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A B S T R A C T  

   

Diversity combining techniques play an important role in combating the destructive effects of channel 
fading in wireless communication systems. In this work, we present a blind diversity combining technique 
for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this 
technique is very close to ideal MRC system which is accepted as an optimum receiver over fading 
channels in presence of AWGN. This is a valuable result especially because higher bandwidth efficiency 
is also achieved as compared with MRC. We also show that in our proposed technique the variation of the 
combiner output values around the values of transmitted symbols is less than the corresponding variation 
in MRC system. Hence, for soft decision applications it is superior to MRC technique. 
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1. INTRODUCTION1 
 
The most destructive characteristic of a wireless channel 
is the random variation of its transfer function, known 
as fading phenomenon. Diversity combining is a well-
known technique for combating this effect. Space, 
frequency, time and coding diversities, as well as 
combination of two or more of these, are employed in 
different systems. Various combining techniques have 
been suggested for multiple received signals [1, 2]. In 
presence of additive white Gaussian noise, maximal 
ratio combining (MRC) is a theoretically optimal 
combiner over fading channels in which the received 
signals from different paths are combined so as to 
maximize the instantaneous SNR at the combiner output 
[1]. Performance analysis of MRC system has been the 
subject of interest in many research works [3-21]. In 
ideal MRC scheme, it is assumed that the channel 
coefficients are known at the receiver. However, in 
practice, these coefficients have to be estimated using a 
training sequence. Hence, the performance of non-ideal 
MRC is affected considerably by the estimation error 
[10-12].  
    By R Annavajjala et al. [13, 14] an analytical relation 
                                                        
*Corresponding Author Email: Aminnian.mod@gmail.com (A. M. 
Aminian-Modarres) 

for average bit error rate has been derived for non-ideal 
MRC with BPSK modulation and independent Rayleigh 
channels. The performance of non-ideal MRC for 
independent Rayleigh, Rician and Nakagami channels 
has been analyzed and compared by W. M. Gifford et 
al. [15]. W. M. Gifford et al. [16] the previous work 
[15] has been extended to correlated channels. Non-
ideal MRC with correlated Rayleigh channels in 
presence of colored noise is investigated by L.Schmitt, 
et al. [17]. Independent and non-identical distributed 
Rayleigh channels have been discussed by Y. C. Ko, 
and T. Luo, [18]. On the other hand, modified MRC 
receivers with improved performances have been 
proposed in vary articles [19-21] by employing practical 
channel estimations on fading channels. In these works, 
the receiver structures are linear and a training sequence 
is employed, which in turn decreases the bandwidth 
efficiency. 

In present work, we offer a blind nonlinear diversity 
combining technique for Rayleigh flat fading channels. 
In our proposed combining technique, instead of 
estimating the channel coefficients, we directly estimate 
the transmitted symbols and show that the optimum 
estimator is a nonlinear polynomial system, which can 
be realized by a Hammerstein filter. We show that the 
performance of this blind combining technique is very 
close to ideal MRC.  This is a valuable result, especially 
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because higher bandwidth efficiency is also achieved. 
We also show that in our proposed technique, variation 
of the combiner output values around the values of 
transmitted symbols is less than the corresponding 
variation in MRC system. Hence, the proposed system 
is potentially superior to MRC for soft decision 
purposes. 

Hammerstein filter is a nonlinear polynomial filter 
used in many applications such as system identification 
[22-24], modeling  [25] echo cancellation [27, 28], and 
noise cancellation [29]. In one of our previous works 
[30], we have proposed a new nonlinear equalization 
technique (GHE) for frequency selective fading 
channels, based on Hammerstein filters.  

Also, in other works [31, 32], we have presented a 
new Hammerstein diversity combining technique 
(HDC) for frequency selective fading channels. In these 
systems, training symbols are used for calculation of 
optimized filter coefficients.  

This paper is organized as follows: In section 2, we 
present the system model. Section 3 introduces our 
nonlinear blind Hammerstein diversity combining 
technique. Theoretical basis of our proposed system is 
presented in section 4. In section 5 a proper cost 
function is introduced for obtaining the optimized filter 
coefficients in a blind manner. Section 6 provides the 
simulation results and discussions, before concluding 
the paper in section 7.  
 
 
2. SYSTEM MODEL 
 
The equivalent low-pass discrete time model of the 
system is illustrated in Figure 1. In this work, we 
employ BPSK modulation. The transmitted sequence 

( ) { }11 −+∈ ,nx  is drawn from an i.i.d. source with 
equi-probable symbols. The communication system 
consists of M  diversity branches. These branches are 
assumed to be identical Rayleigh flat fading channels. 

