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In this paper, the modified couple stress theory is used to study vibration analysis of functionally
graded rectangular micro-plates. Considering classical and first order plate theories, the couple
governing equations of motion are obtained using the Hamilton’s principle. Using an assumed mode
method, the accurate size dependent natural frequencies are established for simply supported
functionally graded rectangular micro-plates. To show the accuracy of the formulations, present results
in specific cases are compared with-available results in literature and a good agreement is seen. It is
found that the natural frequency parameter of micro-plates will decrease as thickness-length ratio
increases especially for lower length scale values. The effects of length scale, functionally graded
parameter and plate theories on natural frequencies of functionally graded micro-plates are discussed in
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1. INTRODUCTION

Experimental results show that as length scales of a
material are reduced, the influences of intermolecular
cohesive forces on the mechanical properties become
important and cannot be neglected. It is well known that
size effects often become prominent at micro-length
scales, the causes of ‘which need to be explicitly
addressed especially with an increasing interest in the
general area of micro-structures. Couple stress theory is
one of the higher order continuum theories which
contain material length scale parameters and can capture
the small size effects of microstructure. The classical
couple stress theory contains two classical and two
additional material constants for isotropic elastic
materials.

Yang et al. [1] developed an additional equilibrium
relation to govern the behavior of the material in couple
stress theory of continuum. The relation constrained the
couple stress tensor to be symmetric. The symmetric
curvature tensor became the only properly conjugated
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high order strain measures in the theory to have a real
contribution to the total strain energy of the system.
They introduced a new modified couple stress theory
that contains only one additional material length scale
parameter. After this pioneer work, many studies have
been extensively used the modified couple stress theory
to study the behavior of micro structures such as micro-
beams and micro-plates.

Park and Gao [2] used modified couple stress theory
to study the bending effect of a cantilever Bernoulli-
Euler beam. Their model contained an internal material
length scale parameter that can capture the size effect.
Ma et al. [3] developed Timoshenko beam model based
on the modified couple stress theory to study bending
and axial deformations of micro-beams. Lazopoulos [4]
considered Kirchhoff theory of plates to study bending
analysis of strain gradient elastic thin plates. In addition,
Kirchhoff plate model was considered for investigating
the static analysis of isotropic micro-plates with
arbitrary shapes based on a modified couple stress
theory by Tsiatas [5]. Asghari et al. [6] studied static
and vibration behavior of micro-beams made of
functionally graded materials. They used basis of
modified couple stress theory in the elastic range and


mailto:e.jomehzadeh@kgut.ac.ir
www.sid.ir

H. R. Noori and E. Jomehzadeh / IJE TRANSACTIONS C: Aspects Vol. 27, No. 3, (March 2014) 431-440 432

showed that size effect is more prominent in micro
scales. Nonlinear Timoshenko beam model was also
established by Asghari et al. [7] to study the bending
and free vibration of hinged micro-beams. Gheshlaghi et
al. [8] investigated the torsional vibration of nanotubes
using modified couple stress theory. Yin et al. [9]
considered couple stress theory to study non-classical
Kirchhoff plate model for the dynamic analysis of
microscale plates. They investigated natural frequencies
of rectangular plates with at least two edges simply
supported. The equations of motion and boundary
conditions were obtained through a variational
formulation for a Mindlin plate based on a couple stress
theory by Ma et al. [10]. Jomehzadeh et al. [11] used
couple stress theory to establish free vibration analysis
of rectangular and circular micro-plates based on the
Levy type solution. Based on a new modified couple
stress theory a model for composite laminated Reddy
plate was developed by Chen et al. [12]. Ke et al. [13]
established nonlinear free vibration of micro-beams
made of functionally graded materials based on
modified couple stress theory. Recently, Reddy and
Kim [14] presented the mechanical analyses of micro-
plates using the third order shear deformation plate
theory. Furthermore, Thai and Kim [15] developed a
size-dependent model for bending and free vibration of
functionally graded Reddy plates.

