
Arch
ive

 of
 SID

www.SID.ir

 IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

A Context-aware Architecture for Mental Model Sharing through Semantic Movement
in Intelligent Agents

S. Salehi a, F. Taghiyareh a, M. Saffar a, *, K. Badie b

a Department of ECE, University of Tehran, Postal Code: 14395-515, Tehran, Iran
b Department of IT, Iran Telecommunication Research Centre, Tehran, Iran

P A P E R I N F O

Paper history:
Received 12 October 2011
Received in revised form 05 February 2012
Accepted 17 May 2012

Keywords:
Autonomous Agent
Semantic Movement
Shared Mental Model
Mental Model
Context-aware
Architecture
Intelligent Agent

A B S T R A C T

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing
intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of
many recent approaches in multi agent systems is shared mental models. In this paper, we propose an
architecture for sharing mental models based on a new concept called semantic movement. This
architecture has been inspired by a variety of mental models in humans and supports agents working in
different simultaneous contexts and it uses semantic movement as a conflict resolution mechanism.
Semantic movement is a kind of transition from the present mental states to some new states in order to
resolve harming conflicts between mental models of participants. We formalized the semantic movement
process in order to use it in our proposed architecture. Our test bed to evaluate this architecture is a set of
complex scenarios which are likely impossible to be solved by individual agents without sharing. Our
architecture exhibits better performance than other alternative methods that have sharing capabilities. We
believe that the proposed architecture would be able to provide agents with the ability of generating more
consistent behaviors between agents. Moreover, this architecture can become a suitable platform for the
negotiation of self interested agents.

doi: 10.5829/idosi.ije.2012.25.03b.10

1. INTRODUCTION1

The concept of mental model was first introduced in
1943 by Craik [1]. He suggested that human’s mind
creates small scale models from reality to anticipate
events. Several definitions for mental model have been
proposed in the literature. Definitions usually point out
that a mental model consists of knowledge about a
situation or a physical system that can be used to reason
about statements or predict the possible outcomes of
executing actions. One of the mostly cited functional
definitions of mental model that we use in this work is
as follows as described by Baldauf et al. [2]:

“Mental models are the mechanisms whereby
humans are able to generate descriptions of system
purpose and form, explanations of system functioning
and observed system states, and predictions of future
system states.”

It should be noted that mental models with cognitive
flavors have the capability to show up better in
knowledge based applications such as multi-agent

* Corresponding Author Email: saffar@ut.ac.ir (M. Saffar)

systems, web intelligence and human-computer
interactions [3- 10]. Although most of the research in
this area is concerned with using mental models to
enhance teamwork performance in a specific task, the
process of obtaining the mental models and sharing
them is not elaborated enough. Also, researchers spend
little effort on analyzing the application of mental
models in other domains such as web services and their
discovering and composition. Let’s say despite the fact
that some researchers have considered the role of agents
and their organizational properties but only a few of
them have tackled the problem of conflict resolution
within the entire process of knowledge transference
between agents.

Agents can work on the provider or user side or even
in the middle of the links between providers and users.
These agents can discover or compose web services
with the help of common agent abilities like negotiation
and communication. There are several known methods
to discover and compose web service and to offer
selected web services to users. In most of them, the
agents are operating in an isolated environment with a
minimum capability for communication which makes

mailto:saffar@ut.ac.ir
www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 234

cooperation almost impossible. For example, one agent
is at the user side and one agent is at the provider side
and these agents negotiate to offer service to user. We
can improve the performance of these agents if we
replace them with a multi-agent system in which each
agent tries to capture the user’s interests from a specific
point of view. It makes the system more organized and
easy to change or extend by simply adding new agents
or changing agents that are surely more cohesive than
the single agents in use before. These agents can share
their mental models to reach a compatible and complete
image of the user. This idea can also be practical for
agents who work on provider’s side. Middle agents also
can get replaced with multi-agent systems. Each agent
in these systems can have a different view of knowledge
and they can share their mental models to select more
suitable services for user’s needs.

A notable amount of work related to mental models
is about predicting a human mental model by a multi-
agent system. The previous behaviors of the human
which were collected by the system are analyzed period-
ically in order to improve the approximation of the
mental model of human stored in the system and to
suggest the person more suitable behaviors in the future.
These human assistant agents are influential in different
organizations. For example in a human–agent team,
because the computer agents can predict the human
mental model, they can work better together with
human and the teamwork performance increases.

As was stated, in most of the related works in mental
models, the agent’s mind structure is not defined. In the
other words, they assume that the mental models are
already present and they try to introduce the appropriate
algorithm to share them. These algorithms consider the
role of agents and share agents’ mental models based on
their roles. In fact, they are dependent on the role of
agents. Furthermore, all of these works don’t consider
the context as a section of mental model. In order to
rectify these shortcomings, in this paper, we want to
introduce a context-aware mental model to enable the
process of sharing them with the use of semantic
movement. Not all of the knowledge should be shared in
order to improve the performance of the entire multi-
agent system. Sharing the correct subset of knowledge
can be done with respect to the context. A context is
based on the task that agents should perform or the
environment they operate in. For example, in soccer
simulation, contexts can be defined based on tasks such
as attack, defense, etc. In the application of intelligent
building, contexts can be defined based on shared
environments such as rooms, halls, etc. In some other
applications, contexts can be defined with respect to
both tasks and environments.

Sharing mental models is the process of identifying
and eliminating conflicts between mental models in
different agents working together in the same context.

Semantic movement is the process of transforming,
transferring and adapting the implicit knowledge stored
in the mental model of an agent in order to make it more
consistent with the knowledge of the group.

The rest of this paper is organized as follows. In the
next section, a brief explanation of previous works is
presented. The section 3 discusses the agent role in
semantic web. Next section explains the context
structure and the new concept of semantic movement
are introduced in section 5. The section after that
defines the overall proposed architecture for mental
model sharing. The properties and features of this
architecture are explained in section 7 followed by the
sharing strategies and their properties. Section 8 also
explains how the sharing strategies are adapted to be
suitable for using in our architecture. The experiment
platform is introduced in the next session, after that
some practical scenarios of applying our architecture in
the experiment platform are explained in section 10 and
section 11 discusses the experimental results. Finally the
conclusion and future works are presented.

2. PREVIOUS WORK

Multi-agent systems can be one of the main tools in
composing and selecting web services. A large number
of researches in the semantic web and web service
domains use some kind of multi-agent platform to
enhance different parts of their solutions. Although in
lots of these works, they have little considerations about
issues like team working and knowledge sharing which
can potentially improve the performance of these
systems.

Hendler [11] discussed how a semantic web
infrastructure can be augmented by the help of ontology
to have more powerful agent based approaches in the
semantic web domain. The design and construction of
web services to support situational awareness is
described by Gibbins et al. [12]. It also mentioned that
some properties or known methods in multi-agent
systems like separation of message contents from
application domain can get easily applied in web
services. Coalition et al. [13] has described the web
service capabilities and properties. Mc Ilraith and Son
[14] used agent technologies to provide generic
procedures and to customize user constraints. They
applied Golog to compose web services and specify the
sequence of them. S. Narayanan and Mc Ilraith [15]
used semantic for web service simulation, verification
and composition. Buhler and Vidal [16] discussed the
application of agents in the web service description
tasks. An architecture to automatically connect agents
and web services is introduced by Greenwood and
Calisti [17]. In this method, web services invoke
agents’ services and agents offer appropriate

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

235 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

suggestions. Maximilien and Singh [18] applied middle
agents to select appropriate web services for different
applications. Maximilien and Singh [19] implied a
dynamic service selection routine by using an agent
framework. They used agents to simulate providers and
consumers in a service configuration environment. A
context aware agent based approach for web service
composition was introduced by Maamar et al. [20].
They applied agents and context properties efficiently
to compose web services.

