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In this study, a non-associated viscoplastic flow rule (NAVER) with combining von Mises and Tresca
loci in place of yield and plastic potential functions and vice verse is presented. It is shown that the
proposed NAVFR can be adopted to forecast the experimental events more accurate than the
conventional associated viscoplastic flow rules (AVFR). This outcome obtained with the aid of fully
implicit time stepping scheme and discussing the other studies on plastic potential flow rules and also
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NOMENCLATURE
B The nodal strain-displacement matrix
d The nodal displacement
D The consistent elastic-plastic modulus
E Young modulus
f The external work
F The yield locus
F, The uniaxial yield stress
The plastic potential locus
Plastic modulus
A The first invariant of stress
J2 Js The second and the third invariants of deviatoric stress

M,N Arbitrary prescribed constants

Greek Symbols

y The fluidity parameter
r The Lode parameter

£ Strain

Eup Viscoplastic strain

Eup Viscoplastic strain rate

The angle of loading in deviator plane

o Time stepping parameter
K The hardening parameter
v Poisson ratio

4 Stress

The residual forces

t Time (2] Positive monotonic increasing function
Vv The pseudo load
1. INTRODUCTION show signs of simultaneously the phenomena of creep

Time rate effects are always present to some degree in
all inelastic deformations (time dependant mechanical
behaviors). Metals especially under high temperatures

*Corresponding Author Email: farzad moayyedian@yahoo.com (F.
Moayyedian)

(viscoelasicity) and viscoplasticity. The former is
essentially a redistribution of stress and/or strains with
time under elastic material response while the latter is a
time dependant plastic deformation. In this research, a
NVEFR rule is studied and introduced to provide a new
approach to problems of time dependant and
independent plasticity. Providing solutions to time-
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dependent elastic-plastic problems can provide effective
solutions for classical elastic-plastic situations. It can be
shown that the steady-state solution of the viscoplastic
problems is identical to its corresponding conventional
static elastic-plastic one. In the following, the studies of
the previous researchers on the mentioned issue are
reviewed.

A non-associated flow rule based on a pressure
sensitive yield locus with isotropic hardening was
proposed by Stoughton and Yoon [1]. The significance
of their work was that their model distorted the shape of
the yield function in tension and compression, fully
accounting for the strength differential effect (SDE). A
return mapping algorithm for cyclic viscoplastic
constitutive models that included material memory
effects was presented by Kumar and Nukala [2]. Their
constitutive model was based on multi-component
forms of kinematic and isotropic hardening variables in
conjunction with von Mises yield locus. Armstrong-
Fredreick type rules [3] were used to describe the non-
linear evolution of each of the multi-component
kinematic hardening variables. A design sensitivity
analysis approach by the consistent tangent operator
concept-based boundary element implicit algorithm was
presented by Liang et al. [4]. It was included geometry,
elasto-visco-plastic material and boundary condition
parameters. A finite element formulation based on non-
associated plasticity was developed by Cvitanic et al.
[5]. The yield and plastic potential functions were
considered as two different functions with functional
form. With use of five different material data. for
aluminum and stainless steel alloys, five material
models ranging in complexity from:a von Mises model
based on isotopic hardening to a non-associated flow
rule model based on anisotropic hardening was
calibrated and evaluated by Stoughton and Yoon [6].
Their model was expected ‘to lead to a significant
improvement in stress prediction under conditions
dominated by proportional loading. It also expected to
improve the accuracy of springback, tearing and earning
predictions for these processes. Using experimental and
numerical studies, Gao et al. [7] showed that the stress
state had strong effects on both plastic response and
ductile fracture behavior of an aluminum 5083 alloy. As
a result, the hydrostatic stress and the third invariant of
the stress deviator (which was related to the Lode angle)
needed to be incorporated in material modeling. Mohr et
al. [8] applied a combined normal and tangential loads
to a flat specimen in order to characterize the sheet
metal response under 20 distinct multi-axial loading
states. The comparison of the experimental results with
the plasticity model predictions revealed that both
associated and non-associated quadratic formulations
provided good estimates of the stress-strain response
under multi-axial loading. However, the non-associated
model was recommended when an accurate description
of the thinning behavior was important. A consistent