Hence, the SIMO channel can be presented by an 1×M  
vector, as: 

[ ]T
H Mhhh K21=  (1) 

where ih  is the complex Rayleigh distributed random 
gain of the ith channel as: 

iQiIi hjhh +=  (2) 

iIh  and iQh  are the real and the imaginary component 
of the channel gain respectively. These two components 
are independent, zero mean, Gaussian random variables 
with variance 12 =ihσ . Furthermore, the branches are 
assumed uncorrelated, i.e. : 

{ } jiforhhE ji ≠=∗ 0  (3) 

The channel fading is assumed sufficiently slow, such 
that the channel gains do not vary during one data 
frame. The received signal from the ith channel is given 
by: 

( ) ( ) ( ) M,...,,inwnxhny iii 21=+=  (4) 

where ( )nw i  is the complex additive white Gaussian 
noise at the ith receiver branch written as: 

)n(wj)n(w)n(w iQiIi +=  (5) 

( )nw iI  and ( )nw iQ  are uncorrelated, zero mean, Gaussian 
random variables with variance 2

wσ . Equation (4) can be 
expressed in matrix form: 

( ) ( ) ( )nnxn WHY +=  (6) 

where H  is the channel vector and ( )nY  and ( )nW  are 
the received data vector and the noise vector, 
respectively. These vectors are defined as: 

( ) ( ) ( )[ ]TY nynyn MK1=  (7) 

( ) ( ) ( )[ ] TW nwnwn MK1=  (8) 

 

 
 

( )nx

( )nx̂( )nz

( )nyI 1

( )nyI 2

( )ny MI

( )nyQ 1

( )nyQ2

( )ny MQ

( )nw1

( )nw2

( )nwM

( )ny 1

( )ny 2

( )ny M

( )nY ( )nY~
 

Figure 1. System model 
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As shown in Figure 1, the receiver consists of two 
correlators banks, namely, inphase and quadrature 
correlators. The complex received signal )n(yi  from 
each branch is applied to both correlators. The outputs 
of the inphase and quadrature correlators are the real 
part ( )( )ny iI  and the imaginary part ( )( )ny iQ  of )n(yi  
respectively. According to Equations (2) and Equation 
(5), we can write: 

( ) ( ) ( )
( ) ( ) ( )nwnxhny

M,,,inwnxhny

iQiQiQ

iIiIiI

+=

=+= K21
 (9) 

We define the 12 ×M  real vector ( )n~Y  as: 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] T

TY

nynynyny

ny~ny~ny~n~

MQQMII

M

KK

K

11

221

=

=  (10) 

where: 





≤≤+
≤≤

=
− MiM)n(y

Mi)n(y
)n(y~

)Mi(Q

iI
i 21

1  (11) 

As shown in Figure 1, ( )n~Y  is the input to the diversity 
combining filters. This model is very convenient for 
computational purposes, as we deal with real values 
only. It is in fact similar to having M2  real fading 
diversity branches modeled as Gaussian random 
variables. 

The output of the combiner, ( )nz , is applied to a 
hard detector for making the output decision ( )nx̂ . 
 
 
3. BLIND HAMMERSTEIN DIVERSITY COMBINING 
TECHNIQUE  
 
A Blind Hammerstein Diversity Combining (BHDC) 
system is shown in Figure 2. In this approach, a 
Hammerstein filter of order D  is employed for each 
diversity branch. The output polynomial of the ith filter 
is: 

( ) ( )( ) M,,,iny~gnz D

oddkk

k
ikii 221

1
K== ∑ =

 (12) 

where kig  is the kth coefficient of the output polynomial 
of the ith filter and ( )ny~i  is defined by Equation (11). 
Note that only the odd powers appear in the summation 
of Equation (12). Similar to our previous works, [30] 
and [31], it can be proved that the terms corresponding 
to the even powers are equal to zero. 

The outputs of the filters are summed to produce the 
combiner output ( )nz , i.e. : 

( ) ( )( )∑∑ ==
=

D

oddkk

k
iki

M

i
ny~gnz

1

2

1
 (13) 

Equation (13) can be expressed in matrix form: 
( ) ( )nnz H

T
H YG=  (14) 

where HG  is an ( ) 11 ×+DM  vector given by: 

( ) ( ) ( )[ ]
oddD,

g......ggg...ggn DMM
T

HG 22313122111=
 (15) 

and ( )nHY  is an ( ) 11 ×+DM  vector defined as: 

( ) ( ) ( ) ( ) ( )[ ]
oddD,

n~n~n~n~n
TT

D
T

5
T

3
T

1H YYYYY K=  (16) 

where ( )n~
pY  is defined as the pth power of ( )n~Y : 

( ) ( ) ( ) ( )[ ] T
pY ny~ny~ny~n~ p

M
pp

221 K=  (17) 

In fact, as shown in Figure 3, a Hammerstein combiner 
can be modeled as a nonlinear subsystem for generating 

( )nHY  followed by a linear subsystem defined by the 
vector HG . 