Another major concept according to this work is
mental models. The work related to mental models can
be categorized into two major subsets. Researches in
the first category concentrate on mental models and
share mental models. A mental model ontology is
presented in literature [21]. It propounds the appropriate
description for the concept of mental model. A role-
based shared mental model was introduced by Yu
Zhang [6]. A shared mental model in this paper is a
graph, representing a complete picture of the team plan
that each part of the plan is assigned to a specific role.
In this method, each agent extracts its local mental
model from the shared mental model. It is left
unmentioned how this shared mental model can be
formed. Finally, we believe that the idea of obtaining
local mental models from a shared mental model should
be reversed. In cognitive theories for shared mental
models a shared mental model should be formed from
local mental models while agents interact and
collaborate with others.

Kaivan Kamali et al. [22] proposed multi-part
proactive communication method. This kind of
communication was used as a base for creating a shared
mental model between agents in the system. Daniel
Fuller et al. [10] introduced shared mental model for
improvisational performance. It is claimed that this
model can show good performance under situations
where users show unpredictable behaviors. Conflicts
between mental models are detected by cognitive
divergence. Resolving conflicts are done by cognitive
convergence.

Schmitt et al. [23] introduced a framework for the
engineering of context aware systems. It discussed that
context awareness is relevant to ambient intelligent
systems in order to provide adequate services for
current situation and their users to improve satisfying
interaction with systems. This framework determines
user’s mental model and the manner that they build,
refine, change and discard it. In other words, it presents
a framework for context-aware systems and in this
framework it determines user’s mental model. But this
work doesn’t consider mental model’s structure and
sharing algorithm to form shared mental model while
we introduce a context-aware architecture for agents’
mental model and describe a method to share them.

CAST is a team model for predicting others

information requirements and proactive information
sharing between agents or humans in the system. It is
based on a Petri-net model that contains information
about agents’ responsibilities and the team’s current
status. John Yen et al. [7] added a decision making
component to CAST which optimizes the proactive
information sharing behavior by deciding when others
need particular information or by summarizing
information before sending it to others. Phillips et al.
[24] considered mental model of robots and figure on
elements that influence it.

In the second category related to mental models,
Brigitte Burgemeestre et al. [25], Xiaocong Fan et al.
[8- 9] and Kennedy et al. [26] considered the problem
of making agents that can work with humans. In teams
with both humans and artificial agents, two categories
are formed. Agents can represent or simulate a human
or agents can be as teammates for humans. In both
categories, it is desirable that agents collect information
about humans’ mental models in order to better cope
with them.

3. WEB SERVICE, MULTI-AGENT SYSTEM

Multi-agent systems have lots of applications in
semantic web and web services domains. In this section,
few of these applications are named and explained
briefly. There are lots of organizations with a number of
departments that each of them has a web application for
its own. These web applications usually work on
contents that are either stored locally or are stored on
the side of another department’s web application. Multi-
agent systems can work on connecting different web
applications for different departments. For example,
Hendler [11] used this method to find possible ways for
satisfying user needs and suggesting them to the users.
The process of using a web service can be seen as an
agent that advertises its functionalities and other agents
requesting those available services from the serving
agent [16]. Using different ontologies for
communication on the provider side and the user side,
makes using of the services hard or impossible [27]. An
agent can also be embedded in a provider or user of a
web service. Middle agents are also playing an
important role in managing and enhancing web service
structure [28].

Web services are passive. They are only waiting for
a request to receive and provide the service. Using
agents inside a web service provider can add proactive
behaviors to the previously simple passive web service.
For example, an agent inside a web service can
proactively monitor other possible web services to track
any changes in their status or API and analyze these
changes to make an approximation of the shift in users’
interests. It can finally help web service providers to

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 236

adapt their system according to users’ needs. The agent
inside a web service provider also enables the web
services to form a team and provide service with better
quality [26].

The main challenge of selecting the right web
service for a user with special needs is still under
investigation by researchers in the field of Semantic
Web. Multi-agent systems, if used properly can be the
perfect tool for this task. Different agents in the system
are responsible for modeling different interests of the
individuals. They should merge their models to create a
consistent complete model of the user. This process can
be done with mental model sharing introduced in this
work.

Middle agents in a web service environment are
responsible for discovering and composing possible web
services based on user’s needs. Just like multi-agent
systems operating in a provider or user side, the agents
in the middle can form a multi-agent system.
Connecting these middle agents can significantly
improve their performance.

There may be lots of other applications of multi-
agent systems in the semantic web and web service
domains. We only highlighted some main ideas
according to this approach. In almost all of these ideas,
enabling agents in the system with the capability of
mental model sharing may improve the selection and
composition of services leading to more users’
satisfaction.

4. CONTEXT STRUCTURE

There are two major trends in multi-agent research,
context-aware and context-free systems. The work
related to context-aware system can be categorized into
two classes. The first class has concentrated on basic
issues in this trend and its properties like reports by
Baldauf et al. [2], Hong et al. [29], Payton [30] and
several other researchers, while the second has
investigated the usage of properties of context-aware
systems in other applications especially in services like
Arabshian and Schulzrinne [31], Sadeh et al. [32],
Hattori et al. [33] and several other researchers.

Common architecture principles of context-aware
systems are introduced by Baldauf et al. [2]. It
recommends a layered conceptual design framework to
explain elements of context-aware architecture. Hong et
al. [29] suggested a new classification framework of
context-aware systems based on the architecture and
explored its features. J. Payton [30] introduced a new
context-aware system that aimed to reduce the
programming efforts by hiding the details of agent
coordination in the process of producing the context-
aware system. H. J. Lee et al. [34] described the overall
architecture of an agent based context-aware system and

used it for generating high level context to the
application and services. A multi-agent based
architecture for context-aware system was presented by
Chun-Dong and Xiu-Feng [35]. The architecture here is
based on multi-agent systems and the concept of role,
which is used to assign responsibilities to agents. Lim et
al. [37- 38] investigated the effectiveness of some types
of explanations with the goal of increasing user trust
and acceptance of context-aware systems. They
introduced ten question type and studied users’
understanding of the system. Another view of context-
aware systems, is applying context to other applications
in order to improve their performance. Arabshian and
Schulzrinne [31] introduced a distributed context-aware
service discovery by using context ontology and
recording context history. An agent-based environment
for context-aware mobile services was presented by
Sadeh et al. [32] such that it had a set of ontologies for
describing personal resources, contextual attributes, user
preferences and web services. Hattori et al. [33] used a
context reasoning agent for automatic recognition of
data and events by realization of environment and user
context. Kwon et al. [39] proposed a proactive need
identification mechanism for a personalized reminder
system that identified the user’s current needs based on
user’s current context. A framework that is composed of
a set of policy based agents for providing a context-
aware mobile working environment has been introduced
by Harroud and Karmouch [40]. Agents’ policies get
updated to new policies based on the current context.
Burkle et al. [41] presented an agent based architecture
that aimed to help the collaboration of context-aware
services.