In the recent studies on new performance materials,
new materials have addressed which known< as
functionally graded materials (FGMs). These are high
performance, heat resistance materials able to withstand
ultra high temperature and extremely large thermal
gradients used in aerospace industries. Vibration
analysis of structures made of functionally graded
materials has been considered by engineers as a new
field for researches. Zhao et al. [16] considered free
vibration of moderately thick functionally graded
rectangular plates using kp-Ritz method. The
decoupling of bending=stretching governing equations
of FG rectangular plates was first investigated by Saidi
and Jomehzadeh [17]. ‘Hosseini-Hashemi et al. [18]
studied the free vibration of FG rectangular plates using
first-order shear deformation plate theory. They
neglected the effects of in-plane displacement on free
vibration of rectangular plates. Using the classical plate
theory, Liu et al. [19] studied the free vibration of FG
rectangular plates by assuming the in-plane variation of
material properties of the plate in which the
bending/stretching equations are not coupled. Hasani
Baferani et al. [20] found a new exact analytical
solution for free vibration characteristics of thin
functionally graded rectangular plates with different
boundary conditions. Neves et al. [21] derived a higher-
order shear deformation theory for modeling
functionally graded plates accounting for extensibility in
the thickness direction.

Because of unique properties of functionally graded
materials, they are widely used in micro structures such
as thin films in micro-electromechanical systems
(MEMS). Therefore, the vibration analysis of FG micro-
films is considered to be necessary. In the present
article, size dependent vibration analysis of functionally
graded rectangular micro-plates is studied using the
modified couple stress theory. The governing equations
of motion are obtained for both classical and first order
shear deformation micro-plate theories. The partial
differential equations of motion are converted into
algebraic equations using the admissible functions for
displacement components. The nondimensional natural
frequency parameter is determined for different powers
of FGM and various length scale parameters for both
theories.

2. MATERIAL PROPERTIES

Let us consider a rectangular micro-plate of length a,
width b and thickness h in x,, x, and x; directions,

respectively which is made of a functionally graded
material (FGM). Although functionally graded materials
are locally homogeneous; but, they are globally
inhomogeneous due to spatial variations of volume
fraction of the components. Mechanical properties of
FGMs depend on the volume fraction of each
constituent. FGMs are typically made from composition
of metals and ceramics or a combination of different
metals. Here, it is assumed that the micro-plate is made
of a mixture of ceramic and metal in which the
properties of functionally graded micro-plate vary
smoothly and continuously through the thickness by the
power law as follows [22]:
E(D)=E, +(E.~E,)[ 2 -7

-3) N

1 zY
pP(D=p,+(p.— pm)(E —;]

where, E and p are the Young modulus and density of

the micro-plate, respectively, n is the power of FGM or
FGM parameter and subscripts m and ¢ refer to metal
and ceramic, respectively. Since the variation of
Poisson’s ratio is not considerable, the Poisson’s ratio
(v) of the micro-plate is assumed to be constant.

3. FUNCTIONALLY GRADED KIRCHHOFF MICRO-
PLATES

The Kirchhoff or classical plate theory is an extension
of Euler-Bernoulli beam theoryto thin plates. It is
assumed that the straight lines normal to the midsurface
remain straight and normal to the mid-plane after
deformation. According to this theory, the displacement
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components in the x, x, and x; directions are considered
as

U (X, X, X3, 0) = U (X, X, 0) = X W, (X, X, 1)
V(X X0, X, 1) = V(X X0, 0) = X W (X, %, 0) ()
W (X, Xy, X5, 1) = Wy (X, Xy, 1)

where, u} and v} are the midplane displacements of
the micro-plate in x, and x, directions, respectively,

w, is the transverse displacement, comma subscript
shows differentiate with respect to coordinate and
superscript k denotes Kirchhoff plate theory. Using
strain-displacement relations, the strain components at
distance x, from the middle plane are expressed as

kK _ ok kK _ _k k
& = Uy — X3“{)(,11 €n = Vo~ XWom
k _ k k
€y3,=0 2e, = Uy, + V(I)(,l _2X3W(’)(,12 3)
k
2ek =0 265 =0
23 13

It can be found that the out of plane strain components
are ignored in this theory. Based on the displacement
field of classical plate theory, the rotation components
of the micro-plate can be expressed as