Our goal is to find HG  such that the combiner 
output ( )nz  is an optimum estimate of the transmitted 
symbol. In section 5, we present a proper cost function 
for obtaining the optimum filter coefficients. 

 

 

( )nz1

( )nz2

( )nz M2

( )nz
( )nx̂

( )ny1
~

( )ny2
~

( )ny M2
~

M M

 
Figure 2. Blind Hammerstein Diversity Combining Technique (BHDC) 

 

www.SID.ir



Arc
hive

 of
 S

ID

                       A. M. Aminian-Modarres and M. Molavi-kakhki/IJE TRANSACTIONS C: Aspects   Vol. 26, No. 3, (March 2013)  277-288              280 
 

4. THEORETICAL BASIS 
 
In this section, we explain our motivation for using 
Hammerstein filters in the proposed system. For 
simplicity, we first consider a system with 1=M . In 
this case, at any specific time n, the observed signals at 
the receiver are: 

( ) ( ) ( )
( ) ( ) ( )




+=
+=

nwnxhny~
nwnxhny~

QQ

II

112

111  (18) 

Based on the observed data, we would like to 
estimate the transmitted symbol )n(x . Using MMSE 
criterion, the optimum Bayesian estimator )n(z  is 
defined as below [33]: 

{ } ( ) dxy~,y~xpxy~,y~xEz ∫
∞+

∞−

== 2121
 (19) 

where the notation (.)p  denotes the probability density 
function (PDF), and the time index is omitted for 
notation simplicity. The conditional PDF can be written 
as: 

( ) ( ) ( )

( ) ( )∫
∞+

∞−

=
dxxpxy~,y~p

xpxy~,y~p
y~,y~xp

21

21
21

 
(20) 

The noise components in Equation (18) are uncorrelated 
zero mean Gaussian random variables. Hence, for a 
particular channel occurrence, the joint conditional PDF 
of the observed data { }21 y~,y~ , conditioned on the 
transmitted sequence becomes: 

( ) ( ) ( )

( )
( ) ( )











 −

−
−−

=

=

2

2
12

2

2
11

2

2121

222
1

w

Q

w

I

w

xhy~xhy~
exp

xy~pxy~pxy~,y~p

σσπσ

 (21) 

Also, based on our assumptions, we have: 

( ) ( ) ( )[ ]11
2
1

−++= xxxp δδ  (22) 

Finally, by substituting Equations (20)-(22) in Equation 
(19), the MMSE estimator can be obtained as: 

])y~hy~h([tanhz QI 21112 +=  (23) 

Now, we generalize this result for any arbitrary value of 
M  as below: 

])n(y~h~[tanh)n(z
M

i
ii∑

=

=
2

1
2  (24) 

where: 





≤≤+
≤≤

=
− MiMh

Mih
h~

)Mi(Q

iI
i 21

1  (25) 

The Maclaurin expansion of Equation (24) yields: 

L−







+









−








=

∑

∑∑

=

==

5

3

M

i
ii

M

i
ii

M

i
ii

)n(y~h
~

)n(y~h
~

)n(y~h
~

)n(z

2

1

2

1

2

1

2
15
2

2
3
12

 
(26) 

 

HG

( ) ( ) ( )nnn NOISIGYH +=

( ) ( ) )()( nznznnz NS +== H
T
H YG( )nY~

 
Figure 3. Hammerstein combiner 

 
 
We can write this equation as ( ) )n(S)n(Snz 21 += , where: 

( )






=

= ∑∑ ∞

==

TermsOther)n(S

ny~C)n(S
k

k
iki

M

i

2

1

2

11  (27) 

Here, the coefficients kiC  are known parameters that 
can be obtained from Equation (26). As can be seen, 

)n(S 1  is similar to Equation (13) which is the output of 
a BHDC system. Furthermore, )n(S 1  is a subset of the 
optimum estimator )n(z . From the above discussion, 
we conclude that a BHDC system can be considered as 
a subset of the optimum estimator for the transmitted 
symbols. 
 