In this paper we used the properties of context-aware
systems in order to improve our mental architecture and
sharing strategy. We improvise context as a layer in our
architecture to benefit from its advantages. Section 6.1
explains this layer.

5. NEW CONCEPT OF SEMANTIC MOVEMENT

The existing approaches for mental model sharing are
such that they mostly rely on the role of agents (with
regard to their assigned tasks) with no particular
attention to the very least requirements which are
necessary to reach a collective commitment. This leads
to deferring any sort of convergence with regard to the
desired process. Let’s say much amount of time and cost
maybe spend on resolving irrelevant kinds of
inconsistencies or conflicts between the participating
agents which are not of particular sense to the desired
context. To circumvent this problem, a context-aware
architecture is required that can be able to respond to
mental model sharing only at the stages where conflicts
under study are relevant to the current context.

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

237 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

Figure 1. (a) The agents’ mental models, (b) The projection process, (c) Projected mental models before conflict resolution and con-
vergence, (d) Projected mental models without destructive conflict

This leads to a promising saving in time and cost
essential to sharing process.

To achieve this, in this paper we introduce the
concept of semantic movement according to which the
propositions belonging to agents’ beliefs are changed in
such a way that they may finally end up with optimal
positions for which no further conflict may be seen
between the mental models of the participating agents.
The configuration to be obtained under such conditions
can be regarded as a safe zone within which no further
conflict would be expected between the agents’ mental
models for the corresponding context. Taking this point
into account, one may expect the agents to communicate
safely with each other as far as no change has accrued
with regard to the problem context. Figure 1 shows
schematic representation for semantic movement of the
agents’ mental models.

Such an approach to partial checking of conflicts
between agents has the ability to realize time efficient
sharing for real time tasks such as soccer agents. The
proposed procedure for semantic movement is:

While (true)

 If (sharing time)

 Select suitable method to mask agents’
mental models

Project each agent’s mental model by
selected method

While (if exist any destructive conflict in
projected mental models)
 Resolve detected conflicts

 End

 End

 Else
.
.
.

 End

End

6. THE PROPOSED ARCHITECTURE

In this paper, we propose an architecture for a single
agent that provides the agent with a shareable mental
model. This mental model is designed in a way that
significantly improves the sharing procedure in a
context-aware multi-agent system. Also, it is capable of
storing any kind of knowledge including knowledge
about the facts, rules, procedures, strategies, team plans,
etc. In this section, we want to describe this architecture.
This architecture is built with three layers called
“context layer”, “agent layer” and “mental model
layer”. It also has a cross layer part named
“background” that is accessible from all three layers. In
Figure 2 a simple schema is shown for architecture.

6. 1. Context Layer The top layer of architecture is
the context layer. All possible contexts that the system
can work in are defined here. When agents sense the
surrounding environment, they might derive new facts
about it. The context layer gets these facts as inputs.

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 238

Also, this layer has a set of rules for context selection.
These rules fire according to perceived facts that agents
believe them. A context is defined as a subset of
properties that can be saved in the mental model. Since
we use this architecture to share agents’ mental models,
this definition is appropriate to clarify which property
belongs to which context and specify active context.

With this definition, a context is basically defined by
a criteria function, deciding which fields of the mental
model are important for reasoning or sharing in that
context and which fields are not. Indeed, the output of
this layer is the masks that specify which fields are
relevant to which context. This layer determines the
active contexts and their masks and passes them to
agent layer. While working in a context, only the fields
relevant to that context are available to processes like
reasoning or sharing. This clearly simplifies these
processes because they have to deal with smaller size
mental models. Properties of context and selection rules
are determined by domain experts now, but
automatically specifying this properties and rules is the
next step of our work.

Context layer is the only layer among others that has
some information about the whole domain of the
problem rather than individual agents. All agents in the
system are sharing this layer. This implies that the
definition of contexts is shared between all agents in the
system and there is no agent with individual opinion
about contexts.

One of the main features of this layer is the
flexibility of defining new contexts or editing
previously defined ones whenever needed. This model
doesn’t restrict the definition of contexts to be fixed
before the execution of the system and with a good
implementation of this model contexts can change at
run-time. Another feature of this layer is that, contexts
can have shared properties. With shared properties, one
can model the changes that might occur in other
contexts while the system is working in the active
context. The more shared properties two contexts have,
the more it is possible that working in one of them
changes the mental model state in the other one.

6. 2. Agent Layer The second layer in our
architecture is the agent layer. Every agent in the system
has a record in this layer. A record is simply an instance
of the mental model schema defined for agents. The
mental model schema contains all attributes of all
contexts with the lowest level of abstraction. This
enables the mental model to get refined to the
appropriate mental model for the active context with the
selected level of abstraction by applying generalization
/specification defined in the background layer and
context projection mechanisms defined in the context
layer. To move the mental model to a higher level of
abstraction, it is needed to aggregate data in the lower
level to compute values of higher level properties of
mental model.

Figure 2. Our proposed architecture for mental model sharing

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

239 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

The masks of active context are passed to this layer
as input. The agent layer contains a set of data structure
that show mental model of agents in the system. Indeed,
this layer contains the metaphor of each agent. It should
be pointed out that this conceptual grouping of data in a
single layer does not imply that storing them should also
be centralized. In fact, this layer is an intermediate layer
and is used to manage agents in the system. In other
words this layer is responsible for managing the specific
properties of agents, arrival of new agents, exit of
existing agents and etc. Each agent’s metaphor in this
layer has been linked to agent’s data structures in
mental model layer and in that layer every agent should
store and update its own mental model and it is
responsible for the processing needed for moving the
mental model to a different level of abstraction and for
masking it with a different context.

The number of fields and the specific type of data
for each field are application dependent so the designer
of the system should also design the mental model
suitable for that application. It is worthy to mention that
the model does not put any restrictions on the number
and the types of fields.

6. 3. Mental Model Layer The lowest layer of our
architecture is the mental model layer. In this layer each
agent has a history of mental model changes for each
context it has worked in. All of the properties in agents
and their values over time are stored in this layer. This
layer receive projected mental model as input from
agent layer. Then, agents sense the environment and
store perceived value in the pertaining data structure.
These values use to infer high level information and to
detect harmful conflicts. Indeed the output of this layer
is the knowledge that results in an action or a conflict
with other agents. Storing the whole history from the
time of the system startup can be unrealistic in some
applications because of storage capacity limitations and
restrict ions in analyze or retrieval time of the system.
To put an upper bound on the size of history kept for
each agent we defined a window. Each snapshot of the
mental model that is outside of this window is getting
thrown away from this layer. The window size is a
parameter that the designer of the system should tune
and our architecture doesn’t put any limitations on it. It
is important to note that working in a context does not
push out the history of other contexts and it only
changes the history of the active context. Each agent is
responsible for storing and updating its own layer of
mental models and the grouping of these histories of
mental models are only conceptual and not physical.