Qlk = Wok,z gzk = _“{)(,1 esk = (‘4)(1 - ”(;z)/z (4)
The classical continuum elasticity, which is a scale free
theory, can not predict the size effects in micro-
structures, whereas the modified couple ‘stress theory
allows one to account the small length scale effect. It
becomes significant when dealing with microstructures
by considering only one material constant. According to
the modified couple stress theory [1]; the strain energy
density is a function of both strain and gradient of the
rotation vector as

y

U=1/2[(c 8, +m,z;)dV )
\4

where, m; and yx; are deviatory part of couple stress

and symmetric curvature components which are defined
as

X =00,,+0,)/2 m; = E(2)F y; [(1+v) (6)

where, | is a length scale parameter. This length scale
parameter is a material property which carried with all
of the difference between classical and couple stress
elasticity theories. This parameter is small in
comparison with the body dimensions. Therefore, its
influence might become important as dimensions of a
body diminish to the order of the length scale parameter.
The equations of motion for a micro-plate based on the
modified couple stress theory can be obtained using the
Hamilton's principle. The Hamilton’s principle states
that

j(sr—5U+5W)dt =0 (7)

where, T and W are kinetic energy of micro-plate and
potential energy of the external loads, respectively.
Expressing these parameters and strain energy based on
the displacement field of Kirchhoff plate theory and
considering the modified couple stress theory, the
equations of motion for a micro-plate can be obtained as
follows [11]:

Suy 2 Nfyy + Niyy + 1725, + 1255 5, = Llig — I, (8a)
v« Niyy + Ny =125, = 1/2Y55,, = Loig — s (8b)

5“4)( : Mlkl,ll + 2M1kz,1z + Mzkz,zz - W;,lz - W;,zz + W;,n + Y;;,IZ (8¢c)
= po =1y + 1 (g, +¥5,,) = Lo (35, + )

where, 5 represents the variational symbol and p, is

the transverse loading function. In addition, force
resultant(N,;f), moments resultant (Ml_;f) and couple

resultants () are defined as

12
k k

Ny = .[-n/chf dx,

/2

M,f:J'

-h/2

U,';x3 dx, )

x h/2
Y = I—h/szf dx,
also, the inertia terms are expressed as
h/2 5
U D)= p(2)(1,x,x) dx, (10)

By assuming the plane stress state for the FG micro-
plate, the force and moment resultants are obtained in
the matrix form in terms of displacement components as

" T U(Iil
Ny [A A 0 B B 0]
Ni| |A. A, O B, B, 0| '02
NS [0 0 Ay 0 0 B fwatv, (1a)
= a
M| T|B, B, 0 D, D, 0| _y,
Mzkz B, B, 0 D, D, 0 _“{]‘22
My L0 0 By 0 0 Dy A
| 2w
u(;(,zz
3{’{ 0 0 0 0o 0 0 2 U(I)(,lz
YZ"; 0 0 0 0o 0 0 -2 V(';H
3{’; :1@31Z 0 0 0 0 -1 1 0 V&lz (11b)
3{‘; 0 -1/2 1/2 0 0 0 O vté(“
05 -1/2 0 0 172 0 0 0 V‘é(,zz
s

where, the properties coefficients 4, and B, (i, j=123)

are defined as
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h/2 P
(4B, D) =["" (1,2,2)Q; dz hJi=123
h/2 P (12)
A= Qudz =123

Based on the definition of Young modulus in Equation
(1), Q; ’s can be found for FG micro-plates as

E E, 1 =z
J—g— B cm (> _ “y\n iz ,:1’2
Qi 1-v2 17\/2(2 h) J
E E 1 =z
o Em  Zem (1 Zyn = =345
Qi 2(1+v) 2(1+v)(2 7 =17 (13)
E E 1 z
= ¢+i7_7“ ‘;t‘
Qv Fy e Em -2y v