 
5. CALCULATION OF THE OPTIMUM 
COEFFICIENTS  

 

5. 1. Cost Function     Since in blind systems no 
training sequence exists, an exact value of error signal is 
not available. Hence, instead of MMSE criteria we 
present a more convenient cost function for our 
optimization problem. To obtain a closed form for our 
cost function, we first recall that a system with M  
complex Rayleigh channels can be modeled by a system 
with M2  real Gaussian channels. Hence, to simplify 
our notations, in this section we assume real values for 
the channel and the noise vectors, without any loss of 
generality. Having made this assumption, Equation (16) 
becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]T

HY nynynynynynyn D
M

D
MM KKKK 1
33

11=  (28) 

Each element of this vector can be divided into two 
terms as below: 

( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )nnnsnwnxh
j

k
nxh

nwnxh
j

k
nwnxhny

kikiii

k

j

kk
i

ii

k

j
ii

k
i

jkj

jkjk

+=







+

=







=+=

−

−

∑

∑
−

=

=

1

0

0  
(29) 

where ( )ns ki  and ( )nn ki  are the noise-free (signal) 
term and the noisy term respectively. 
From Equations (28) and (29) we have: 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( )nnnnnnnn

nsnsns

nynynyn

MDM

MDM

D
MM

NOISIG

Y

T

T

T

H

+=+

=

=

LL

LL

LL

111

111

1

 

(30) 
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where as shown in Figure 3, ( )nSIG  and ( )nNOI  are the 
signal vector and the noise vector at the output of the 
nonlinear subsystem of the Hammerstein combiner, 
respectively. The combiner output can then be written 
as: 

( ) ( ) ( ) ( )( )
( ) ( ) )n(z)n(znn

nnnnz

NS

termnoiseOutputtermsignalOutput

+=+=

+==

4342143421
NOIGSIGG

NOISIGGYG
T
H

T
H

T
HH

T
H  (31) 

where )n(zS  and )n(zN  are the signal part and the 
noise part of the combiner output respectively. 
Now, we define our proposed cost function as below: 

N

S

P
PJ =  (32) 

where SP  and NP  are the average powers of )n(zS  and 
)n(zN  respectively, given by: 

{ } ( )( ) ( )( ){ }H
TT

H GSIGSIGG nnEzEP SS == 2  (33) 

{ } ( )( ) ( )( ){ }H
TT

H GNOINOIG nnEzEP NN == 2  (34) 

Hence, we can write: 

HN
T
H

HS
T
H

GRG
GRG

==
N

S

P
PJ  (35) 

where SR  and NR  are the autocorrelation matrices of 
( )nSIG  and ( )nNOI  respectively: 

( ) ( ){ }nnE T
S SIGSIGR =  (36) 

( ) ( ){ }nnE T
N NOINOIR =  (37) 

Our goal is to achieve an estimate for the transmitted 
symbol using the noise free part of the combiner output. 
On the other hand since the transmitter employs BPSK 
signaling, 

S
P  must be equal to one in absence of 

AWGN and the fading effect. Hence, we maximize the 
cost function J  in Equation (32) with the constraint 
constraint 1=

S
P . This constrained optimization problem 

will be solve in subsection 5-3. 
 
5. 2. Blind Estimation of the Autocorrelation 
Matrices      To find the cost function J  in Equation 
(32), we first need to calculate the autocorrelation 
matrices SR  and NR . An insight into Equations (29) 
and (30) reveals that while the elements of ( )nHY  are 
observable at the receiver, the elements of ( )nSIG  and 

( )nNOI  are not directly available. Hence, SR  and NR  
have to be estimated from the observable information, 
using an indirect method. 
In this blind method, as the first step, we obtain the 
closed forms of SR  and NR . To explain our method, 
without loss of generality, we calculate these 
autocorrelation matrices for the special case where 

2=M  and 3=D . Using the equations and the 

assumptions mentioned before, in this case we obtain: 





















=

6
2

3
2

3
1

4
2

3
21

3
2

3
1

6
12

3
1

4
1

4
22

3
1

2
221

3
21

4
121

2
1

hhhhhh
hhhhhh

hhhhhh
hhhhhh

SR  (38) 

and: 





















++
++

+
+

=

62
2

24
2

4
21

422
2

4
21

62
1

24
1

422
1

422
2

2

422
1

2

6099330
9609033

3300
0330

wwwww

wwwww

www

www

hhhhh
hhhhh

h
h

σσσσσ
σσσσσ

σσσ
σσσ

NR  (39) 

As can be seen, the elements SR  and NR  are functions 
of channel taps and noise moments. To estimate these 
parameters, we first calculate the following statistical 
averages: 

( ) 22
1

2
1 wh}ny{E σα +==  (40) 

( ) 22
2

2
2 wh}ny{E σβ +==  (41) 