Each agent can refer to its history in the mental
model layer in order to analyze its trend of semantic
movement. Any kind of data mining techniques can be
done on the mental models in this layer and the results
can be used in adjusting agent’s behaviors. It may also

provide training data for a learning algorithm like
reinforcement learning or case-based learning.
Designers of the systems using our architecture can
implement their own algorithms for using the mental
model layer, but in the architecture it is mainly used as a
source of data for analyzing and adjusting semantic
movement strategies.

6. 4. Background Background is another shared part
of the architecture like context layer. It is placed in the
model to describe the knowledge that agents might
have. It can be described as a shared ontology that
defines the hierarchy of abstraction levels, the name and
meaning and relation of properties in the mental model,
the methods for aggregating data to generate higher
level abstractions of mental model and the semantic
movement strategies that one agent might use. The
background part contains the information about
relations between entities and one of the relations
especially important in our work is generalization/
specification relation. This kind of relation can be used
to switch the level of abstraction of the mental models
between different levels. Higher levels of abstraction
make the mental models to filter unnecessary fields or
aggregate detailed fields to be in a more general and
compact state. Lower levels of abstraction result in
more detailed mental models. Working on the correct
level of abstraction can help the reasoning and sharing
mechanisms to work efficiently and as agile as possible.
As an example, consider our experiment environment,
the wumpus word introduced in section 9. In this
environment, the sense of breeze and glow at a cell can
be the sign of hole at neighbor cells. This that breeze
and glow must have a relation with the concept of hole
in the background.

The knowledge stored in this part is application
dependent, so it is the designer’s duty to properly define
the background part so that it correctly reflects the
properties of the domain of interest and gives the system
the ability of working in different levels of abstraction.
Also, this part provides three other layers with all
information that each agent may require. In other words
this information is output of this layer.

7. PROPERTIES OF ARCHITECTURE

We can classify main properties of architecture in four
categories:
1. The properties that context layer add to system
2. The advantages of background
3. Hierarchical structure of mental model
4. The properties of history in mental model layer

7. 1. Being Context Aware Being context-aware is a
property of the agents using our architecture. In lots of

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 240

applications, it is desirable that agents perform tasks in
different contexts simultaneously. In real-world
applications like intelligent buildings or complicated
control systems, each agent should consider several
aspects of the environment in order to successfully
make a plan for its work. While acting in a context, the
reasoning process should only act on beliefs and
knowledge relevant to that context. In other words,
mental models should get projected based on the current
context to rule out unnecessary information about other
contexts. Another important effect of using a context-
aware architecture is that it boosts the sharing process
by filtering possible non relevant conflicts that agents
might have that have no effect on the active context of
both agents. While being context-aware is beneficial, it
also proposes its own set of problems. For example, it is
necessary to have a method for identifying the current
working context of other agents in the system. The
problem of identifying the active context for each agent
is simplified in this work with the synchronized change
in context for all participating agents.

7. 2. Advantages of Background Another important
property of our architecture is that is provides the
system with a shared ontology. This ontology represents
the hierarchical structure of knowledge in all contexts
together along with the information about conflicting
values. It is vital to have a shared ontology between
agents who want to share their mental models because it
makes them possible to understand and use others’
knowledge. It also helps in the conflict detection phase,
because an agent can refer to this ontology to judge
about presence of conflict between its mental model and
others. It also helps agents to narrow down to the root of
a conflict by moving down in the hierarchy of
abstraction levels in shared ontology. This can help in
conflict resolution by isolating and pinning down the
root of conflict in mental models of agents.

7. 3. Hierarchical Structure Our architecture is
capable of showing mental models in a hierarchical
way. This can help agents to store their mental model in
different levels of abstraction, enabling them to operate
on the appropriate level of abstraction that fits the best
for the active task. Omitting unnecessary details while
reasoning, can significantly reduce the running time and
help to reach the desired goals faster. Another beneficial
property of hierarchical mental models is that conflict
detection can be done in a systematical manner, by
starting from the most abstract level of mental model
and narrowing down in the conflicting parts in order to
find the cause of conflicts in lower levels and finally
resolution of them in the lowest possible level.

7. 4. History Our architecture also incorporates a
history of mental models that saves the recent changes

in different contexts. A recent history of the changes in
mental model can show the semantic movement of
agents in the near past. An agent can periodically
evaluate its performance to decide whether its semantic
movement policy is efficient or not. An agent can
determine its trend of semantic movement by analyzing
its history of mental model changes. Based on the
current performance and the current semantic movement
strategy, an agent can decide whether a change in the
strategy is needed in order to improve its performance.

8. SHARING STRATEGY

In lots of applications that embody mechanisms like
teamwork or negotiations, the sharing process
introduced in this section can be done prior to any other
step. Even it can help in the task of dynamic team
formation in which agents are reasoning about the team
and are deciding about the formation of the team. There
are several issues one should take into account when
he/she wants to use the proposed architecture. Issues
like when to share the mental models and who has to
participate in the sharing process are the most important
decisions that should be made by taking into account the
inherent properties of the application domain. It is worth
mentioning that two basic but effective methods for
deciding when the sharing is effective are, using a timer
or delegating an agent to decide about sharing time by
monitoring a performance measurement and see when it
gets below a threshold.

The sharing strategy has three stages, conflict detect-
ion, mental model sharing and conflict resolution. To
keep the model general enough, the conflict detection
criteria should be defined by the application domain
expert. To show that conflict detection is purely domain
dependent the following example can be mentioned.
Imagine that several agents are responsible to monitor
vital signs of a patient. One might report the
temperature of a patient is 37°C and the other senses it
as 38°C. This is clearly a conflict in this domain. Now
imagine another task involving the control of the room
temperature. One controller thinks the room temperature
is 20°C and another one thinks it is 21°C. In the domain
of room temperature this difference can be safely
ignored so it is not a conflict. The conflict detection
criteria is a function that accepts two values of the same
property and returns a Boolean value showing that if a
conflict exists between these values or not.

To share the mental models, context layer and
background structure should be used. Context structure
is used in two ways. The first usage is to determine
which conflicting agents should anticipate in the sharing
process. Each agent in the system has an active context
at each time interval. The agent can switch its context
but it can’t work in different contexts at the same time.

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

241 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

After conflict detection, if the conflicting agents are
working in the same context they should share their
mental models. Also, if the agents are in different
contexts, the domain expert should provide a suitable
guideline for the system, to decide whether sharing
should be done between the agents in those contexts or
not. The second usage of context layer in the sharing
process is that context provides a mask for the mental
models which are about to get shared. Each agent
should only send the part of its mental model which is
relevant to its active context. When the agents are
working in different contexts, the masked mental
models don’t have the same properties. The agents in
this situation receive masked mental models of other
agents in different contexts and use the whole masked
received mental models and not only the parts related to
its own context for reasoning.