The governing equations of motion of a FG micro-plate
based on the Kirchhoff theory can be obtained by
substituting Equations (11) into equilibrium Equations
(8) as follows:

k k k
Ajugy + Aty + (A — Ay vy +

2/ k k k k
A" (Vo1 = Ug iz + Vouom —Ugoom )/ 4= (14a)

k k " s
By (Wo 1 + Wy ) = Loy — I,

A]V(I)(,zz + ‘453‘/(;(,11 +(4, - ‘453)11(;12 -
‘43312(‘/(;(,1122_”(’)(,1222‘*"’(;(,1111_u(;(,mz)/“'_ (14b)
B](""(J)(,nz + W])(,zzz): Io%k+ I]‘/V(J)(]

k k k
Dy (Woun +2Wy 10 + Wy )+

2 k k k
Al” (2Wy 10 + Wy i1 Wooom )—

k k k k
By (ugyiy + Voo + Voo +Ug i )+

(14¢)

ok kL k Lk Lk
Po = ToWy + I (g, + Vg, )= I, (W, + Wy 5 )

It can be seen that, unlike the classical Kirchhoff plate
theory, the current FG Kirchhoff micro-plate model
based on the modified couple stress theory contains a
material length scale parameter | and can capture the
size  effect.  Furthermore, because of the
nonhomogeneous properties of functionally graded
materials, the stretching and bending equations of FG
micro-plates are couple to each other. In fact B,

parameter, which is zero in isotropic case, causes a
coupling between in-plane and out of plane equations.

4. FUNCTIONALLY GRADED MINDLIN MICRO-
PLATES

The Mindlin or first order shear deformation plate
theory assumes that the plane sections originally
perpendicular to the longitudinal plane of the plate
remain plane, but not necessarily perpendicular to the
longitudinal plane. This theory accounts for the shear
strains in the thickness direction of the micro-plate and
is based on the displacement field.

U™ (X, Xy, X, 0) = U (X, X, 0+ X" (X, X, 1) (15)

V(X5 2%, %5, 8) = (X, X, ) + X057 (X, %, 1)

WX, Xy, X5, 0) = W' (X, X, 1)

where, u;' and v;" are the midplane displacements of
the micro-plate in the x; and x, directions, respectively,
w," is the transverse displacement, ™ and y," are

rotation functions of the middle surface in the x; and x,
directions, respectively and superscript m denotes the
Mindlin plate theory. Using strain-displacement
relations, the strain components at distance x; from the
middle plane which are expressed as

m __ m m m — m m
& = Uy, XY, Eyp = Vé,z + XV,

83”31 =0 2g) = u(Tz + Von,ql + X3(W1r,nz +W:]) (16)

28 =y, + W, 285 =y W)

It can be seen that, unlike the Kirchhoff plate theory, the
out of plane strain components are not zero in this
theory. The rotation components based on the Mindlin
plate theory can be also obtained as

0 £ (W, +y ) /200 0 = ~(wfh ") /2

m m m m (17
0," = (V())T,'l — Uy, — XY, +—xy5) /2

As the Kirchhoff micro-plate, the equations of motion
for FG Mindlin micro-plates can be obtained using the
Hamilton’s principle. Expressing the strain, kinetic and
potential energies in terms of the components of
Mindlin theory and substituting the results into Equation
(7), the equations of motion of FG Mindlin micro-plates
can be defined as

6“0 : Z\]I"I],I + Nlnzl,z + 1/23/:3’?12 + 1/2Y2q3”,22 = Ioii(,)” - Ill/'jlm (183.)
o, : lezl,l+N2m2,2_1/2}1}$11_l/zglzzlo%m_lll/}; (18b)

Sy s M+ MR, —QU+1/2Y0 +1/2%7, —1/2¥2,+  (18¢)
1/2HR,, +1/2H2,, = Lil - Lyi"

1312 =
Sy,: My, + My, —Qh—1/2Y7 —1/2Y3, +1/2Y5, —  (18d)
1/2le§,11_1/2Hzn;,12:Il.‘}{)n_lzl/jzm

oWyt NI, + Ny, —1/2Y7, +1/2Y7, +1/2Y7,, — (18¢)
1/2Y75, = py = Iy Wy

While there are three equations in case of Kirchhoff
theory, it can be seen that the equations of FG Mindlin
micro-plates are five couple equations. Assuming the
plane stress state for FG micro-plate, the force and
moment resultants are obtained in the matrix form as

NJY A A, 0 B, B, 0 ug

Ny, A, A, 0 B, B, 0 V(Tz

N7 _ 0 0 A, 0 0 By || ug, + vy, (192)
M B, B, 0 D, D, 0 7

M B, B, 0 D, D, 0 v ;,12

M;; 0 B; 0 0 Dy lyih+vs,
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Qs | _ KA, 0 Wou Ty

