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A B S T R A C T  

   

In the present investigation, we deal with the reliability characteristics of a repairable system consisting 
of two independent operating units, by incorporating the coverage factor. The probability of the 
successful detection, location and recovery from a failure is known as the coverage probability. The 
reboot delay and common cause shock failure are also considered. The times to failure of the 
components, time to failure due to common cause, time to repair and time to reboot are assumed to 
follow exponential distributions. The Markov model of the system is developed and the system state 
transition probabilities are determined which are further used to evaluate some reliability indices such 
as availability and mean time to failure. We use fuzzy logic approach for analyzing the system 
performance by assuming the trapezoidal membership functions of the system descriptors viz. failure 
rates and repair rates. The fuzzy mean time to failure and fuzzy availability have been established. A 
numerical experiment has been performed to validate the analytical results. 
 
 

doi: 10.5829/idosi.ije.2012.25.03c.07 
 

 
1. INTRODUCTION1 
 
With the advancement of technology, handling diverse 
and critical applications with repairable systems steadily 
is important in many areas of day-to-day as well as 
industrial organizations including the manufacturing 
systems, computer systems, communication systems, 
transportation systems and power plants, etc. The 
reliability and availability of the systems, which are 
measured in terms of system state probabilities, have 
been identified as a major stumbling block in achieving 
a high or required level of system performance. In 
traditional reliability models a system can exist in 
binary states; the first one is ‘up’ state in which the 
system completely works at full capacity and another 
one is ‘down’ state in which the system does not work 
due to failure. The probability of system being in ‘up’ 
state is characterized by the reliability while availability 
is the probability that the system is operating 
satisfactorily at any time. The reliability refers to the 
system survival before the first failure while availability 
                                                        
*Corresponding Author Email: preeticl37@gmail.com  ( Ch. Preeti) 

refers to the system survival for the repairable system. 
For the safe operation and assurance of the quality of 
the components of the system in the sense that they 
perform their work perfectly, a repairable system should 
be highly reliable.  
     The reliability analysis of repairable system with two 
independent operating units is investigated in this paper. 
The concepts of coverage factor, reboot and common 
cause shock failure are also taken into consideration. 
Using the trapezoidal fuzzy numbers, the failure rates 
and repair rates of both units have been fuzzyfied. The 
membership functions of availability and mean time to 
failure have been obtained with the help of these fuzzy 
fied parameters.  

The remaining chapter is structured as follows. The 
related literature to work has been given in section 2. In 
section 3, we describe model and introduce the 
reliability and availability of the system. Section 4 
presents a brief introduction of fuzzy set theory. The 
modeling of repairable system in extended to the fuzzy 
environment in section 5. In section 6, a numerical 
example is facilitated to explore the computational 
tractability. Finally, conclusions are drawn in section 7. 
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2. RELATED WORK 
 
If in a system, the failures are not successfully detected, 
located and recovered; then, this situation is called 
imperfect coverage. The faults, which are not covered, 
belong to the uncovered fault class with the probability 
‘1-C’. A lot of work has been done in this field by many 
researchers. Pham [1] examined a high voltage system 
with imperfect coverage in which the failure rate of the 
fault coverage was a constant. Akhtar [2] analyzed the 
reliability of K-out-of-n: G system with imperfect fault 
coverage.  Moustafa [3] studied a K-out-of-N system 
with imperfect coverage. Singh and Jain [4] evaluated 
the reliability of repairable multi-component redundant 
system. Trivedi [5] considered the concept of detection 
and imperfect coverage and their effect on the repairable 
systems. Myers [6] studied the reliability of a K-out-of-
n: G system with imperfect fault coverage. Ke et al. [7] 
used Bayesian approach to predict the performance 
measures of a repairable system with detection, 
imperfect coverage and reboot. Hsu et al. [8] extended 
this model using asymptotic estimation. Simulation 
infers with an availability system with general repair 
distribution. Imperfect fault coverage has been studied 
by Ke et al. [9]. Liu [10] discussed the availability 
behaviour of a repairable system in which standby 
switched to primary is subjected to breakdowns. Wang 
et al. [11] compared the availability of two systems with 
warm standby units under the assumption that the 
coverage factor of the active-unit failure is different 
from that of the standby-unit failure.  