The main application of background structure in the
conflict detection phase is to work on the correct level
of abstraction for sharing mental models. It starts with
the highest level of abstraction and each conflicting
agent is giving out its masked mental model in the
highest abstraction level. The masked mental models are
then analyzed for conflict detection. If there is any
conflict between values of some fields, the agents
should move down in the abstraction level by one step
with the help of background structure. It is worth
mentioning that each field is related to the contexts
when it has a child field related to those contexts or if it
is a leaf field and the domain expert assigned it to the
proper contexts. This structure of the background part
implies that moving down in the abstraction level to
find the desired fields needs to get coupled with context
projection by the active context because all of the
children fields may not be relevant to the active context.
The children fields are then analyzed to find conflicts
between them and the moving down in the abstraction
level continues for only conflicting fields until the root
of the conflict gets detected.

The final stage of the sharing strategy is conflict
resolution. There have been several proposed models for
this task, but they are mainly discussed in the human
communication domains. We selected a model called
Interest, Right, Power introduced by Furlong [42] for
conflict resolution. This model has three layers. The
innermost layer is the interest layer. The process of
conflict resolution in this layer, concerns interests or
desires and fears of the participants. Agents should
begin the conflict resolution step, trying to resolve all
they can in this layer. The outcome of this step if it
results in a resolution of conflicts is a win/win situation.
Each one of the participants, gain at least a portion of
his/her interests. Some methods according to this layer
are distributed problem solving, mediation and
brainstorming.

If agents can’t find a way to agree upon a point that

resolves their conflicts, it is time to move to the upper
level which is the Rights level. The main part of this
layer is that it takes into account the rights and laws of
the participants and it usually involves a superior role
which decides about whose rights should get de-
legitimized. Some proposed types of rights that should
be considered here are laws, statues, conventions, past
practices, policies and contracts. Because of the
superiority nature of the decider role, the conflict
resolution in this layers ends in favor of a party and the
other party loses, so it makes a win/loss situation at the
end. Some examples of processes in this layer are
litigation, tribunal decisions and neutral evaluations.

In the highest layer, participants try to convince
others by force. Usually all parties use all possible
resources at their disposal to act on a way to make other
parties lose. Because of the competitive nature of this
layer, each party in this task tries to sacrifice some of
his/her interest in order not to lose most of the interests.
This makes it to generate a lose/lose situation. Parties
try to minimize their loss by forcing the other parties to
lose more. Some examples according to this layer are
threatening, intimidation, physical force and strikes.

The conflict resolution method that we used in this
method was inspired from the interest/right/power
(I/R/P) framework. Some conflicts can resolve in the
interest layer when in the middle of sharing mental
model step, some missing or unknown values are
getting filled that makes the agent to change its mind
after receiving this new type of data which was
unknown before. This is a win/win situation because all
agents involved in the sharing process gain a little more
perspective from the world or other members of the
team, and the conflict gets resolved as a side effect of
the sharing stage. This can get mapped to the interest
layer of the I/R/P framework.

There are some situations that after moving down
the background hierarchy to its deepest level, the
conflicts still exist. This is the time to move to the next
layer, Rights layer. The method we used to mimic the
properties of rights layer is based on the judgments of a
superior agent called coach. The coach agent has some
judgment principles that are application sensitive. It
asks for the projected mental models according to the
active context of parties and evaluates each one of them
with respect to its principles.

The power layer introduced in I/R/P framework is
not applicable in our architecture because it is referring
to a situation that is meaningful in human’s societies
where people use their power to dominate other possibly
weak persons. Figure 3 presents the sharing process that
empowered with semantic movement.

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 242

Figure 3. Sharing strategy empowered with semantic
movement

Figure 4. A sample situation in test environment

9. EXPERIMENT ENVIRONMENT

We need a complex multi-agent environment with
multiple contexts in which data and information sharing
is possible and beneficial. In lots of domains in multi-
agent systems, using a form of data sharing strategy is
essential. In some domains with complex environments
and limited sensing powers for agents, each agent needs
to have a complete and updated knowledge about the
world and about the situation of other agents. Making a
complete and updated world model only pays off the
efforts of creating it by intensive communication
between agents, when it is coupled with a method to use
this world model for coordination and cooperation and
generally acting on the environment. The issues of
action selection, coordination and cooperation and all
other action related problems are not in the domain of
this research. We only presented architecture for sharing
mental models and resolving possible conflicts, and no
action execution is involved in our model. The
experiment environment should be limited to gathering
data and then sharing mental models. We worked on a
test bench to practically implement and use our
architecture for sharing mental models. This test bench
has lots of uncertainties that make the need of data
sharing for agents to correctly reason about the state of
the environment. It also has different contexts and
mental models are projected and shared in each of the
contexts.

The experiment environment we developed is a
multi-context version of the famous wumpus world
game but we changed it in different ways. There are
four types of individuals in this game. The first type of
individual is the agent. The agents are the ones who can
move in the map and sense four different senses that are
smells, glows, breezes and sounds. The other individual
is a wumpus that eats the agents if they move in their
cell. They also make their adjacent cells to smell and
sound. The next item in the map is a hole. When there is
a hole in a cell it kills all agents that move inside that
cell. It also makes the neighbor cells to have a glow and
breeze. Some cells also contain gold pieces. When an
agent moves in a cell with gold, it is rewarded by taking
that gold for itself. Gold in a cell makes the adjacent
cells to have sound and glow in them.

To make the test environment suitable for sharing
purposes we decided to have three types of agents in a
way that they need to share their knowledge about the
world map to make a clear and unambiguous world
model. A type of agent has the ability to sense smells
and glows. The other one senses breezes and smells, and
the last one senses breezes and hears sounds. In this
environment with no sharing a single agent can’t be sure
about the state of a cell whether it has a wumpus in it or
it is a hole or it has gold. But if they share their mental
models each of them can reason with more confidence

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

243 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

about the situation of a cell. We also made the sensing
of agent faulty so that with a configurable probability an
agent can’t sense correctly. For example a hearing agent
in a fraction of times can’t hear anything although there
is a sound in that cell.

When an agent moves in a cell it tries to sense the
environment based on its sensing capabilities. If an
agent doesn’t have the sensing power for some features
of the environment it assumes that it doesn’t know
about that feature. If it has the sensing power for that
feature and can’t sense the presence of that feature it
assumes that the feature is not present in that cell and
finally if it can sense that feature it assumes that it is
present. Although with the faulty sensors for agents the
last two possibilities are not always trustable and in fact
an agent can be wrong about a feature that has the
capability of sensing it.

10. SAMPLE EXPERIMENT SCENARIOS

To show how the architecture for sharing mental models
can help the agents to make a rather complete and
accurate model of the game map we used our
architecture in a few scenarios. In Figure 4, we have a
wumpus and three agents around it. The neighbor cells
are smelly and noisy and the three agents have sensors
for breeze and glow detection and smelling and hearing.
In this particular snapshot of the world, one agent senses
that there is a sound in its cell. The other agent senses
that there is a smell in its cell and the last agent senses
that there is no breeze in its cell. Without any mental
model sharing, the agent who hears a sound can only
reason that there is a gold or wumpus in one or more
cells of the eight adjacent cells. By sharing mental
models between three agents in the Figure 4 each agent
knows that the surrounding cells of the wumpus cell
have sound and smell. This implies that the cell in the
center probably has a wumpus in it according to the
neighbor cells and the shared information of the agents.
In Figure 5 a situation is shown that agents might reason
something incorrect even after the sharing of mental
models. The cells around the wumpus are smelly and
noisy. The cells around the hole are windy and shiny.
And the cells in the middle that are highlighted are
smelly, shiny, windy and noisy at the same time. Now
imagine that we have an agent with sensor for glow
detection and hearing agent in the highlighted area.
After sharing, they probably guess that one of the
neighbor cells have a gold piece in it. The reason is that
there is no information about the presence of smell in
these cells because there is no agent in that area that can
sense the smell. This example shows that although
mental model sharing can help in generating a more
accurate map of the world, it is not always enough if
there is some information missing.