( ) ( ) 2121 hh}nyny{E ==γ  (42) 

Using the above equations, we can write: 
( ) ( )

2
4 22

2
1

γβαβα
θ

+−+−
== h  (43) 

θ
γ

η
2

2
2 == h  (44) 

θασζ −== 2
w  (45) 

Since the signals )n(y1  and )n(y2  are observable at 
the receiver, it is possible to estimate the parameters at 
the left hand side of Equations (40)-(45). The estimated 
values are: 

( )∑
=

=
rN

nr

ny
N

ˆ
1

2
1

1
α  (46) 

( )∑
=

=
rN

nr

ny
N

ˆ
1

2
2

1
β  (47) 

( ) ( )nyny
N

ˆ
rN

nr
2

1
1

1 ∑
=

=γ  (48) 

( ) ( )
2

4 22
γβαβα

θ
+−+−

=
ˆˆˆˆˆ  (49) 

θ
αη ˆ
ˆˆ

2

=  (50) 

θαζ ˆˆˆ −=  (51) 

where rN  is the number of received symbols. Having 
calculated these parameters, the estimated values of SR  
and NR  can be obtained from Equations (38) and (39). 
Note that in our technique, there is not any training 
sequence and rN  received symbols used for the 
estimations are  parts of information data. Hence, 
BHDC is a completely blind method. It is worth saying 
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that the proposed technique can easily be applied to any 
modulation scheme and any arbitrary value of M  and 
D . 

 
5. 3. Optimization   As mentioned before, in BHDC 
technique the filter coefficients are calculated such that 
the cost function J  in Equation (32) is maximized with 
the constraint 1=SP . Hence, we are encountered with a 
constrained optimization problem, which depending on 
the rank of matrix SR , has two different solutions as 
follows: 
 
5. 3. 1. Case 1       SR  has a full rank. In this case we 
have tr = , where r  and ( )1+= DMt  are the rank and 
the dimension of SR  respectively. We can write the 
singular value decomposition (SVD) of the positive 
definite matrix SR  as: 

( ) ( )TT2
S ΛQΛQQΛQR ==  (52) 

where Q  is a tt ×  matrix that consists of the 
orthonormal eigenvectors of SR : 

[ ]t21 qqqQ K=  (53) 

and 2Λ  is a diagonal tt ×  matrix of the eigenvalues of 
SR : 





















=

tλ

λ
λ

K

MOMM

K

K

00

00
00

2

1

2Λ  (54) 

and Λ  is a matrix with elements equal to the square 
root of the elements of 2Λ . Note that since SR  has a 
full rank, its eigenvalues are all positive. We, then 
define the tt ×  matrix NR~  as below: 

( ) ( ) 1
T

N

1

N QΛRΛQR
−−

=
~  (55) 

Finally, as proved in the Appendix, the optimum values 
of the filter coefficients are: 

( ) min

1
T

opt
H lQΛG

−

=  (56) 

where min
~
λ  is the minimum eigenvalue of NR~ , and minl  

is its unit-length vector corresponding eigenvector. 
 
5. 3. 2. Case 2       SR  has not a full rank. In this  case, 
we have tr <  and the SVD of the positive semidefinite 
matrix SR  is written as: 

[ ] [ ]T2

S NU
00
0S

NUR 







=  (57) 

where 2S  is a diagonal rr×  matrix of the non-zero 
eigenvalues of SR  as: 

















=

rλ

λ

K

MOM

K

0

01
2S  (58) 

and U  is a rt ×  matrix that consists of the eigenvectors 
of SR  corresponding to signal space: 

[ ]r1 uuU K=  (59) 

Also, N  is a ( )rtt −×  matrix that consists of the 
eigenvectors of SR  corresponding to null space: 

[ ]t1r nnN K+=  (60) 

We now define the rr ×  matrix NR~  as: 

( )

( ) 1
N

T
1

N
T

N

T
1

N
T

N
T1

N

SURNNRNNIR

NNRNNRIUSR

−
−

−
−





 −





 −=

~
 (61) 

where S  is a matrix that its elements are the square root 
of the elements of 2S . As proved in the Appendix, the 
optimum values of the filter coefficients in this case are 
now obtained as: 

( ) min
1

N
T

1

N
T

opt
H lSURNNRNNIG −

−





 −=  (62) 

where minl  is the eigenvector of NR~  corresponding to 
its minimum eigenvalue. 
 