 In the real world problems, the system parameters 
are often imprecise due to incomplete and accurate 
information. In conventional reliability models, the 
probabilistic approach seems to be inadequate due to 
built-in uncertainties in data; therefore the theory of 
fuzzy reliability can play important role to tackle these 
types of difficulties. In fuzzy theory, the grade of a 
membership function indicates a subjective degree of 
preference of a decision maker with a given tolerance. 
The concept of fuzzy reliability has drawn the attention 
of many researchers. Cai et al. [12], Wu [13] and Jiang 
and Chen [14] studied the fuzzy system reliability. 
Some basic concepts of fuzzy set theory and their 
applications have been discussed in detail by Klir et al. 
[15]. Huang et al. [16] did a fuzzy analysis for steady-
state availability. Ke et al. [17] analyzed a redundant 
repairable system with imperfect coverage and fuzzy 
parameter. Reliability optimization of a series-parallel 
system with fuzzy random lifetimes has been done by 
Wang and Watada [18]. Sharma and Pandey [19] 
considered fuzzy reliability and fuzzy availability of a 
three unit degraded systems. The reliability analysis of 
competitive failure processes under fuzzy degradation 
data has been done by Wang et al. [20]. Wang et al. [21] 
discussed an approach to predict the system reliability 

analysis with fuzzy random variables to represent 
uncertainties. 

For a system working in different environments, the 
common cause shock failure is an important factor that 
should be incorporated to predict the reliability and the 
availability of the system. In multi-component systems, 
the operating units of the system may fail due to 
individual failure or due to common cause shock failure. 
Subramanian and Anantharaman [22] did the reliability 
analysis of a complex standby redundant system. Jain 
[23] analyzed the reliability of a two unit system with 
common cause shock failures. An availability analysis 
for the improvement of active/standby cluster systems 
using software rejuvenation has been done by Park and 
Kim [24]. In 2003, Vaurio [25] evaluated the common 
cause failure probabilities in the standby safety system 
using fault tree analysis with testing-scheme and timing 
dependencies. Vaurio [26] described the uncertainties 
and quantification of common cause failure rates and 
probabilities for the system characterization. The 
reliability evaluation of standby safety systems due to 
independent and common cause failures has been done 
by Lu and Lewis [27]. Xing et al. [28] did the reliability 
analysis of hierarchical computer based systems subject 
to common cause failures. The reliability of two non-
identical units system with common cause shocks 
failure and state dependent rates has been discussed by 
Jain and Mishra [29]. Shen et al. [30] explored 
exponential asymptotic property of a parallel repairable 
system with common cause failure. Li et al. [31] 
analyzed a warm standby system with components 
having proportional hazard rates. Li et al. [32] did 
heterogeneous redundancy optimization for multi-state 
series–parallel systems subject to common cause 
failures. Ram and Singh [33] presented a mathematical 
model of a complex system that can fail in n-mutually 
exclusive ways of total failure or due to common cause 
failure. Distefano et al. [34] investigated dynamic 
reliability and availability through state-space models 
by considering common cause failure and load sharing.  
 
 
3. MODEL DESCRIPTION 
 
A repairable two dissimilar component system with 
imperfect coverage, reboot and common cause shock 
failure is considered.  
The assumptions made for the formulation of Markov 
model are as follows: 

 Both the operating units may fail independently. 
The life times of the first and second units follow 
exponential distribution with parameters 1λ and 2λ . 

 The system can also fail due to common-cause 

Cλshock failure with parameter . 
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 As soon as an operating unit fails, it is 
instantaneously detected and sent for repair. 

 The operating units can be successfully recovered 
with probability C  . 

 The system needs some time for the recovery of 
operating units; the recovery time of operating units 
is exponentially distributed with parameter θ . 

 In the case of unsuccessful recovery of a failed unit, 
the system needs to be rebooted. The reboot time is 
exponentially distributed with the mean β/1 . 

 The repair times of both the operating units are 
exponentially distributed with parameters 1µ  and 

2µ , respectively. 
 After the failure of the second unit, the reboot or 

recovery cannot be performed. 
The system may be in any one of the following 

states, at time‘t’. 

( )
















=ξ

rebootedissystem
erycovreulunsuccessftoDue,RB

placetakeserycovRe,RC
failedareunitstheBoth,0

failedisunitsoperatingtheofOne,1
properlyworksunitstheBoth,2

t
 

Some more notations used in model development are 
as follows: 

( )tPn : Probability of the system being in nth 

state (n=2, 1, 0, RB, RC) at time t 

nP : Steady state probabilities of nth state 
(n=0, 1, 2, RC, RB) 

( )sP~n : Laplace transform of ( )tPn  i.e. 