tangent stiffness was introduced by Romano et al. [9] to
improve the asymptotic convergence rate of the iterative
correction algorithm for the evaluative analysis of
elastoplastic structures. An estimation of the tangent
stiffness associated with finite step elastoplastic and
elastoviscoplastic constitutive models was given. A
generalized finite element formulation of stress
integration method was developed by Taherizadeh et al.
[10]. It was for non-quadratic yield functions and
potentials with mixed non-linear hardening under non-
associated flow rule. Different approaches to analyze
the anisotropic behavior of sheet materials were
compared. The first model was based on a non-
associated formulation with both quadratic yield and
potential functions in the form of Hill's and the second
one was an associated non-quadratic model Y1d2000-
2d. The third model was a non-quadratic non-associated
model in which the yield function was defined based on
Y1d91 and the potential function was defined based on
Y1d89. A plasticity model for isotropic materials, which
was a function of the hydrostatic stress as well as the
second and third invariants of the stress deviator with
special attention to adopt the non-associated flow rule
was described by Gao et al. [11]. It was implemented in
finite element method including integration of the
constitutive equations using the backward Euler method
and formulation of the consistent tangent modulus. A
thermodynamic consistent, small-strain, non-unified
model to capture the irregular rate dependency included
in the strain controlled inelastic responses of polymers
at the glassy state was developed by Voyiadjis et al.
[12]. The model was considered as a generalized
Frederick-Armstrong-Philips-Chaboche (FAPC) [13]. A
consistent formulation of the non-associated plasticity
for soil was proposed by Berga [14]. He presented the
implicit standard material method and a methodology to
build a full model for the boundary value problem.
Moayyedian and Kadkhodayan [15] studied the
derivation of the second differentiation of a general
yield surface by implicit time stepping method along
with its consistent elastic-plastic modulus. Moreover,
the explicit, trapezoidal implicit and fully implicit time
stepping schemes were compared in rate-dependant
plasticity. Finally, it was shown that implementing fully
implicit time stepping scheme in rate-dependant
plasticity predicts experimental results more accurate
than the other schemes.

The main goal of this study is arisen from combining
of von Mises and Tresca loci as the yield and plastic
potential functions. To show the ability of the proposed
NAVFR, the global finite element code of a two-
dimensional problem with the aid of references [16-20]
in finite element and [21-25] in plasticity theories is
developed. An internally elastic-viscoplastic pressurized
thick walled cylinder is considered with perfectly plastic
and linear-isotropic hardening behaviour of material and
coded in Compaq Visual Fortran Professional Edition
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6.5.0. It should be noted that to employ the implicit time
stepping scheme viscoplasicty, the first and the second
differentiation of a yield or plastic potential locus
should be available. A general derivation required for
the latter subject is used from the previous work of
authors [15].

2. GENERAL INTERPRETATIONS

The general form of a yield locus of an isotropic
material is F(J,/5,/3) which J; is the first stress
invariant and J, and J; are the second and the third
invariants of deviatoric stresses. J; shows the
dependency of the yield locus to the hydrostatic
pressure while J, and J; show the dependency of the
yield locus to deviatoric stresses. Another parameter
which can help to interpret the state of stress in
deviatoric plane is the angle of loading in deviatoric
plane, 6, see Figure 1. This parameter can be defined as
following [15]:

R

sin30 = — 5 3
Uz

)]
For an isotropic material, it would be sufficient if the
yield locus is studied in the region of —% <6< +§.
Hence, the Lode parameter can be defined as I' =
—V/3 tan 8. Therefore, the yield locus can be mentioned
in —1 <I' <41. It can be demonstrated that for pure
shear, ' =6 = 0, for pure tension, 6 = —%, F=+1

and for pure compression, 6 =+§, I'=-1. The

presentation of von Mises and Tresca yield loci which is
proper for the computational purposes is observed in
Table 1. Where oy is the uniaxial yield stress, k is the
hardening parameter [15].. Figure 1 shows the
presentation of the von Mises and Tresca loci in
deviatoric plane.
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Figure 1. Presentation of von Mises and Tresca loci in 7 plane
[17].

TABLE 1. Two classic yield loci [15]

von Mises Tresca

V332 = oy () 2(13)2 cos 8 = oy (k)

3. NON-ASSOCIATED VISCOPLASTIC FLOW RULE
(NAVFR)

The onset of viscoplastic behavior is governed by a
scalar yield condition of the form:

F(o,&,)—F, =0, (2)

In which, F, is the uniaxial yield stress which may be a
function of a hardening parameter k. It is assumed that
viscoplastic flow only occurs for values of F > F, [15].
A common explicit form of viscoplastic strain rate is
offered by the following viscoplastic flow rule:

{em)=v <o) >{%}, 3)

where, G = G(a, > K) is a plastic potential locus and
y is a fluidity parameter controlling the plastic flow rate.
The term @(F) is a positive monotonic increasing
function for.x > 0 and the notation { ) implies:

{< P(x)> =d(x) x>0, @
<P(x)> =0 x < 0.