 
6. SIMULATION RESULTS AND DISCUSSION  
 
In this section, the simulation results of our proposed 
BHDC technique are presented and compared with the 
results obtained from an ideal maximal ratio combining 
(MRC) system. In this work, Rayleigh flat fading 
channels are considered, and simulations are performed 
for 200,000 random channel realizations. The average 
system performance is then obtained by Monte Carlo 
method. Since each Rayleigh channel is equivalent to 
two Gaussian channels, our results are also valid for 
Gaussian flat fading channels. As mentioned before, 
BHDC is a blind technique in which, the received bits 
used for estimation are a part of information data. In this 
work, the received data blocks with block length 

100=rN  are used for channel estimation.  
 
6. 1. Average System Performance      The average 
BER versus SNR for both BHDC and ideal MRC 
systems are shown in Figure 4. This figure is plotted for 
one Rayleigh channel equivalent to two Gaussian 
channels, and simulations are performed for two 
different filter orders 3=D  and 5=D . As can be seen, 
the performance of BHDC is very close to ideal MRC. 
This is a valuable result, especially because higher 
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bandwidth efficiency is also achieved as compared with 
MRC. 

A similar comparison is shown in Figure 5 for two 
Rayleigh channels equivalent to four Gaussian channels. 
As in the previous case, the performance of BHDC is 
very close to ideal MRC, especially at lower values of 
SNRs. It is also apparent from these results that the 
system performance does not change significantly when 
D  changes, hence, we choose 3=D  in our simulations. 

To see the effect of received data block length rN  
on system performance, simulations are performed for 
three different values of { }50010020 ,,Nr ∈ . As can be 
seen from Figure 6, the results are almost the same, and 
we therefore choose 100=rN . 
 
6. 2. Reliability   Although the BER, averaged over all 
possible channel realizations, is usually considered as a 
measure for system performance, in many practical 
situations like voice communications, the users expect 
reliable communications while using the system and do 
not care about the average performance. On the other 
hand, there are some rare channel realizations that cause 
significant error rate reducing the average system 
performance. 

Here, we focus on individual channel realizations 
and compare the performances of BHDC and ideal 
MRC systems. Based on the above discussion, we 
define Relative Reliability Factor (RRF) as the 
probability that for a particular channel occurrence, H  
the BER of BHDC is less than or equal to the BER of 
ideal MRC, i.e.: 

)HBERBER(robPRRF MRCBHDC ≤=
∆

 (63) 

RRF versus SNR is calculated for 200,000 two Rayleigh 
diversity channels and the result is plotted in Figure 7. 
As can be seen, when dBSNR 7≥ , in almost 90 percent 
of channel realizations the performance of BHDC is 
equal to or better than ideal MRC. For dBSNR 10≥  this 
probability is almost 100 percent.  This result shows that 
at moderate and high SNRs the performance of BHDC 
for most channel realizations is not worse than ideal 
MRC. 
 
6. 3. Comparison of MRC and BHDC for Soft 
Decision Applications      In soft decision systems 
where no hard limiter is present, the combiner output is 
taken as the decoding information [2]. To compare our 
proposed combiner with ideal MRC in soft decision 
purposes, we have plotted the histograms representing 
the variation of the combiner output values around the 
transmitted symbol values. The simulations were 
performed for a particular two diversity Rayleigh 
channel with normalized coefficients and 4,000,000 
transmitted binary symbols. The results for both MRC 
and BHDC techniques are plotted in Figures 8 and 9 for 

dBSNR 5=  and dBSNR 20=  respectively. It is apparent 
from these figures that for both SNRs, the outputs of 
BHDC combiner are much closer to the desired symbol 
values 1±  as compared with the corresponding values 
in MRC system. Hence, for soft decision applications it 
is superior to MRC technique. 
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Figure 8. The variation of the combiner output values around 
the transmitted symbol values. (a). BHDC (b). MRC 
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Figure 9. The variation of the combiner output values around 
the transmitted symbol values. (a). BHDC (b). MRC 
 

 
7. CONCLUSION 

 
In this paper, we proposed a blind diversity combining 
technique using Hammerstein type filters. To show the 
performance of our proposed technique, simulations 
were performed for Rayleigh flat fading channels and 
BPSK modulation in presence of AWGN. Simulation 
results of BHDC technique were compared with the 
results obtained from an ideal maximal ratio combining 
(MRC) system. We also defined relative reliability 
factor (RRF) to compare the performances of BHDC 
and ideal MRC for any channel realization. From our 
simulation results, we conclude that: 

i) The average BER of BHDC is very close to 
ideal MRC. This is a valuable result, especially 
because higher bandwidth efficiency is also 
achieved as compared with MRC. 

ii) At moderate and high SNRs, for any channel 
realization, the probability of the BER of 
BHDC being lower than or equal to ideal MRC 
is very high. 