( ) ( ) tdtPesP~ n
0

st
n ∫

∞
−=  

 
 

3. THE RELIABILITY ANALYSIS    
 
In this section, the reliability indices such as availability 
and mean time to failure are obtained for both steady 
and transient states of the system. 
 
3. 1. The Reliability Function and Mean Time to 
Failure (MTTF)     The system is initially in state ‘2’. 
When a unit fails, it is immediately detected, located 
and recovered with the coverage factor ‘C’ in state 
‘RB’. The recovery takes a brief time period with rate 
‘ θ ’ and the system enters in state ‘1’. In state 1, the 
failed unit is repaired with repair rate ‘ 1µ ’. If the 
system does not recover successfully, it goes in state 
RB. After the failure of second unit or due to common-
cause shock failure, the system reaches in the failed 
state ‘0’. The state transition diagram, which depicts all 
the states, is shown in Figure 1. 

 
Figure 1. State transition diagram 

 
 

The transient state equations governing the model 
are constructed as follows: 

( ) ( ) ( ) ( )tPtP
dt

tdP
112c21

2 µ+λ+λ+λ−=  (1.a) 

( ) ( ) ( ) ( )tPtP
dt

tdP
RC112

1 θ+µ+λ−=  (1.b) 

( ) ( ) ( )tPtP
dt

tdP
2c12

0 λ+λ=  (1.c) 

( ) ( ) ( ) ( )tPCtP
dt

tdP
221RC

RC λ+λ+θ−=  (1.d) 

( ) ( )( ) ( )tPC1
dt

tdP
221

RB λ+λ−=  (1.e) 

Let initially both units of the system be in operating 
state so that ( ) 10P2 = , ( ) 00P1 = , ( ) 00P0 = , ( ) 00PRB =  
and ( ) 00PRC = .  

After taking the Laplace transform of Equations 1(a-
e), we obtain 

( ) ( ) ( ) ( )sP~sP~1sP~s 112c212 µ+λ+λ+λ=−  (2.a) 

( ) ( ) ( ) ( )sP~sP~sP~s RC1121 θ+µ+λ−=  (2.b) 

( ) ( ) ( )sP~sP~sP~s 22120 λ+λ=  (2.c) 

( ) ( ) ( ) ( )sP~CsP~sP~s 221RCRC λ+λ+θ−=  (2.d) 

( ) ( )( ) ( )sP~C1sP~s 221RB λ+λ−=  (2.e) 

On solving the Equations (2. a-e), we obtain Equations 
(3. a-e). 

The Laplace transform of reliability function of the 
system is given by 

The mean time to system failure (MTTF) is obtained 
using 

( ) ( ) ( ) ( )[ ]sP~sP~sP~limsR~limMTTF RC120s0s
++==

→→
 

( ) ( )( ) ( )
( )( ) ( )

2 1 1 2 1 2

2 1 1 2 1 1 2C

C C

C

λ µ λ λ θ θ λ λ

θ λ µ λ λ λ µ λ λ

 + + + + + =
+ + + − +  

 (5) 

( ) ( ) ( ) ( ) ( ) ( )sP~sP~sP~sP~sP~1sR~ RC21RB0 ++=−−=  (4) 
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Figure 2. State transition diagram for the steady state 
availability 
 
 

3. 2. The Steady-state Availability     If recovery 
fails, the system goes in state ‘RB’. The system needs to 
be rebooted and reboot of the system takes some time 
which is exponentially distributed with parameter β .  
 
 
 

After rebooting, the system reaches in state ‘1’. Due to 
failure of second unit and common-cause shock failure, 
the system enters in state ‘0’. At this state, the failed 
unit is repaired with the repair rate ‘ 2µ ’. In Figure 2, 
the state transition diagram depicting system states to 
evaluate steady-state availability is shown. The steady-
state equations of the system are given by: 
( ) 112c21 PP µ=λ+λ+λ  (6.a) 

( ) 221RC PCP λ+λ=θ  (6.b) 

( ) RB02RC112 PPPP β+µ+θ=µ+λ  (6.c) 

( )( ) 221RB PC1P λ+λ−=β  (6.d) 

2c1202 PPP λ+λ=µ  (6.e) 

On solving equations (6. a-e), we find expressions 
for steady state probabilities as Equations (7. a-e)   

The system availability is obtained using Equation 
(8) where,  c21U λ+λ+λ= . 