Figure 5. A sample misleading scenario

In Figure 6 a situation is shown that shows the

importance of navigation time in the accuracy of the
generated map. The more we give time to the agents to
move around the map, the more they consider a
situation when there are only three agents in the map
(the agents are that bolder). They sense glow and sound
in their cells and their neighbors are gathered and they
can decide about the possibility of the presence of
different entities with more confidence. After sharing
they probably guess that there is a hole in the high-
lighted cell at the center which is wrong. Now
reconsider the example with the fourth agent (the
brighter agent) contributing to the sharing process. The
fourth agent doesn’t sense any wind or glow. This, rules
out the possibility of having a hole in the highlighted
area. It is trivial that by giving time to agents to move
around the map, the more knowledge about cells and
their neighbors are gathered and they can decide about
the possibility of the presence of different entities with
more confidence.

11. RESULT

Test environment was introduced in the last section. The
agents in this environment operate in two steps. In the
first step, they move around in the map and collect
sensory data for each visited cell. In the second step,
they share their information about the map to resolve
the destructive conflicts. In data gathering step, each
agent can either silently move (no sharing strategy) and
collect sensory data or ask other agents for
complementary information (sharing strategy) about
suspicious cells. In the sharing step, the agents can
behave in 3 different ways. The first option is to use our
propounded architecture to share the mental models and

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 244

resolve conflicts with only the agents that it has
destructive conflicts with, in that context (partial sharing
strategy). Another option for agents is to use our
architecture and share their mental models with all other
agents in the system (complete sharing strategy). The
last option is that the agents don’t share their
information with each other and only a simple voting
mechanism is applied for deciding the final state of each
cell (no sharing strategy). There are five different
scenarios with different strategies for the two steps.
These five scenarios are:

1. Scenario-n-p: in this scenario our agents collect data
without communication in first step (no-sharing
strategy) and use our mental model and algorithm in
second step (partial sharing strategy). This scenario
presents capabilities of our model and sharing
algorithm.

2. Scenario-n-c: in this scenario our agents don’t
communicate with each other in first step (no
sharing strategy) but in second step they use
complete sharing strategy to share their mental
models. This scenario shows best performance in
this environment since our agents have complete and
compatible knowledge.

3. Scenario-n-n: in this scenario agents don’t have any
communication in both steps.

4. Scenario-s-p: this scenario use sharing strategy to
move around the map in the first step and partial
sharing strategy to share their mental models in the
second step.

5. Scenario-s-n: in this scenario agents use sharing
strategy in first step but agents do not share their
mental models in the second step.

Figure 6. A sample scenario with conflicts

Agents try to participate in guessing the right game
map and this map is compared with the world map in
the game. In those scenarios that agents share their
mental models in the second step, agents use the
proposed sharing strategy to reach agreement and select
appropriate state for cells. But in other scenarios, a
broker agent is used to poll the opinion of agents for
each cell’s state. An agent has no opinion about a cell’s
state if and only if the calculated probability of cell’s
state for each state is below a threshold. The system
can’t have any opinion about the state of a cell if and
only if no agent has any opinion about that cell’s state.
We use three measurements to compare these scenarios,
recall, precision and total message length. Recall is the
fraction of cells that are not unknown over the number
of cells in the world map. Precision is the fraction of
cells that are predicted correctly over of the number of
predicted cells. Total message length is the sum of all
message lengths that are passed between agents in the
game.

Figure 7 presents the precision of five scenarios and
their comparison. Vertical axis represents precision and
horizontal axis represents the time of movement in
environment. As Figure 7 suggests, the precision of our
proposed method (scenario-n-p) in the 0.002 second
time step is about 89% and the performance of the
scenario with the complete information sharing
(scenario-n-c) is about 89.3%. All other methods have
noticeable lower precision than these two methods. As
the time passes to 50 seconds, scenario-n-p and
scenario-n-c both have 94% precision and other
methods have precisions lower than 90%. Since agents
only make a decision about a cell’s state if they have a
strong confidence in their answers, the precision of all
scenarios are acceptable. Since the calculated
probability of the cells’ state in scenario-n-n for all cells
is under the assigned threshold, precision in this
scenario is 0. That’s because agents don’t share any
information so they don’t have sufficient information
for deciding the state of the cells. Scenario-n-c has the
highest precision in guessing cells’ states because the
agents in this scenario have complete and compatible
knowledge about cells. The next best method after
scenario-n-c is our introduced method (scenario-n-p). In
scenario-n-c, all agents share their information about
every cell that they don’t agree upon its state to resolve
any possible conflicts. In our method (scenario n-p) the
agents try to share their information about the cells that
they don’t agree upon their state (destructive conflicts).
Also in our method, only the agents that have different
opinions about a cell’s state are participating in the
sharing process but in the best scenario all agents take a
part in the sharing process. Between scenario-s-p and
scenario-s-n, the higher precision of scenario-s-p is due
to the sharing of mental models in the step 2 of the work
in scenario-s-p.

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

245 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

In scenario-s-n agents share their information only in
data gathering step. The time needed for sharing is taken
from the overall time for data gathering step so agents
have less time for moving around the game map and in
map prediction step, they don’t share their mental
model. In scenario-s-p agents share their information in
both of the steps. Since agents share information in data
gathering step, they have less time for moving around
the map and gathering sensory data. Due to less
gathered data in scenario-s-p in comparison with
scenario-n-p, the performance of scenario-n-p is better.

The recall of the answers in each scenario is
presented in Figure 8. In this figure, vertical axis
represents recall and horizontal axis represents the time
of movement in environment (duration of data gathering
step). In the first time step the recall of scenario-n-p is
about 84% which is 9% lower than the scenario-n-c.
The other two scenarios have much less recall in this
time step (31% and 0%). In 0.1 second data gathering
time the scenario-n-p and scenario-n-c have a recall of
nearly 100%, but the scenario-s-p’s recall is about 76%
and the scenario-s-n has a recall of about 5% and the
scenario-n-n has 0% recall. Scenario-s-p reaches to the
recall of 100% in the 10 seconds data gathering time
and scenario-s-n’s recall is 90% in 50 seconds data
gathering time. Scenario-n-c has highest recall as well
as the highest precision. As mentioned before recall is
the number of predicted cells over the number of cells in
the map. Therefore, if the number of predicted cells in
one scenario gets more, recall is increased. The
prediction of a cell’s state is based on the information
that agents gathered and received during sharing
process. In scenario-n-c agents have the most
information about the map because of the complete
information sharing in map prediction step. That is why
this scenario has the best recall among other scenarios.
Scenario-s-n is not good at recall because it misses a
notable amount of time for gathering data and it also
bypasses the mental model sharing process. Our
proposed method (scenario-n-p) outperforms scenario-s-
p according to recall. Because the sharing of the mental
models done in the scenario-s-p takes the time for
moving around the map and gathering data.

