as:

o) [Qu Q, Q. 0 0 0]fe,
o, |Q. Q. Q. 0 0 o0|ls,
o, [Q Q Q. 0 0 0|¢ -
[ ]0o 0o o0 Q 0 o]y,
| |0 0o 0o 0 Q 0|,
) o 0o 0o 0 0 Qlr.

where Q; are the components of the reduced

gtiffness matrix and are expressed in terms of material
properties of each layer.

E, E

Qu= 1-v,v0, 0 Q= 1-v,v0, 0 Qe =0:Qa

Q13 :st :Qsa =0, QAA :sti st :Gls and Q66 :Glz'
Equation (5) represents the stress-strain relations in

an especially orthotropic material, where the principle

axes of orthotropy are paralle to the geometric axes of

the plate (x, y), i.e. the direction of application of the

load.

(6)

In order to define the stress-strain relations in the
geometrical coordinate system of the plate, that is the
global Cartesian coordinate system, the components of
the reduced stiffness tensor should be transformed
according to the transformation law of fourth order
tensors. Hence, the stress-strain relations in the global
coordinate system are:
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Figure 1. A rectangular plate with alocalized patch mass
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where k indicates the layer number and Q, are the

material constants of the kth lamina in the laminate
coordinate system.

In order to obtain the equations of motion by the
Hamilton principle, the strain energy and the kinetic
energy of the plate are first defined. The definition of
the strain energy is asfollows:

1
U =5 [ 058,09V ®)

The gtrain energy of the plate can be written as[13]:

u

plate

1
- E,;[ Nel + N, yS + Nyed+ Mk, + M2k,
)

b_.b S, .S
+Mik) + Mk + M

+Quyy +Quvs

S S S S S S S S
Ky, + Mo +Qry s+ Qry s,

where {N}, {M} and {g} @re the stress resultants of the

total N layers of the plate and defined in Appendix.

The total kinetic energy is the summation of the
kinetic energy of the plate and the kinetic energy of the
uniformly distributed patch mass with dimensions ¢ and
d acting on the top surface of the plate.

T=T,+T

plate

(10)

The kinetic energy of plate isdefined as:

1 U (av) [(ew)’
T == = AR 27| |dxdyd
ZJP((athr(athr(atj]Xyz (11)

Subgtituting Equations (1) to (4) into Equation (11), and
considering the limits of integration in the plate, the
kinetic energy of plate can be written as:

&\ (&Y
W, + W, dxdy
X oy (12)
& &\
1e21, || ow, oW,

+§-[-£§Hax]+[8y] .

where |, |, aretheinertiaterms as below:
h/2

(15.1,)= I p(1,2%) dz (13

-h/2
The kinetic energy of the distributed patch mass
(M, ) which is located on the top surface of the plate

(z=h/2) can be written as:

X +¢/2 y'+d/2 [ & ’
=2 | eh 5‘—%[‘” -ﬁ[a”s] Hydx  (14)
X=¢/2 y'-d/2

where p,, and h, arethe density of the patch mass and
its thickness in the z-direction, respectively. It is
observed that the ranges of integration for Equations
(12) and (14) are different. Hamilton principle is
employed to obtain the coefficients of mass and
stiffness matrices.

Substituting the displacements field in the relevant
gtrain energy and kinetic energy terms, integrating the
results and obtaining their first variation, the equations
of motion are found. Substituting Equations (9), (12)
and (14) into Equation (15) that called Hamilton
principle and carrying out integration by parts, the
equations of motion are derived as.

TS(V+U —T)dt=0 (15)

where § presents a variation with respect to x and .
Here V denotes the work done due to applied loads.
Since primary aim is in the free vibration analyss, the
energy due to applied forces is zero. Substitution of
displacements into Equation (15) and integrating the
equation by parts, the equations of motion are obtained
as.

N, ON & &

u

Su — + =1,

oX oy

oN oN (16)
SV —> L+ 2 = &, &

oy ox 0
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OX oy OXoy
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pws 5 ML M OMy L 09k, 29
OX oy OXoy ox oy
:|0vv—'—2v2v\'/s
84
00  0Q2 & &
Sw? > &4.&:] W

ox oy °

Finally, by collecting the coefficients of parts, the
governing equation of plate vibration is obtained as
bel ow:

(s]- ™ Jo* )2} = {o} (1
where [§], [M], ©® and A are the gtiffness [13], mass

matrices, natural frequency and the vector of unknown
coefficients, respectively.