 

 

( ) ( )( )
( )( )( ) ( )

2 1
2

2 1 1 2 1 1 2c

s s
P s

s s s C
θ λ µ

θ λ µ λ λ λ µ θ λ λ

+ + +
=

 + + + + + + − + 

%  (3.a) 

( ) ( )
( ) ( ) ( ) ( )

1 2
1

2 1 1 2 1 1 2c
P s

s s s C
θ λ λ

θ λ µ λ λ λ µ θ λ λ

+
=

 + + + + + + − + 

%  (3.b) 

( ) ( )
( )( )( ) ( )

2 1 2
0

2 1 1 2 1 1 2c

C
P s

s s s C
λ θ λ λ

θ λ µ λ λ λ µ θ λ λ

+
=

 + + + + + + − + 

%  (3.c) 

( ) ( )( )
( )( )( ) ( )

1 2 2 1

2 1 1 2 1 1 2
R C

c

C s
P s

s s s C
λ λ λ µ

θ λ µ λ λ λ µ θ λ λ

+ + +
=

 + + + + + + − + 

%  (3.d) 

( )( )( )( )
( )( )( ) ( )

1 2 2 1

2 1 1 2 1 1 2

1
( )R B

c

C s s
P s

s s s C
λ λ θ λ µ

θ λ µ λ λ λ µ θ λ λ

− + + + +
=

 + + + + + + − + 

%  (3.e) 

( ) ( ) ( )
1 2

2
2 1 1 2 1 2 1 1 2 1 21c

P
U C U C

θµ µ β
µ β θ µ λ λ µ θ θ β λ µ λ µ µ λ λ

=
   + + + + + + − +   

 (7.a) 

( ) ( ) ( )
2

1
2 1 1 2 1 2 1 1 2 1 21c

U
P

U C U C
µ θβ

µ β θ µ λ λ µ θ θ βλ µ λ µ µ λ λ
=

   + + + + + + − +   
 (7.b) 

( )
( ) ( )( )

2 1
0

2 1 1 2 1 2 1 1 2 1 21
c

c

U
P

U C U C
λ µ λ θβ

µ β θ µ λ λ µ θ θ βλ µ λ µ µ λ λ

+
=

   + + + + + + − +   
 (7.c) 

( )
( ) ( )( )

1 2 1 2

2 1 1 2 1 2 1 1 2 1 21R C
c

C
P

U C U C
µ µ β λ λ

µ β θ µ λ λ µ θ θ βλ µ λ µ µ λ λ

+
=

   + + + + + + − +   
 (7.d) 

( )( )
( ) ( )( )

1 2 1 2

2 1 1 2 1 2 1 1 2 1 2

1
1RC

c

C
P

U C U C
µ µ θ λ λ

µ β θ µ λ λ µ θ θ βλ µ λ µ µ λ λ

− +
=

   + + + + + + − +   
 (7.e) 

( ) ( )
( )

( ) ( )( )
2 1 1 2 1

0
2 1 1 2 1 2 1 1 2 1 2

1
1R B

c

U C
A P P

U C U C

µ β θ µ λ λ µ θ

µ β θ µ λ λ µ θ θ βλ µ λ µ µ λ λ

 + + + ∞ = + =
   + + + + + + − +   

 (8) 
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( ) ( )
( ) ( ) ( ) ( )( )

2 1 2 c 1 1 2 1

2 1 2 c 1 1 2 1 2 1 2 c 1 c 1 2 1 2

y x x y C x x y
A

y x x y C x x y x x x x y y 1 C x x

β λ θ θ

β λ θ θ θ β λ λ

 + + + + + =
   + + + + + + + + + + − +   

 (11.b) 

 
 
 

5. FUZZY MEMBERSHIP FUNCTIONS 
 
We have fuzzified the system parameters for extending 
the applicability of the system. Let us assume that the 
failure rates 1λ  and 2λ , repair rates 1µ  and 2µ  are 
fuzzified. Then, these can be represented by the fuzzy 
numbers denoted by 2121