Figure 9 shows the multiplication of precision and
recall for each scenario. This figure shows the percent
of cells that was predicted correctly. As expected,
scenario n-c has the best result and our method is
standing in the second place with a very little difference
from the best scenario.

Figure 10 presents the total number of bytes in the
messages passed between agents in all scenarios. As it is
easily noticeable, the scenario-n-c has the highest
number of bytes in its communication messages and the
difference between this scenario and others is huge
especially in 0.002 second time step. Scenario-n-c
transfers a total number of nearly 1,304,000 bytes and

the scenario-n-p transfers 176,000 bytes for sharing
purposes. This huge difference is the result of sharing
all gathered information between all agents in the
scenario-n-c and the directed, optimized sharing done in
scenarios with partial sharing like our method (scenario
n-p). Although we didn’t take into account the effect of

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Figure 7. Precision of five scenarios

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Figure 8. Recall of answer in each scenario

Figure 9. The multiplication of precision and recall for each
scenario

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 246

Figure 10. the total number of bytes in the messages passed
between agents in all scenarios

communication time and cost on our test environment,
but in real applications it has a very important effect on
the effectiveness of the system. In lots of domains,
communication is a slow, resource consuming task and
should be used wisely in order to keep the performance
of the system at its peak. Using it unwisely may even
result in network congestion. Our method tries to
optimize the use of communication facilities by
applying the partial sharing strategy. It is nearly as good
as the complete sharing strategy according to precision
and recall but with very less message lengths.

12. CONCLUSION

In this paper, a new three layered architecture for
sharing mental models has been introduced. This
architecture is specially designed to help multi-agent
system designers to add sharing capabilities between
agents in their systems. It also embodies a new sharing
strategy that can detect and resolve any harmful
conflicts between mental models. This sharing strategy
is based on contexts’ information and a shared ontology
called background.

We have applied our architecture on a complex test
environment that no agent can perform well individually
and without sharing. We equipped our agents with a
context aware architecture and applying sharing strategy
empowered with semantic movement. Comparing our
proposed scenario with other sharing methods, the
results were promising. The result of our method is
close to original map while the total messages passed
between agents are optimized.

Our sharing method is dependent on information in
context layer and background layer. Therefore, any
incompetency in these layers affects the sharing
accuracy. Moreover, another limitation of our method is

the existence of right layer in conflict resolution step.
We use a superior agent in this layer to judge between
conflicting agents if it is necessary. In ad hoc teams
with large number of agents, this superior agent can
become a bottleneck. One solution is to cluster agents
based on mental or physical neighborhood and use a
superior agent for each cluster.

We believe that our architecture can also perform
well in application domains that have real-time
constraints. That is because our architecture uses
projected mental models according to the current cont-
ext which makes other steps like reasoning, planning
and decision making faster than before.

This work can be improved by adding learning
mechanisms for automatic context formation or
background information therefore a domain expert is
not needed anymore. Also, our sharing strategy can be
augmented with trust related methods to enable agents
to treat agents differently.

13. REFERENCES

1. P. Johnson-Laird, “Mental models: Towards a cognitive science
of language, inference and consciousness”, Harvard University
Press, (1986).

2. M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on
context-aware systems," International Journal of Ad Hoc and
Ubiquitous Computing, Vol. 2, (2007), 263-277.

3. Y. Zhong, "Study on Cognitive Decision Support Based on
Learning and Improvement of Mental Models," Computing,
Communication, Control, and Management, CCCM'08,
(2008), 490-494.

4. C. Jonker and J. Treur, "A dynamic perspective on an agent's
mental states and interaction with its environment”, The first
international joint conference on Autonomous agents and
multiagent systems: part 2, (2002), 865-872.

5. Xiaocong Fan and John Yen,” Modeling and simulating human
teamwork behaviors using intelligent agents,” Physics of Life
Reviews, Vol.1, (2004), 173-201.

6. Yu Zhang,” Role-Based Shared Mental Models,” Collaborative
Technologies and Systems, (2008), 424-431.

7. John Yen, Xiaocong Fan, Shuang Sun, Timothy Hanratty and
John Dumer,” Agents with shared mental models for enhancing
team decision makings,” Decision Support Systems, Vol.41,
(2006), 634-653.

8. Xiaocong Fan, Po-Chun Chen and John Yen,” Learning HMM-
based cognitive load models for supporting human-agent
teamwork”, Cognitive Systems Research, Vol.11, (2010), 108-
119.

9. Xiaocong Fan and John Yen,” Realistic Cognitive Load
Modeling for Enhancing Shared Mental Models in Human-
Agent Collaboration,” AAMAS’07 May 14–18, 2007,
Honolulu, Hawai’i, USA, (2007), 60.

10. Daniel Fuller, Brian Magerko,” Shared Mental Models in
Improvisational Performance,” Proceedings of the Intelligent
Narrative Technologies III Workshop, ACM, (2010), 15.

11. J. Hendler, "Agents and the semantic web," Intelligent Systems,
IEEE, Vol. 16, (2001), 30-37.

12. N. Gibbins, S. Harris and N. Shadbolt, "Agent-based semantic

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

247 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248

web services," Web Semantics: Science, Services and Agents
on the World Wide Web, Vol. 1, (2004) 141-154.

13. D. S. Coalition, A. Ankolekar, M. Burstein, and J. R. Hobbs,
"DAML-S: Web service description for the semantic Web,” The
Semantic Web ISWC, (2002), 348-363.

14. S. McIlraith and T. C. Son, "Adapting golog for composition of
semantic web services," principles of knowledge representation
and reasoning-international conference, (2002), 482-496.

15. S. Narayanan and S. A. McIlraith, "Simulation, verification and
automated composition of web services," 11th international
conference on World Wide Web, (2002), 77-88.

16. P. Buhler and J. M. Vidal, "Semantic web services as agent
behaviors," Agentcities: Challenges in Open Agent
Environments, Citeseer, (2003), 25–31.

17. D. Greenwood and M. Calisti, "Engineering web service-agent
integration," Systems, Man and Cybernetics, 2004 IEEE
International Conference, Vol. 2, (2004), 1918-1925.

18. E. M. Maximilien and M. P. Singh, "Agent-based architecture
for autonomic web service selection," Proc. of the 1st
International Workshop on Web Services and Agent Based
Engineering, Sydney, Australia, (2003).

19. E. M. Maximilien and M. P. Singh, "A framework and ontology
for dynamic web services selection," Internet Computing,
IEEE, Vol. 8, (2004) 84-93.

20. Z. Maamar, S. K. Mostefaoui and H. Yahyaoui, "Toward an
agent-based and context-oriented approach for Web services
composition," IEEE Transactions on Knowledge and Data
Engineering, (2004), 686-697.

21. C. Jonker, M. van Riemsdijk and B. Vermeulen, "Shared Mental
Models," Coordination, Organizations, Institutions, and Norms
in Agent Systems VI, Vol. 1, (2011), 32-151.

22. Kaivan Kamali, Xiaocong Fan and John Yen,” Multiparty
Proactive Communication: A Perspective for Evolving Shared
Mental Models,” American Association for Artificial
Intelligence, (2006), 685.