i) The outputs of BHDC combiner are much 
closer to the desired symbol values 1±  as 
compared with the corresponding values in 
MRC system. Hence, for soft decision 
applications it is superior to MRC technique. 
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APPENDIX 

 
In this appendix the proofs of the Equations (56) and 
(62) are presented. As explained in section 5.3, we 
desire to maximize the cost function J  in Equation (32) 
with the constraint 1=

S
P , i.e., to find HG  such that 

HN
T
H GRG=NP  is minimized given 1== HS

T
H GRGSP . We 

consider two cases: 
Case 1: SR  has a full rank. In this case we have tr = , 
where r  and ( )1+= DMt  are the rank and the 
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dimension of SR  respectively. According to Equation 
(33) and Equations (52)- (54) we have: 

( ) ( ) 1=== H

TT
HHS

T
H GΛQΛQGGRGSP   (A-1) 

and: 
IQQQQ TT ==  (A-2) 

We define the 1×t  vector a  as: 

( ) ( ) H
T

H

T
GQΛGΛQa ==  (A-3) 

the constraint 1=
S

P  can now be written as: 

1== aaGRG T
HS

T
H

  (A-4) 

This means that a  is a unite-length vector. Morever, 
since SR  has a full rank, the matrix TQΛ  is invertible 
and we have: 

( ) aQΛG
1

T
H

−

=   (A-5) 

Substituting Equation (A-5) in Equation (34) leads to: 

( ) ( )

( ) ( )
aRa

aQΛRΛQa

aQΛRQΛaGRG

N
T

1
T

N

1T

1
T

N

T
1

TT
HN

T
H

~

PN

=

=







==

−−

−−

 (A-6) 

where NR~  is defined by Equation (55). Finally, NP  in 
Equation (A-6) is minimized with the constraint 
Equation (A-4). Using the lagrangian method for 
optimization [33], the following equation must be 
minimized: 

( )1−−= aaaRa T
N

T K~A   (A-7) 

where K  is constant value. We have: 
aaR0a2aR2 NNa

K~K~A =⇒=−=∇   (A-8) 

where ∇  is the gradient operator. Consequently, if a  is 
an orthonormal eigenvector of NR~ , it can be a solution 
for Equation (A-8) and K  is its corresponding 
eigenvalue. Therefore, there exist t  solutions for the 
above equation among which only one leads to the 
global minimum. To find this global minimum, we use 
the SVD of the positive definite matrix NR~  as below: 

T2

N LΓLR =
~   (A-9) 

where L  is a tt ×  matrix that consists of the 
orthonormal eigenvectors of NR~ : 

[ ]t21 lllL K=  (A-10) 

and 2
Γ  is a diagonal tt ×  matrix with eigenvalues of 

SR : 





















=

t
~

~
~

λ

λ
λ

K

MOMM

K

K

00

00
00

2

1

2
Γ  (A-11) 

Equation (A-9) can be written as: 

T
iiN llR ∑

=

=
t

i
i

~~
1

λ   (A-12) 

Using Equations (A-6) and (A-12) NP  can be written as: 
2

i
TT

ii
T laalla ∑∑

==

==
t

i
i

t

i
iN

~~P
11

λλ   (A-13) 

According to Equation (A-8), the vector a  can be each 
of the eigenvectors il . Therefore, due to orthonormality 
of the eigenvectors we have: 

minminN
~P λ=⇒= minopt la  (A-14) 

where opta  is a solution of Equation (A-8) that leads to 

the global minimum 
minNP . Also, min

~
λ  is the minimum 

eigenvalue of NR~ , and minl  is its unite-length 
corresponding eigenvector. Using Equations (A-5) and 
(A-14) the optimum values of the filter coefficients are: 

( ) min

1
T

opt
H lQΛG

−

=   (A-15) 

 
Case 2: SR  has not a full rank. In this case we have 

tr < . According to Equations (57)- (60) we have: 





=
=





=
=

0
0

UN
NU

INN
IUU

T

T

T

T

,  (A-16) 

Note that: 





≠
≠

INN
IUU

T

T

  (A-17) 

Using Equations (57)- (59) SR  can be written as: 

( ) ( )TT2

S SUSUUSUR ==   (A-18) 

where: 











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





=

rλ

λ

K

MOM

K

0

01

S
 

 (A-19) 

the constraint 1=
S

P  can now be written as: 

( ) 1=== H

TT
HHS

T
H GSUSUGGRGSP   (A-20) 

Suppose that similar to Equation (A-3), the 1×r  unite-
length vector a  is defined as below: 

( ) H

T
GSUa =   (A-21) 