~and~,~,~
µµλλ , respectively. Let 

2121 YandY,X,X  are the crisp universal sets of 1λ , 2λ , 

1µ  and 2µ , respectively.   
Let ( ) ( ) ( )11 21 2 1,  ,  A x A x A yµλ λ% % %  ( )2~ yAand

2µ  

denote the membership functions of 1 2 1 2,  ,  andλ λ µ µ% % % % , 
respectively. Then, we have  

( )( ){ }111~11 XxxA,x~
1

∈=λ
λ

 

( )( ){ }222~22 XxxA,x~
2

∈=λ λ
 

( )( ){ }111~11 YyyA,y~
1

∈=µ µ  

( )( ){ }222~22 YyyA,y~
2

∈=µ µ  

Let ( )2121 y,y,x,xP  denote the system 
characteristics of interest (i.e. MTTF or availability). 
Since 1 2 1 2,  ,  and λ λ µ µ% % % %  are fuzzy numbers, 

( )1 2 1 2P ,  ,  ,  λ λ µ µ% %% % %  is also a fuzzy number. Now, 

according to Zadeh’s extension principle, the 
membership functions of these performance measures 

( )1 2 1 2P ,  ,  ,  λ λ µ µ% %% % %  is defined as:          

( ) ( )

( ) ( )
( )

( )
( )

1 2 1 2

1 2

1

2

p , , ,

1 2

1

2

1 2 1 2

A v

A x , A x ,

                S u p m in A y ,

v
A y

P x , x , y , y

λ λ µ µ

λ λ

µ
ω

µ

=

 
 
 
 
 
 
 
 
 
 = 
 
 

% %% % %

% %

%

%

 
(9) 

where, Yy,Yy,Xx,Xx 2112211 ∈∈∈∈=ω , 
On fuzzyfing the parameters in the Equation (5), we 

obtain the membership function of MTTF as given 
below: 

( )( )
( ) ( )
( )
( ) 


















=

=

µ

µ

λλ

ω
µµλλ

MTTFvyA

,yA

,xA,xA

minSupvA

2~

1~

2~1~

~,~,~,~p~

2

1

21

2121

 (10.a) 

where,  

( ) ( )( ) ( )[ ]
( )( ) ( )[ ]211C2112

212112

xxC~xxyx
xxCxxCyxMTTF

+µ−λ+++θ
+θ+θ+++

=  (10.b) 

Similarly using the Equation (8), we obtain the 
membership function of availability as given below: 

( )( )

( ) ( )
( ) ( )

1 2 1 2

1 2

1 2

p  , , , 

1 2

1 2

A  v

A x , A x ,
        Sup m in

A y , A y v A

λ λ µ µ

λ λ

ω µ µ

=

  
 

=  

% %% % %

% %

% %

 (11.a) 

For the practical purpose, we treat the failure rate of 
first and second unit and the repair rates of first and 
second units as trapezoidal fuzzy numbers. We take 

{ }43211 a,a,a,a~
=λ , { },b,b,b,b~

43212 =λ  { }43211 c,c,c,c~ =µ  
and 2

~µ ={ }4321 c,c,c,c , respectively. Their membership 
functions have a flat top and it is really just like a 
truncated triangle curve. Its membership function is 
given as follows: 

( )















><

<<
−
−

≤≤

<≤
−
−

=λ

41

43
34

4

32

21
12

1

~

ax,ax,0

axa,
aa
xa

axa,1

axa,
aa
ax

xA
1

 
(12) 

Similarly the membership functions ( )
1

1A x , λ%  

( ) ( )
12

2 1 A x ,  A yµλ% %  ( )2~ yAand
2µ  of 12

~,~
µλ 2

~and µ are 

obtained by replacing ia  with i ib ,c and  

id (i 1,2,3,4),=  respectively in Equation (12). 
 
 
6. NUMERICAL EXAMPLE 

 
To demonstrate the computational tractability of the 
proposed model, we consider an example of an electric 
plant having two main coal power generators of 
capacities 300 MW and 150 Mw, respectively. Both of 
the operating units are repairable. As soon as an 
operating generator fails, it is immediately detected, 
located and recovered with a coverage probability ‘C’. 
The intrest of the management is to know the system 
characteristics such as MTTF and availability for 
getting more profit and better performance.  