Q3 0 KIA, W, ty ) (19b)
The couple resultant parameters can also be expressed
as

XTZIZAH(“{)T,'IZ +y5h) }2';:_12’433(%12+W1T2)
Yy = IZ(ABV(;T,'H = By, — Asugy, + Boy,) /2

Y = IZ(ABVE')T,'IZ =B, — Aslgs, + By ') /2 (20a)
Yy = 12’%3(_W2n,11 +y\h)
Yy = IZA;(W(;T,'ZZ Yoy — Wy /2

hi/2

HI’;:J.

Bssu(,;,llz + Dssl//m )2

1,12

2 m m
my X, dx; =17 (B vohy — Dy, —

—~h/2

” i (20b)
Hy; :_L,/z my, %, dx = I (B vy, = Dy, =

Bug's, + Dy ;)2

where, A, B, and D, are the same as Equations (12)
and K? is the shear correction factor.

The governing equations of motion of FG Mindlin
micro-plate are obtained by substituting Equations (19)
and (20) into Equation (18) as
A (ughy + Vo) + As(ugy, = Vo) = Byl +v3h,)

+ By, —vih) - 1/4A3312(u(;r"2222 +Ugii — Vo

m m m . (21a)
~ Vouom) + 1/433312('1‘/1,2222 Ve~V
_'1‘/2",'1222)= Lyig — Ly
A (g, + Vo) = Ag(ugh, — o) — B w ), +97,)
+ ng(‘l/]r,riz —lg/;”)+l/4A}312(u(T]”2 +ug,11222 ' 4 V(T]m
(21b)

- Vg:’nzz)_l/“'BBIz(Wmnz +W1r,r;222 _Wzn,11111
_Wzn,qnzz) =1, - Ly,

B, (g, + Vo) + A (W= W) = AL 124y,

3y AW 2= Wy 1 2) 24 By (Ul — V) —

Byl (U0 + U 12 = V112 = Vinan) 4= Dy () + (21c)
W3h0) = D, =y 30) + Dl s + W10 —

Vi —Varn)/ 4= Ly — L™

B (ughy + Vi) + AKI (w3 = W) = AP (), /2 +w3),

=3y, AW /2= Wy, /2) 12— By (g, — Vo) +

Bl (U 115+ U o — Vi — Vi) 14— Dy (w1, + (21d)
V1) + Dy = )= Dl  + )y —

Vo —Vann)/ 4= LV — L)

A}Kf(""g:’n + W —W I W) - 143312(V4"V(J)n +

m m m m . (216)
Vi W W TV ) A+ py = I

It can be found that as the length scale parameter is
ignored, five couple equations of motion of Mindlin
micro-plate convert into equations of classical Mindlin
plate (1=0).

5. SOLUTION USING NAVIER’S APPROACH

The developed governing differential equations of
motion of Sections 3 and 4 are solved by Navier’s
approach for simply supported boundary conditions. For
free vibration analysis, the transverse loading function
D, is considered to be zero. The simply supported

boundary conditions for Kirchhoff and Mindlin theories
based on thecouple stress theory are written as

vi=0
wy =0
2N{+Yi, =0

- . at x, =0,a (22a)
2M,, +Y,=0
¥, =0
Y =0
uf =0
we =0

k k
2 szk + Yz_gkvl =0 at 3 —0,b 22
DME + Yk =0
Y, =0
Yi=0
=0
W =0
v, =0
NI+ YT, =0
ST L I R (220)
Yy =0
Y =0
HZ=0
u" =0
Wi =0
wi=0
2N +Yy5, =0
amzenz,eypoo T 220
Yy =0
Yy =0

=0
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TABLE 1. Comparison of nondimensional natural frequency (o, 7°(a’/ h)y/p,, / E,) of FG Kirchhoff plates (1=0)