However, because SR  has not a full rank, this equation 
is not invertible and a unique solution for HG   cannot 
be obtained. Hence, in this case we  cannot use the 
definition Equation (A-21). We can write Equation (A-
21) as: 

( )
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0  
 (A-22) 

In fact, Equation (A-22) implies that the 1×r  vector a  

www.SID.ir



Arc
hive

 of
 S

ID

287                  A. M. Aminian-Modarres and M. Molavi-kakhki /IJE TRANSACTIONS C: Aspects   Vol. 26, No. 3, (March 2013)  277-288 
 

is a mapping of the 1×t  vector HG  in the signal space. 
To avoid the above problem, we now write HG  as 
below: 

NbUcGH +=   (A-23) 

where c  and b  are arbitrary 1×r  and ( ) 1×− rt  vectors 
respectively. Note that Equation (A-23) can be written 
as: 
















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bbccc

MM

444 3444 21
L

4444 34444 21
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 (A-24) 

Substituting Equations (A-18), (A-23) and (A-16) in 
Equation (A-20) we have: 

( )( )
1===

++==

cSccUUSUUc

NbRUcRNbUcGRG
2TT2TT

SS
TTTT

HS
T
HSP  (A-25) 

Now, we define the 1×t  vector a  as: 
aSccSa 1−=⇒=   (A-26) 

Hence, we have: 
( ) ( ) 1=== aacScScSc TT2T   (A-27) 

This means that a  is a unite-length vector. Substituting 
Equation (A-26) in Equation (A-23) becomes: 

bNaSUG 1
H += −  (A-28) 

Substituting Equation (A-28) in Equation (34) leads to: 

( ) ( )

bNRNbbNRUSa
aSURNbaSURUSa

bNaSURNbUSa
GRG

N
TT

N
T1T

1
N

TT1
N

T1T

1
N

TTT1T

HN
T
H

++

+=
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=

−

−−−

−−

NP

  (A-29) 

Finally, NP  in Equation (A-29) is minimized with the 

constraint Equation (A-27). Using the lagrangian 
method, the following equation must be minimized: 

( )1−−= aaT
N KPA   (A-30) 

Setting the derivative of Equation (A-30) with respect to 
b  equal to zero we get: 

0bNRN2aSURNaSURN N
T1T

N
T1

N
T

b =++=∇ −−A   (A-31) 

Note that T
NN RR = , and therefore we have: 

( ) aSURNNRNb 1
N

T
1

N
T −

−

−=opt   (A-32) 

Substituting Equation (A-32) in Equation (A-29) yields: 

( )

( )

aRa

aSURNNRNNIR

NNRNNRIUSa

N
T

1
N

T
1

N
T

N

T
1

N
T

N
T1T

~

PN

=













 −













 −=

−
−

−
−

 (A-33) 

where NR~  is defined by Equation (61). Substituting 
Equation (A-33) in Equation (A-30) we have: 

( )1−−= aaaRa T
N

T K~A   (A-34) 

This equation is the same as Equation (A-7) and 
therefore the optimum value for a  is obtained as: 

minminNopt
~P λ=⇒= minla  (A-35) 

where min
~
λ  is the minimum eigenvalue of NR~ , and minl  

is its unite-length corresponding eigenvector. Finally, 
substituting Equations (A-35) and (A-32) in Equation 
(A-28) the optimum values of the filter coefficients are: 

( ) min
1

N
T

1

N
T

opt
H lSURNNRNNIG −

−





 −=  (A-36) 
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 چکیده

   

ترکیب   هاي استفاده از روش. باشد سیم می هاي مخابرات بی ترین عامل مخرب در سیستم کنندگی کانال مهم تار ي پدیده
در این مقاله یک روش غیرخطی جدید مبتنی بر فیلتر . فوق است ي اي براي مقابله با پدیده دایورسیتی راه حل شناخته شده

طور  همان. شود که روشی کاملاً کور است هاي تارکننده تخت ریلی پیشنهاد می رشتاین براي ترکیب دایورسیتی در کانالهم
روش پیشنهادي ما از لحاظ نرخ متوسط وقوع . آل است ایده MRCهاي تخت روش  دانیم روش بهینه در مورد کانال که می

 دهیم همچنین نشان می. عرض باند بیشتري نیز دارد ي که بهره آل خیلی نزدیک است ضمن آن ایده MRCخطا به روش 
این . خیلی کمتر است MRCکننده حول مقادیر مطلوب نسبت به روش  هاي خروجی ترکیب که در روش ما پراکندگی داده

 .برداري قرار گیرد کنند مورد بهره گیري نرم استفاده می هایی که از تصمیم تواند در سیستم موضوع می
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