For the associated plasticity situations, G = F. Different
functions for @ have also been recommended as
following [15]:

F-Fg
{¢(F) _ eM(F_O) o (%)
F-F\N

o(F) = (1)

M and N are arbitrary prescribed constants.
In the following, the symbol { } is used fora 6 x 1

vector and the symbol [ ] for a 6 X 6 matrix in three
dimensional stress space.

3. 1. The Viscoplastic Strain Increment = With the
strain rate law which is expressed by Equation (3), a

strain increment {As,,p}n occurring in a time interval
At, =t ., —t, using a time stepping scheme was
defined as [15]:

{Agvp}n = Aty <(1 - @){évv}n + @{évp}nﬂ)- (6)

For ® = 0 the Euler time integration scheme is obtained
which is also referred to 'fully explicit' (or forward
difference method) since the strain increment is
completely determined from the existing conditions at
time t,,. On the other hand, taking ® = 1 gives a 'fully
implicit' (or backward difference) scheme with strain
increment being determined from the strain rate
corresponding to the end of the time interval. The case
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o =% results in the so-called 'implicit trapezodial'
scheme which is also known generally as the Crank-
Nicolson rule [15].

To define {¢77'} in Equation (6), the limited Taylor
series expansion can be used [15]:

{évp}n+1 = {évp}n + [H]™{40™}, 7
where,
[ = [52] ®

and Ao™ is the stress change occurring in the time
interval At, =t,,,; —t,. Thus, Equation (6) can be

written as:

{Aevp}n = {évz:}nAtn +[C]" {4a™}, ©)]
where,

[CT" = 64t [H]™. (10)

3. 2. Evaluation of H" using NAVFR To employ
the fully implicit or semi-implicit (trapezoidal) time
stepping scheme, the matrix [C]" is required. It can be
expressed in terms of [H]™ as indicated in Equation (8).
Matrix [H]™ has to be explicitly determined from the
plastic potential locus assumed for material behavior.
From Equations (3) and (9), it is found:

w6 W

The symbol { ) on @ and the superscript n are dropped

H v [00'2]

for convenience. The approach of calculating { } and

[ﬁ] for a general yield or plastic potential locus is
presented in previous work of the'authors[15].

3. 3. Solution Sequence for Stress updating using
(NAVFR) The essential steps in solving process are
summarized here. The solution begins from a known
initial conditions at t = 0, which are the static elastic
situation. At this stage, d°, F°, G°, £° and ¢° are known
and &9, = 0. The time marching scheme described in
the previous section; then it is employed to advance the
solution.

4. RESULTS AND DISCUSIONS

In this section, with considering the mechanical

properties Young modulus of elasticity, E =
21000 —-, Poisson ratio, v = 0.3, yield stress
Fy = oy = 24. 0 — plastic modulus H =

for perfect plastlc and H = 1—0 for isotropic lmear

hardening behaviour of materials, fluidity parameter,

y =0.001/day, inner radius of the cylinder, a =
100 mm and outer radius of the cylinder, b = 200 mm,
and the flow function @(F) = F and employing the
fully implicit time stepping scheme (0 = 1), von Mises
and Tresca loci are combined by considering them in
the role of yield and plastic potential functions and vice
verse. The abbreviations of (V) and (T) stand for the
von Mises and Tresca loci, respectively. Moreover, in
symbol of (0-0), the first and second letters show the
yielding and plastic potential functions used in the
analysis, respectively. To compare the latter effects on
the obtained results the steady state condition at 100%
over strain can be observed in Figure (2) for an elastic-
viscoplastic internally pressurised vessel. The results
show that employing® NAVER (V-T) which is
comparing with AVFR (V-V) and also NAVFR (T-V)
which is comparing with AVFR (T-T) predict the
experimental results more accurately. It is seen that (V-
V) overestimates and (T-T) underestimates the
experimental data: Moreover, it can be observed that for

the less ratios of g , using Tresca locus along with the

AVEFR (T-T) cause better accuracy than that of the von
Mises AFVR.

Consequently, it can be found out that using
NAFVR may predict the experimental results more
precisely. For instance, for g <2 and g > 2 using (T-
V) and (V-T) could provide better accuracy,
respectively.