436

n b/a Mode 1 Mode 2 Mode 3
Present 115.9251(1,1) 289.7771(1,2) 463.5861(2,2)
] [20] 115.8695(1,1) 289.7708(1,2) 463.4781(2,2)
0 Present 72.4554(1,1) 115.9251(2,1) 188.3686(3,1)
? [20] 72.3942(1,1) 115.8695(2,1) 188.2637(3,1)
Present 98.1594(1,1) 245.3676(1,2) 392.5390(2,2)
] [20] 98.0136(1,1) 245.3251(1,2) 392.4425(2,2)
03 Present 61.3515(1,1) 98.1594(2,1) 159.5006(3,1)
? [20] 61.3313(1,1) 98.0136(2,1) 159.3448(3,1)
Present 88.4500(1,1) 221.0595(1,2) 353.7056(2,2)
] [20] 88.3093(1,1) 221.0643(1,2) 353.6252(2,2)
] Present 55.2831(1,1) 88.4500(2,1) 143.7232(3,1)
? [20] 55.1205(1,1) 88.3093(2,1) 143.6239(3,1)

TABLE 2. Comparison of Nondimensional natural frequency
(w,,hy/p./ E,) of FG Mindlin plates (I1=0)

n
h/a
0.5 1 4
Present 0.01254 0.01131 0.00982
0.05 [19] 0.01281 0.01150 0.01013
[16] 0.01241 0.01118 0.0097
Present 0.04900 0.04419 0.03823
0.1 [19] 0.04920 0.04454 0.03825
[16] 0.04818 0.04346 0.03757
Present 0.1805 0.1631 0.1397
0.2 [19] 0.1806 0.1650 0.1371
[16] 0.1757 0.1587 0.1356
F s
nE -
10 = — — — — present n=0 P
F [11] -
9 7
E s
] = s g
- 7
© = 4
o F <
< 6K P 4
X -
8 s5g -7
o
3k 7
f
i
E . T T T T !
00 2 4 8 10
h/1

Figure 1. Comparison of natural frequencies of isotropic
Kirchhoff micro plates (n=0)

The following expressions of various generalized
displacements have been assumed:

ug (X, X,,1) = u’_cos( B,x)sin( nqxz)ei“””t

Vo (X, X,,1) = ul sin( B, x,) cos( nqxz)ei“”“t (23a)
we (X, X,,t) = W’;q sin( B, x,) sin( nqxz)ei“’”"t

ug (%, X, 0) = ujfy cos( B, x)sin(n,x,)e" "

Vi (X, %, 1) = upy sin( B, x,) cos( 1, x,) e

v (X, %, 1) =y " cos( B, x,)sin(n,x,)e”"" (23b)
W3 (X, Xy, 0) =y 3y sin( B, x) cos( 1, x,)e

Wi (X, %, 1) = Wi sin( B, x,) sin( 1, x,) e

where, B, and n, denote pr/a and qrm/b,

respectively. In addition, @, is the natural frequency

of the micro-plate. It can be found that these admissible
functions exactly satisfy the boundary conditions of
simply supported micro-plates in Equation (22).
Substituting proposed series (23a) and (23b) into
governing equations of motion of FG Kirchhoff and
Mindlin micro-plates in Equations (14) and (21)
respectively, a system of homogeneous equations is
obtained. In the case of Kirchhoff micro-plates, this
system contains three homogeneous equations and in
the case of Mindlin micro-plates, five homogeneous
equations are obtained. Setting the determinant of
coefficient matrix in each case equal to zero, the natural
frequencies can be determined for both Kirchhoff and
Mindlin micro-plates.
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TABLE 3. Nondimensional natural frequency parameter
(ona*\p,/E ) of FG Kirchhoff micro-plates (a/b=1)

Wi
k NWa
0.25 0.5 1 2 4
0.05 96.8087 49.4575 26.7315 16.7841 13.1716
0 0.1 724849 49.1565 265688 16.6820 13.0914
0.05 867983 442432 23.7331 14.6528 11.2945
02 0.1 650460 43.9647 23.5856 145620 11.2246
0.05 803939 40.9385 21.8856 13.4062 10.2426
1 0.1 60278 40.6581 21.7404 133177 10.1752
0.05 72.6106 36.9853 19.7876 12.1428  9.2963
2 0.1 544534 367003 19.6431 12.0550  9.2292