The coverage probability C is fixed as 0.9. The 
failure rate of first and second units, repair rate of first 
and second units are assumed to be trapezoidal fuzzy 
numbers represented by 1

~
λ = [0.2 0.3 0.4 0.5], 2

~
λ = [0.1 
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0.2 0.3 0.4], 1
~µ = [2 3 4 5] and =µ2

~ [3 4 5 6], 
respectively. The recovery time ( )θ , reboot time ( )β  
and common cause shock failure ( )cλ  are choosen as 
0.5, 0.05 and 0.1, respectively. We have done all of the 
computational work in MATLAB 7.1 using inbuilt 
function of membership function in fuzzy tool. The 
fuzzy MTTF are presented in Table 1. The membership 
function graph of MTTF is shown in Figure 3. This 
graph shows two characteristics; the first one reveals 
that the approximate range of MTTF is [1.28 7.39], 
which indicates that the value of MTTF should not fall 
below 1.28 or exceed 7.39. Moreover, at level 1=α , 
the most possible values of MTTF  are between 2.55 
and 4.50. 

Table 1 summarizes the mean time to failure and 
availability for fuzzyfied failure rates and repair rates of 
both the operating units as trapezoidal fuzzy numbers. 
The corresponding fuzzy availability will also be a 
trapezoidal fuzzy number. In Figure 4, the membership 
function graph of availability of the system has been 
shown. At level 0=α , the range of the availability is 
approximately [0.7501 0.9502], which indicates that the 
availability definitely falls in this range i.e. the 
availability cannot fall below 0.7501 or exceed 0.9502. 
At level 1=α  as shown in Figure 4, the range of the 
availability is approximately [0.8532 0.9025]. 

 
 

7. CONCLUSION 
 
In this paper, a repairable system with imperfect 
coverage, common-cause shock failure, reboots and 
recovery has been considered. The fuzzified reliability, 
availability and mean time to failure are determined. 
Using the fuzzy reliability analysis a manager can 
decide the optimal strategy, by setting the range of 
MTTF and the range of availability to reflect the desired 
repair rates and this in turn will minimize the total cost 
involved. The fuzzy reliability approach provides more 
effective, realistic and flexible measures as compared 
with the traditional approach based on crisp parameter 
values. The proposed fuzzy reliability approach may be 
helpful for the prediction of precise values of the 
reliability indices for many systems such as power 
system, nuclear system, electric system, and many 
more. 

 
TABLE 1. The Triangular Fuzzy Numbers 
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0.2 0.1 2 3 1.28 0.7501 

0.3 0.2 3 4 2.55 0.8532 

0.4 0.3 4 5 4.50 0.9025 

0.5 0.4 5 6 7.39 0.9502 
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Figure 3. The membership function for the fuzzy MTTF 
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Figure 4. The membership function for the fuzzy availability 
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  چکیده
   

در تحقیق حاضر، میزان اعتبار خصوصیات یک سیستم قابل تعمیر که شامل دو واحد عملیاتی مستقل است را با استفاده از 
موجود در (یابی و بازیابی از یک خطا  احتمال موفق بودن در تشخیص، مکان. کنیم ترکیب فاکتور پوششی بررسی می

یابی و دلایل صدمه ناشی از خطا را به طور  همچنین تاخیر در ریشه. به عنوان احتمال پوششی شناخته شده است) سیستم
کنیم که تعداد خطاهاي ناشی از کار اجزا، زمان خطا به علت اشتباهات رایج، زمان  فرض می. ایم کلی مورد توجه قرار داده

از مدل مارکو براي توصیف سیستم استفاده شده است و . ی پیروي می نمایدتوزیع نمای) توابع(از یابی  تعمیر و زمان ریشه
ها همانند دسترسی و متوسط  وضعیت احتمال گذار سیستم تعیین شده است که بیشتر براي تعیین اعتبار بعضی از شاخص

ستم را به وسیله توابع اعضا ما از منطق فوزي استفاده کردیم تا انالیز عملکرد سی. شده است زمان خطا در گذشته استفاده می
زمان متوسط فوزي براي خطا و در . کنیم را تعیینهمانند سرعت خطا و سرعت تعمیر  ،اي سیستم توصیفگر ذوزنقه

براي تعیین میزان اعتبار نتایج تحلیلی، یک سري ازمایشات عددي نیز . دسترس بودن فوزي نیز مورد بررسی قرار گرفت
   .انجام گردید

  
doi: 10.5829/idosi.ije.2012.25.03c.07  
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