Figures (3, 4) demonstrate the variation of

circumferential strain at the outer surfaces 2 = 1,6 and

- = 2.4 (the most accurate ratio of - Wlth employing
(T T) and (V-T) as it seen in Figure (2)) with time and
also the steady state circumferential stress distributions
in 1< 2 <16 and 1< 2 < 2.4 for perfect-plastic
materilas with considering AVFR and NAVFR. Figures
(5, 6) show the previous items with considering
isotropic linear hardening behavior of materials.

v V-V
17 v v-T v

o

- S] Experimental Results [25]
a

£oor 1 2 °

AN -

g a

& 0.8+ < IS

£ v

L o

S oz 2

s ©

P v

= v

=

2 0.6 z

% v

5 0.5 v

A N

o4 16 18 2 272 24 26
b/a

Figure 2. Comparison between the experimental results and
V-V, V—=T,T—VandT —T in steady state condition.
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AVFR (V-V), P/5,=0.9583, b/a=2.4
NAVEFR (V-T), P/c,=0.9583, b/a=2.4
AVFR (T-T), P/c,=0.4583, b/a=1.6
NAVER (T-V), P/c,=0.4583, b/a=1.6
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Time (Days)
Figure 3. Comparison between the V. —T and V —V and also
T—T and T —V for variation of circumferential strain at the
outer surface with time and perfect plastic behavior of
materials.
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Figure 4. Comparison between the V'— T and V —V and also
T—T and T —V for variation of circumferential stress with
radial distance and perfect plastic behavior of materials.
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Figure 5. Comparison between the V. —T and V —V and also
T—T and T —V for variation of circumferential strain at the
outer surface with time with considering linear isotropic
hardening behavior of materials.
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Figure 6. Comparison between the V. —T and V —V and also
T—T and T —V for variation of circumferential stress with
radial distance and with considering linear isotropic hardening
behavior of materials.

Figures (3, 5) show that the strains predicted by
NAFVR, V-T (T-V) are less than that of AFVR, V-V

(T-T) for the same time for §= 2.4 (g = 1,6).
Moreover, Figures (4, 6) show that the steady state
stresses predicted by NAFVR, T-V are more than those
of AFVR, T-T in the interval of 1<~ < 1.6 and for

2<1.4 (22 1.4) the hoop stresses predicted by

NAVEFR V-T are less than AVFR V-V.

Finally, by considering Figures (3-6), it can be found
that with increasing the load and hardening, the
differences between AFVR and NAFVR increase.

To investigate the proposed NAVFR more precisely,
the subsequent investigations can be helpful. From
Table 1, the Tresca yield locus can be written as below:

2(J3)7cos0 —0y =0,— 2 <O <7, (12)
or,
]écoszé):%. (13)

Using Equation (1), it can be found that:

12
I

C0520=1—a’]?, (14)
where,
27
a = Tﬁ,
_ sin?6 (15)
B " sin236°

Consequently, the Tresca locus can be shown as
following:

, ]’2 2
]2<1—a]z—3)=%. (16)

Using Equation (15) and the range of 6 in Equation
(12), the range of @ can be determined as% <a< g or
0.75 < a < 1.6875. Moreover, some experimental
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studies show that the plastic potential locus can be as
following [21]:

60315 =I5 (1-073%5) (17

It can predict the behavior of material more accurately
than AVFR, V-V. Comparison Equation (16) with
Equation (17) shows that the new plastic potential locus
is nearly equal to Tresca locus in pure shear.
Furthermore, the direction of normal to the Tresca locus

. . T T
is constant in the range of _ZSHSZ' Hence,

considering (V-T) can predict the experimental results
more accurately compared to (V-V). In addition, Gao, et
al. [11] used yield and plastic potential loci as below:

F = (cJ§ + 2715 + by J52)°, as)
G = (cJf + 273 + byJ5%)°

where,
_1
4 6
c=\ag+—b;+1 ,
( 729 ) . (19)

cy = (a2+%b2 +1) ¢,

Comparing the model with different experimental
results, they concluded that selecting a; = a, = 0 and
b; = —60.75 and b, =-25 could predict the
experimental data with good accuracy. It can be
deduced that they nearly used T-V in their numerical
calculations and showed that it is more accurate than
AVFR, V-V.

From previous sections, it is realized that increasing
the load step and considering ‘hardening material
increase the difference between NAVFR and AVFR.
Moreover, another main reason for this difference can
be attributed to the combination of loading (tention-
shear). To investigate this issue, the Lode parameter, I',
is considered. Figures (7, 8) show the variation of Lode
parameter (in outer surface of the vessel) with time and
angle a when AVFR based on both von Mises and
Tresca yielding loci is used, respectively. As it is
apparent, in pure shear the orthogonal vectors to Tresca
and von Mises surfaces have the same directions (not
the same values). Now, when the loading is such that
I' — 0, then the difference between the directions of
the vectors of plastic strain increment for von Mises and
Tresca decreases. On the other hand, when the loading
is such that ' — =41, the difference increases. In other
words, as the loading condition varies in such a way that
I' — +1, the difference between the AFVR and
NAVFR becomes higher. Figure (9) shows that the
maximum difference between the AVFR and NAVFR
happens in the outer surface of the vessel and for the
current loading condition, the Load parameter is
I' = —0.4 in the outer surface. The difference between
the results obtained by considering perfect-plastic