For convenience, the non-dimensional natural
frequency of plateisdefined as[11]:
_ a2 [p

3. PROBLEM DEFINITION

Now, a set of boundary conditions are considered and it
is called the SS-2 boundary condition that is applied for
an anti-symmetric angle-ply laminate and is defined by .
K. Seung-Eock et al. [13].
In order to satisfy the boundary conditions, the
following displacement fields are assumed:
u U, cosa,Xxsin B,y
\Y |V sina, xcos B,y
b (=2 2 AW, sina, xsin By
W, sina Xxsin .y
w W, sina xsin B,y

a

(20)

where o =mn/a,p=nn/b and U, V., W,
W, W, arecoefficients.

4. RESULTS AND DISCUSSION

Three sets of dimensonless material properties are
considered:

MATL:
E,/E, =40,G,/E, =06,G,/E, = G,/E, =05,v, =0.25
MAT2:
E,/E, = open,G,,/E, =0.4,G,,/E, =G, /E, =0.6,v,, = 0.3
MAT3;
E/E, =0pen G,,/E, =02,G,/E, =G, /E, =05, =025
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At first, the effect of the distributed patch mass is
not considered and vibration response of a plate without
the patch massis studied. The results are then compared
with the results obtained using the second order shear
deformation theory for angle-ply and cross-ply square
laminated plates as reported by Khdeir and Reddy [7].
The results obtained with a/h as a parameter for four
layers  anti-symmetric  angle-ply, MAT1 with
Gy; =06E,, [45/-45], and two layer cross-ply (0/90),
MAT3 are presented in Table 1. Comparison of the
results indicates that the results obtained using the
present method are lower than those of the second order
shear deformation theory. This difference reduces asthe
ratio a/h increases. Table 2 shows the effect of aspect

ratios on the natura frequencies of a four-layer
composite plate. The accuracy of the RPT2 is presented
with comparing ‘of well known published results. In
order to evaluate the accuracy of the RPT2, the % error
iscalculated as:

% error = 100 x[ value obtained by the RPT 2 1]

Correspond ing value by other theory (21)

The % error in values of the non-dimensiona firgt
natural frequencies for a/lh=10 and a/h=50 is shown in
Figure 2. It is observed from Figure 2 that the % error of
the RPT2 with the YNS and HSDT has the same results
(when a~2b and ah=10). The ranges of the % error
with corresponding values of the FEM, YNS, HSDT
and TSDT are insde the intervals [0.1664 3.4017],
[0.6591 2.7373], [0.0268 1.8973] and [0.0002 1.6531],
respectively. It is interesting to know that the % error
increases with increasing the a/h ratio for the FEM and
also decreasesfor YNS, HSDT and TSDT.

Now, a distributed patch mass, M ., @ the centre
of the plate (x'=a/2,y'=b/2) with the following
propertiesis considered:

M /M. =05 c/a=d/b=04—

p.h,cd/phab=05— p h =3.125ph=3.125I,.

With above definition of patch mass properties, the
kinetic energy of massis obtained as below:

7L Ta1zs0 (& R Y }my

03a03b

0.7a0.7b [ & ’ & ]
+2 o750, [%J + [%J
2 03a 03b @( W

0.7a0.7b [ & ’ & ]
W1 | [o2604, [%J +[%] dxdy

o

Xy 22)

03a 03b oX 8y

Using Equation (14), the arrays of mass matrix are:
M, =12136l,, M, =1.21361,,

M, = 254361, 23
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M, =254361,, M, =254361,
Mg = 2.5436 1,

My, = 254361, +1.651, (%) + (%)°)

M, = 2.54361, + |2(8i4+o.167)((f/a)2 + (%))

The effect of the distributed patch mass on vibration
response of isotropic plateis studied.

Then, the results are compared with the results
obtained using the three order shear deformation theory
for angle-ply laminates as reported by Alibegloo [11].
The results obtained with (a/h) as a parameter are
presented in Table 3. In Figure 3, the results obtained by
the present sudy (RPT?2) are compared with the results
obtained by (TSDT) method [11]. It is considered the
same position of patch mass for anisotropic plate. In
Table 4, the effect of anisotropy on free vibration of
rectangular different laminated plates with patch mass at
the centre of the plate for MAT2 is presented (E,/E,

aspect ratio is dso variable). As shown by Table 4, the
results of FNF for anisotropic plate [o/a/-a/o] are
greater than the results for anisotropic plate
[0/a/a/-a] and dso isotropic plate [a/-a/a/-a]
with patch mass. In the next gep, the distributed patch
mass in three different positions of the plate is
considered and the results of FNF for anisotropic
different laminated plates are compared together in
Table 5. These three positions of the distributed patch
mass are assumed as.