TABLE 4. Nondimensional natural frequency parameter
(0,,a*\lp,/ E,h* ) of FG Mindlin micro-plates (a/b=1)

h/l
k h/a
0.25 0.5 1 2 4
0.05 867045 47.8202 263910 16.6515 13.0782
‘ 0.1 687814 43.6820 253412 16.1900 12.7411
0.05 777758 42.8024 234455 145473 11.2229
03 0.1 617225 39.1416 22.5472 14.1702  10.9555
0.05 72.0592 39.6162 21.6265 133139 _ 10.1811
1 0.1  57.1987 362418 20.8068 129754  9.9443
0.05 65.0917 357907 19.5526 12.0584 9.2398
? 0.1 516711 327320 18.8001  11.7434 - 9.0180

6. NUMERICAL RESULTS AND DISCUSSION

To verify the accuracy of the present formulations, three
comparisons have been carried out with available results
for all edges simply supported plates. Figure 1 compares
the variations of natural frequencies of a homogenous
Kirchhoff micro-plate (n=0) with Ref. [11]. The
(I=0) for
both Kirchhoff and Mindlin plates are also compared in
Tables 1 and 2 with available results in literature. The
comparisons show that the present results agree well
with those in the literature. For numerical computation,
the considered functionally graded material is composed
of Aluminum (g =70Gpap, =2707Kg/n?) and Alumina

natural frequencies of classical FG plates

(E,=380Gpa p, =3800Kg/n’). Since the variation of
Poisson ratio is not considerable changes for different
materials, their values are considered to be constants

and equal to 0.3 [23]. Furthermore, for Mindlin micro-

plates the shear correction factor (k2?) has been

considered to be 72/12. The accurate non-dimensional
natural frequency parameter (o =04’ ~ /E i ) of FG

Kirchhoff and Mindlin square micro-plates are tabulated
in Tables 3 and 4 for various values of non-dimensional
length scale parameter (h/1) and different powers of

FGM. Since no experimental date is available for FG
micro-plates, the value of material length scale
parameter for homogeneous epoxy micro-plate
(I=17.6 um) 1is approximately used for FG micro-

plates [6, 15]. It can be seen that for a constant
nondimensional length scale parameter, the frequency
parameter decreases for both theories as the power of
FGM (n) increases. The reason is that with increasing
the power of FGM, the stiffness of the micro-plate
decreases and wesults in  decreasing the natural
frequency of the FG rectangular micro-plate.
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Figure 2. Variation of fundamental natural frequency of FG
Kirchhoff micro-plates
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Figure 3. Variation of fundamental natural frequency of FG
Mindlin micro-plates
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Figure 4. Variation of natural frequency of FG Kirchhoff and
Mindlin micro-plates for first three modes (n=0.5)

In addition, it can be found that as the thickness-
length ratio (n/a) increases, the nondimensional

frequency parameter will decrease and this effect is
more significant for lower nondimensional scale values
(h/1) especially for Mindlin micro-plates.

In order to study the effect of power of FGM on
natural frequencies of FG micro-plates, the variation of
fundamental natural frequencies with respect to length
scale parameter is depicted for different. FGM
parameters in Figures 2 and 3 for Kirchhoff and Mindlin
micro-plates, respectively. The thickness. of the FG
micro-plates is assumed to be constant and equal to
h=17.6 um in all figures. It can be concluded that as

the isotropic micro-plates, the natural frequencies of FG
micro-plates decreases as decreasing of length scale
parameter (I) . The variations of natural frequencies of

first three modes are shown in Figure 4 for both FG
Kirchhoff and Mindlin micro-plates. The power of FGM
is n=0.5 and the dimensions of the micro-plate is
considered to be a =b=176 um. It can be seen that the

difference of two theories is considerable in higher
modes.

7. CONCLUSION

In this paper, vibration analysis of functionally graded
Kirchhoff and Mindlin micro-plates has been studied by
considering the small length scale effect. Using the
modified couple stress theory, the governing equations
of motion have been obtained for both Kirchhoff and
Mindlin micro-plates. The accurate natural frequencies
have been determined for a simply supported
functionally graded rectangular micro-plate. The

nondimensional natural frequency parameter has been
determined for different powers of FGM and various
length scale parameters for both theories. In addition,
the effects of material property, thickness to length ratio
and length scale parameter on the vibrational behavior
of the FG rectangular micro-plates have been
investigated.
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