behavior of matrials in Figures (3, 4) is solely because
of the combination of loading. However, these
differences become higher when in addition to
combination of loading the isotropic hardening is also
considered (see Figures (5, 6)). Therefore, for the
problems with non-linear isotropic hardening in
conjunction with the load condition in deviatory plane
as I'— 1, the difference between the presented
NAVFR and the corresponding AVFR becomes
maximum. Figure (10) shows the variation of steady
Lode parameter with different ratios of Z at 100% over
strain. It is evident that for both (V-V) and (T-T), there
is almost no change for Lode parameter in outer surface
of the vessel. Therefore, it can be expected that the
differences between the NAFVR and AFVR, i.e.
between (V-V) and (V-T) and also (T-T) and (T-V),
have to remain «constant approximately for different
ratios of Z as it can be observed in Figure (2).

0

AVFR (V-V) : b/a=2.4, P/5,=0.9583
AVFR (T-T) : b/a=1.6, P/c,~0.4583

o

o
a

10 20 30 40
Time (Days)

amO O O O O O O O o O o

Lode Parameter (T')

Figure 7. Variation of Lode parameter at outer surface versus
time with perfect-plastic material.

o AVFR (V-V) : bla=2.4, P/c,=0.9583
Q 0.57 o AVFR (T-T) :b/a=1.6, P/c,~0.4583
g

E o

g 235 45 675 do
[}

A~ o (Degree)

3

o a (=] [~] [~} [~] a

= 0.5

14
Figure 8. Variation of steady state Lode parameter versus
angle a with perfect-plastic material.
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It was expected in AVFR (V-V) or (T-T) when I" - +1
the difference between NAVFR (V-T) or (T-V)
becomes more obvious. In Figure 14, with AVFR, V-V
(T-T), when ; =24 (g = 1.6), I' = —0.4. Therefore, it
was expected in outer face of the vessel, the difference
between V-V (T-T) and V-T (T-V) becomes maximum.
In Figures (4, 6), this maximum difference in outer face
of the vessel can be observed.

In Figure (9), for AVFR, V-V when 2 = 1.41341,

the Lode parameter becomes zero (I' =0), when
1< 2 < 1.41341, sign of the Lode parameter becomes

positive (I'>0) and when 141341 <~-<24, it

becomes negative (I' < 0). The effect of changing the
Load parameter can be observed in Figures (4, 6) with
employing NAVFR (V-T). In Figure (9), for AVFR, T-
T when 1< 2 < 2.4, sign of the Lode parameters

remains negative (I" < 0). Therefore, sign of Lode
parameter is unchanged unlike V-V and this effect can
be seen in Figures (4, 6) when NAVFR (T-V) is
employed. Finally, it can be realized that the difference
between AVFR and NAVFR has a direct effect on the
sign and value of the Lode parameter.

o AVFR (V-V) : b/a=2.4, P/c,~0.9583
o AVFR (T-T) : b/a=1.6, P/c,~0.4583

£ °

8

o

o o o

g o 5 Tz O s 2 24

& o “r/a -

o “ ° o g

3 = 5 y o

)4 _0_5_

14

Figure 9. Variation of steady state Lode parameter versus
radius with perfect-plastic material and von Mises and Tresca
criteria.

0.5+ © v-v

g o T-T

=1

2

é 9% 18 2 272 24
A~ b/a
3

3 D o o o o

o
4]
1

-1

Figure 10. The variation of steady state Lode parameter with

Z at 100% over strain.

5. CONCLUSIONS

The main idea in this research is arisen from combining
von Mises and Tresca loci for the yield and plastic
potential functions and vice verse. During this
investigation, the experimental observation and analysis
of plastic potential locus is discussed and the following
results are obtained:

1- The case of (V-V) overestimates and (T-T)
underestimates the experimental data.

2- Employing NAVFR (V-T) compared with
AVFR (V-V) and also NAVFR (T-V)
compared with AVFR (T-T) causes the
experimental results to be predicted more
accurately.

3- The value and sign of the Lode parameter
along with the value of plastic modulus in
isotropic hardening problems has a direct effect
on difference between the proposed NAVFR
and AVER.

4- Combination of loading (tension-shear) can
cause differences between the presented
NAFVR and corresponding AFVR such that

for I' — +1 these differences increase and for
I — 0 they decrease.
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