Xi=%,yi=%,2) xé:%,y&:%, 3) Xé:%,yé=£

and properties of the distributed patch. mass are
considered as M /M e = 0.3,¢/a=d/b=0.2.

The arrays of mass matrix for these three positions are
defined in Appendix. Table 5 shows the effect of a/h
and a/b ratios on free vibration® of four-layer
anisotropic plates with patch mass. Increasing of the
foregoing ratios leads to. increase of the non-
dimensional first natura frequencies. On the other hand,
the effects of these ratios on anisotropic laminated plate
[0/ /- /o] are greater than anisotropic laminated plate
[@/a/a/-a]. Due to symmetry imposed by the
boundary conditions of the plate, it is observed that
patch mass in position 1 and position 2 would have
similar natural frequencies of vibration.

5. CONCLUSION

In this study, the two variable refined plate theory
for vibration study of laminated composite isotropic and
anisotropic plates with patch mass was developed.
Firgly, the governing equation of rectangular plate
vibration with a patch mass was obtained by this theory.
On the other hand, the effect of various parameters such
as size and location of distributed patch mass, different
aspect ratios and different types of anisotropy on the
natural frequency of plate vibration was studied. To
illugtrate the accuracy of RPT2, the results obtained by
this theory were compared with the results obtained by
the well known theories. The main conclusions are as
follows:

1) TheRPT2isvariationaly consistent and number of
unknown functions involved in this theory is only
two.

2) As seen in section 4, the RPT2 has more
consistency with TSDT compared to FEM, YNS
and HSDT.

3) (The % error of the RPT2 in frequency value
approaches to zero in respect of FEM from a/b>-1
toa~x2b a a/h=10.

4) The % emror of the RPT2 in frequency value
approaches to zero in respect of HSDT and TSDT
at a/b=1 and a/h=10.

5) Increasing the ratio of a/h can cause to increase the
% error of RPT2 with FEM and decrease the %
error for YNS, HSDT and TSDT.

6) Considering the large values of a/h ratio, the RPT2
has more consistency with YNS, HSDT and TSDT
than FEM for rectangular composite plates.

7) Amount of patch mass and its location leads to
change fundamental frequencies.

8) The lowest natural frequency of plate with
symmetric boundary conditions occurs with the
patch mass at the centre of the plate. The natural
frequency increases with the patch mass moving
towards the corner of the plate.

9) The influences of aspect ratios on free vibration of
anisotropic plates [o/a/-a/a] are greater than
anisotropic plates [o/o/a/-a] and aso isotropic
plates [a/-a/a/- o]