23. F. Schmitt, J. Cassens, M. Kindsmller and M. Herczeg, "Mental
models of ambient systems: a modular research framework,"
Modeling and Using Context, (2011), 278-291.

24. E. Phillips, S. Ososky, J. Grove and F. Jentsch, "From Tools to
Teammates," Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, (2011), 1491-1495.

25. Brigitte Burgemeestre, Jianwei Liu, Joris Hulstijn and Yao-Hua
Tan, “Early requirements engineering for e-customs decision
support: Assessing overlap in mental models,” Proceedings of
CAiSE Forum, (2009), 31-36.

26. Kennedy, W.G and Trafton, J.G, “Using Simulations to Model
Shared Mental Models,” Proceedings of the Eighth
International Conference on Cognitive Modeling, (2007), 253-
254.

27. M. N. Huhns, "Agents as Web services," Internet Computing,
IEEE, Vol. 6, (2002), 93-95.

28. K. Sycara, M. Paolucci, J. Soudry and N. Srinivasan, "Dynamic
discovery and coordination of agent-based semantic web
services," Internet Computing, IEEE, Vol. 8, (2004), 66-73.

29. Hong, J., Suh, E. and Kim, S., “Context-Aware Systems: A
Literature Review and Classification.” Expert Systems with
Applications, Vol. 36, (2009), 8509-8522

30. J. Payton, "Simplifying Context-Aware Agent Coordination
Using Context-Sensitive Data Structures," DTIC Document,
(2004).

31. K. Arabshian and H. Schulzrinne, "Distributed context-aware
agent architecture for global service discovery," The Second
International Workshop on Semantic Web Technology for
Ubiquitous and Mobile Applications (2006).

32. N. M. Sadeh, T. C. Chan, L. Van, O. Kwon, and K. Takizawa,
"Creating an open agent environment for context-aware m-
commerce," Agentcities: Challenges in Open Agent
Environments, Vol. 70, (2003).

33. M. Hattori, K. Cho, A. Ohsuga, and M. Isshiki, "Context-aware
agent platform in ubiquitous environments and its verification
tests," Systems and Computers in Japan, (2003), 547-552.

34. H. J. Lee, J. E. Park, E. J. Ko, and J. W. Lee, "An agent-based
context-aware system on handheld computers," International
Conference on Consumer Electronics, 2006. ICCE'06. 2006
Digest of Technical Papers, (2006), 229-230.

35. W. Chun-Dong and W. Xiu-Feng, "Multi-agent Based
Architecture of Context-aware Systems," International
Conference on Multimedia and Ubiquitous Engineering, 2007.
MUE'07, (2007), 615-619.

36. W. S. Wong, H. Aghvami and S. J. Wolak, "Context-aware
personal assistant agent multi-agent system," IEEE 19th
International Symposium on Personal, Indoor and Mobile
Radio Communications, 2008. PIMRC, (2008), 1-4.

37. B. Y. Lim, A. K. Dey and D. Avrahami, "Why and why not
explanations improve the intelligibility of context-aware
intelligent systems," 27th international conference on Human
factors in computing systems, (2009), 2119-2128.

38. B. Lim, "Improving Understanding, Trust, and Control with
Intelligibility in Context-Aware Applications," Human-
Computer Interaction, (2011).

39. O. Kwon, S. Choi and G. Park, "NAMA: a context-aware multi-
agent based web service approach to proactive need
identification for personalized reminder systems," Expert
Systems with Applications, Vol. 29, (2005), 17-32.

40. H. Harroud and A. Karmouch, "A policy based context-aware
agent framework to support users mobility,"
Telecommunications, 2005. Advanced industrial conference on
telecommunications /service assurance with partial and
intermittent resources conference/e-learning on
telecommunications workshop. aict/sapir/elete, (2005), 177-182.

41. Burkle, W. Muller, U. Pfirrmann, M. Schenk, N. Dimakis, J.
Soldatos, and L. Polymenakos, "An agent-based architecture for
context-aware services supporting human interaction,"
International Conference on Web Intelligence and Intelligent
Agent Technology Workshops, 2006. WI-IAT 2006 Workshops.
2006 IEEE/WIC/ACM, (2006), 146-152.

42. G. T. Furlong, “The conflict resolution toolbox: models & maps
for analyzing, diagnosing and resolving conflict” Wiley, (2005).

www.SID.ir

Arch
ive

 of
 SID

www.SID.ir

 S. Salehi et al. / IJE TRANSACTIONS B: Applications Vol. 25, No. 3, (August 2012) 233-248 248

A Context-aware Architecture for Mental Model Sharing through Semantic
Movement in Intelligent Agents

S. Salehi a, , F. Taghiyareh a, M. Saffar a, , K. Badie b

a Department of ECE, University of Tehran, Postal Code: 14395-515, Tehran, Iran
b Department of IT, Iran Telecommunication Research Centre, Tehran, Iran

P A P E R I N F O

Paper history:
Received 12 October 2011
Received in revised form 05 February 2012
Accepted 17 May 2012

Keywords:
Autonomous Agent
Semantic Movement
Shared Mental Model
Mental Model
Context-aware
Architecture
Intelligent Agent

 چكيد�

ها� �لها� ها� هوشمند با �ستفا�� �� مفهو��� �� به �لگو� طر�حي عاملها� چند عامله توجه �يژ�مطالعا� �خير �� سيستم
ها� چند ها� �خير �� سيستمها� شناختي مهمي كه �� بسيا�� �� ���يكي �� مفهو�. ها ��شته �ستگرفته شد� �� �نسا�

�� �ين مقاله ما يك معما�� بر�� �ش�تر�� م�د� �هن�ي . مد� �هني مشتر� �ست هو� كند�مفعامله نقش محو�� �يفا مي
ه�ا �ين معما�� با �لها� �� مد� �هن�ي �نس�ا� . كنيمها بر �سا� يك مفهو� جديد با عنو�� حركت معنايي معرفي ميعامل

�ي�ن معم�ا�� �� . �� قر�� گير�بافت مو�� �ستفاها �� چندين همتو�ند به صو�� هم �ما� توسط عاملطر�حي شد� � مي
ها� �هني �فر�� با حركت معنايي نوعي حركت �� حالت. كندحركت معنايي به عنو�� يك سا� � كا� �فع تضا� �ستفا�� مي

�� �� مجموعههمچنين بر�� ���يابي �ين معما��� ما . ها� �هني �ستهد� برطر� كر�� تضا�ها� مضر موجو� �� مد�
معما�� ما . تو�� به جو�� مناسب �سيدها بد�� فر�يند �شتر�� گذ��� نمي�� سنا�يوها� پيچيد� �ستفا�� كر�يم كه �� ��

تو�ن�د ما �عتقا� ���يم كه معما�� ���ئه شد� مي. ها� جايگزين �شتر�� گذ��� عملكر� بهتر� �� نشا� ���نسبت به ���
ها� مذ�كر� تو�ند بر�� محيطهمچنين �ين معما�� مي. ا�هايي سا�گا�تر بين خو�شا� تو�نمند كندها �� بر�� �يجا� �فتعامل

 .ها مناسب باشدبين عامل

doi: 10.5829/idosi.ije.2012.25.03b.10

www.SID.ir