TABLE 1. The non-dimensional first natural frequency

ah
Theory/L aminate 5 10 20 50 100
SSDT / Angle ply[7] 12.928 18.665 21.954 23.252 23.458
RPT2/ Angleply 12.534 18.320 21.803 23.223 23451
SSDT / Cross ply[7] 7.609 8.997 9.504 9.665 -
RPT2/ Cross ply 7.545 8.963 9.494 9.663 9.688
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TABLE 2. The non-dimensional first natural frequency, MATL, [45/- 45],
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alb
ah Sour ces 0.2 0.6 0.8 1 12 1.6 2
10 Reddy [5] 8.7240 12.9650 15.7120 18.6090 21.5670 27.7360 34.2470
Bert [3] 8.6640 12.8200 15.5400 18.4600 21.5100 27.9500 34.8700
Shankara [4] 8.5557 12.5588 15.1802 17.9735 20.8797 26.9916 33.5534
Alibeigloo[11] 8.5587 12.5646 15.1873 17.9829 20.8947 27.0306 33.6340
Present 8.6060 12.6424 15.2101 17.9784 20.9214 27.2818 34.1900
20 Reddy [5] 9.4750 14.8960 18.5570 22.5840 26.8570 36.2490 46.7890
Bert [3] 9.3000 14.4500 17.9700 21.8700 26.1200 35.5600 46.2600
Shankara [4] 9.3011 14.3856 17.8458 21.6808 25.8363 35.0421 45.4096
Alibeigloo[11] 9.2661 14.3594 17.8217 21.6588 25.8174 35,0365 45.4305
Present 9.2825 14.3887 17.8302 21.6552 25.8278 35.1772 45.8175
30 Reddy [5] 9.6670 15.3850 19.3040 23.6760 28.3810 38.9400 51.1320
Bert [3] 9.4360 14.8400 18.5600 22.7400 27.3500 37.8200 49.9800
Shankara [4] 9.4880 14.8427 18.5390 22,6911 27.2555 37.5907 49.5474
Alibeigloo [11] 9.4196 14.7896 18.4866 22,6371 27.1995 37.5341 49.4992
Present 9.4274 14.8038 18.4908 22,6352 27.2047 37.6112 49.7263
40 Reddy [5] 9.7590 15.8530 19.6040 24.1180 29.0030 40.0710 53.0120
Bert [3] 9.4850 14.9800 18.7800 23.0800 27.8300 38.7200 51.5200
Shankara [4] 9.5724 15.0248 18.8134 23.0940 27.8286 38.6523 51.3324
Alibeigloo[11] 9.4754 14.9500 18.7384 23.0137 27.7409 38.5499 51.2217
Present 9.4799 14.9583 18.7408 23.0125 27.7439 38.5969 51.3642
50 Reddy [5] 9.8160 15.6890 19.7590 24.3430 29.3210 40.6530 53.9890
Bert [3] 9.5070 15.0400 18.8900 23.2400 28.0600 39.1700 52.2900
Shankara [4] 9.6216 15.1177 18.9510 23.2956 28.1168 39.1932 52.2539
Alibeigloo[11] 9.5016 15.0261 18.8586 23.1948 28.0031 39.0503 52.0860
Present 9.5045 15.0315 18.8602 23.1940 28.0051 39.0815 52.1822

% Error

% Error

Figure 2. The % error of the RPT2 in non-dimensiond firgt natural frequencies with corresponding value by FEM [5] (blue),
corresponding value by YNS [3] (red), corresponding value by HSDT [4] (green) and corresponding value by TSDT [11] (black)
(Left, ah=10 and Right, ah=50)
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TABLE 3. The non-dimensional first natural frequency, MAT1, [45/-45],

ah
alb Theory 10 20 30 40 50
0.2 TSDT [11] 5.3728 5.8127 5.9078 5.9423 5.9585
0.2 RPT2 5.4030 5.8227 5.8488 5.9122 5.9446
04 TSDT [11] 6.4359 7.1545 7.3177 7.3777 7.4060
04 RPT2 6.5018 71774 7.3283 7.3835 7.4095
0.6 TSDT [11] 7.8768 9.0055 9.2748 9.3751 9.4227
0.6 RPT2 7.9366 9.0264 9.2845 9.3803 9.4258
0.8 TSDT [11] 9.5102 11.1744 11.5923 11.7503 11.8256
0.8 RPT2 9.5487 11.1861 11.5973 11.7527 11.8269
TSDT [11] 11.2448 13.5765 14.1934 14.4304 14.5442
RPT2 11.2868 13.5870 14.1974 14.4321 14.5448
12 TSDT [11] 13.0434 16.1777 17.0518 17.3932 17.5585
12 RPT2 13.1349 16.2067 17.0646 17.4000 17.5624
14 TSDT [11] 14.8956 18.9654 20.1612 20.6369 20.8689
14 RPT2 15.0849 19.0383 20.1967 20.6571 20.8816
16 TSDT [11] 16.8026 21.9349 23.5225 24.1660 24.4826
1.6 RPT2 17.1292 22.0784 23.5961 24.2092 24.5103
18 TSDT [11] 18.7684 25.0836 27.1374 27.9863 28.4075
1.8 RPT2 19.2592 25.3224 27.2646 28.0625 28.4573
TSDT [11] 20.7951 28.4084 31.0067 32.1021 32.6506
RPT2 21.4663 28.7637 31.2024 32.2214 32.729%4

TABLE 4. The non-dimensional first natural. frequency, MAT2, a =45, a/h=10, b/a=5

El/ EZ
Lamination 3 10 20 30 40 50
leratol-al Anisotropic | 2.3777 31280 3.8942 4.4884 4.9798 5.4003
[alal-alal Anisotropic 2.4509 3.4579 4.4488 5.1890 5.7836 6.2802
[oc I—alol- a] I sotropic 24170 3.3041 4.1924 4.8643 5.4082 5.8650
% : f f f : : ; :
> O Results based on TSDT l | | |
S « Results based on RPT2 (Present)| | | | |
8_20,,,, + + + + B e el e e
£ T X
= | | | | a XP WV il hd
3 | | > | | | | |
g Bpoooas N = S S S
B ! A v N A
=l T s
< 10- - - — ! Py 7 Y 2y
'% T | 1 1a/h=0.2, T T
5
E i | | | | | |
s R e S R s
o | | | | | | | |
z I I I I I I I I
I I I I I I I I I
I I I I I I I I I
L i L L L L L i L
0 5 10 15 20 25 30 35 40 45 50

Figure 3. Comparison of non-dimensional (5) obtained by RPT2 and TSDT
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TABLE 5. The non-dimensional first natural frequency, MAT1, [45/-45],

ah
alb Lamination 10 20 30 40 50
Position 1
[a/olal-al 5.1686 5.4812 5.5464 5.5699 5.5808
02 le/oi-ala 5.9248 6.3796 6.4770 6.5123 6.5288
[a/olal-al 9.6697 10.9556 11.2588 11.3713 11.4247
08 [a/ai-alal 10,5704 12.2834 12.7075 12.8672 12,9432
[e/alal-al 15.6051 18.8574 19.7285 20.0647 20.2264
a [a/ol-ala) 16.7904 20.9722 22.1700 22,6425 22.8722
[a/olal-al 22.4899 28.7611 30.6523 31.4126 31.7851
2 [a/ol-ala) 23.9509 31.7737 34.3236 35.3791 35.9031
Position 2
[a/olal-al 5.1873 5.4874 5.5493 55715 55819
02 le/oi-ala 5.9419 6.3857 6.4799 6.5139 6.5299
[a/alal-al 9.6783 10.9595 11.2608 11.3725 11.4254
08 [a/ol-ala) 105776 12.2872 12.7095 12.8684 12.9440
[a/olal-al 155793 18.8416 19,7198 20.0593 20.2229
o [a/ol-ala) 16.7713 20.9576 221614 226372 22.8686
[a/olal-al 22.4069 28.6941 30,6119 31.3870 31.7678
2 [a/ol-ala) 23.8950 31.7157 34.2856 35.3542 35.8860
Position 3
[e/alal-al 6.1358 6.5294 6.6089 6.6372 6.6504
02 [a/ol-ala) 7.0136 7.5981 7.7175 7.7602 7.7801
[e/alal-al 11.3638 13.0331 13.4101 13,5479 13.6128
o8 [a/ol-alal 12,2959 14.5948 15.1317 15.3289 15.4218
ol lal-al 18.0563 22.3655 23.4754 23.8945 24.0943
a /e /-0 la] 19.0972 24,7965 26.3612 26.9582 27.2435
[a/alel-al 25,5836 33.9495 36.4142 37.3800 37.8470
2 [a/ol~ala) 26.6909 37.3022 40.7176 42,0805 42.7428
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APPENDIX

The arrays of Mass matrix
Position 1— My, =1.01941,
My =Mg =Mgg =My = Mg =158201,

M =1.58201 0 + 1| 0/ F + [t/ F |+ 001 0-0194X(%)2+
s 47 oo L
MM:1'5820|°+|284((%)2+(%)2J+6|2 0.0194><( )

6.4511e~ 4><( )

Position 2 > M3 =1.58201,M 5, =1.0194I,
Mgy =Mags =M 45 = Mg =1.58201

M3z =1.58201¢ + 2((%)2 +(%)2)+90| 2 0'0194X(%)2 *

6.4511e_4x(77)
M 4, =158201, + z/((/) (A)) )+6|2 0.0194X(A) N

6.4511e— 4><(%)
Position 3— My; =1.20701 5, M 5, =1.31201 ¢,
Mgy =Mas = Mg =1.11401 5, M 45 =1.58201

Mg =1.12401 o + 1| £/ f + (54 F |+ 001 0'0104X(%
s o

M 4, =1.58201 o+ '2 84((%)2 +(%)2)+2.5| )

o
N

N

+

(Nx'Ny’ny) N Zegt 1 15
MEMEME ) =D f(on0, 0 ) 2idz, 3= (ng(z/h)zj
MEMSME)[ J

ZK¢1

B A

K

(o rsy sy )=(ow, /ox ow, /oy ow, /ox,ow, /oY)
(62.62.75 )= (ou/ox v/ay oujoy+ v/ox)

P ={orw, fox ) b = (07w, foy? ) ety =—2l07w, foxdy)
s =orw,fox ) s = (02w, foy? ) kg, = 207w, foxcy)

K
K
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