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Diversity combining techniques play an important role in combating the destructive effects of channel
fading in wireless communication systems. In this work, we present a blind diversity combining technique
for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this
technique is very close to ideal MRC system which is accepted as an optimum receiver over fading
channels in presence of AWGN. This is a valuable result especially because higher bandwidth efficiency
is also achieved as compared with MRC. We also show:that in our proposed technique the variation of the
combiner output values around the values of transmitted symbols is less than the corresponding variation
in MRC system. Hence, for soft decision applications it is superior to MRC technique.
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1. INTRODUCTION

The most destructive characteristic of a wireless channel
is the random variation of its transfer function, known
as fading phenomenon. Diversity combining is a well-
known technique for combating this effect. Space,
frequency, time and coding diversities, as well as
combination of two or more of these, are employed in
different systems. Various combining techniques have
been suggested for multiple received signals [1, 2]. In
presence of additive white Gaussian noise, maximal
ratio combining (MRC) is a theoretically optimal
combiner over fading channels in which the received
signals from different paths are combined so as to
maximize the instantaneous SNR at the combiner output
[1]. Performance analysis of MRC system has been the
subject of interest in many research works [3-21]. In
ideal MRC scheme, it is assumed that the channel
coefficients are known at the receiver. However, in
practice, these coefficients have to be estimated using a
training sequence. Hence, the performance of non-ideal
MRC is affected considerably by the estimation error
[10-12].

By R Annavajjala et al. [13, 14] an analytical relation
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for average bit error rate has been derived for non-ideal
MRC with BPSK modulation and independent Rayleigh
channels. The performance of non-ideal MRC for
independent Rayleigh, Rician and Nakagami channels
has been analyzed and compared by W. M. Gifford et
al. [15]. W. M. Gifford et al. [16] the previous work
[15] has been extended to correlated channels. Non-
ideal MRC with correlated Rayleigh channels in
presence of colored noise is investigated by L.Schmitt,
et al. [17]. Independent and non-identical distributed
Rayleigh channels have been discussed by Y. C. Ko,
and T. Luo, [18]. On the other hand, modified MRC
receivers with improved performances have been
proposed in vary articles [19-21] by employing practical
channel estimations on fading channels. In these works,
the receiver structures are linear and a training sequence
is employed, which in turn decreases the bandwidth
efficiency.

In present work, we offer a blind nonlinear diversity
combining technique for Rayleigh flat fading channels.
In our proposed combining technique, instead of
estimating the channel coefficients, we directly estimate
the transmitted symbols and show that the optimum
estimator is a nonlinear polynomial system, which can
be realized by a Hammerstein filter. We show that the
performance of this blind combining technique is very
close to ideal MRC. This is a valuable result, especially
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because higher bandwidth efficiency is also achieved.
We also show that in our proposed technique, variation
of the combiner output values around the values of
transmitted symbols is less than the corresponding
variation in MRC system. Hence, the proposed system
is potentially superior to MRC for soft decision
purposes.

Hammerstein filter is a nonlinear polynomial filter
used in many applications such as system identification
[22-24], modeling [25] echo cancellation [27, 28], and
noise cancellation [29]. In one of our previous works
[30], we have proposed a new nonlinear equalization
technique (GHE) for frequency selective fading
channels, based on Hammerstein filters.

Also, in other works [31, 32], we have presented a
new Hammerstein diversity combining technique
(HDC) for frequency selective fading channels. In these
systems, training symbols are used for calculation of
optimized filter coefficients.

This paper is organized as follows: In section 2, we
present the system model. Section 3 introduces our
nonlinear blind Hammerstein diversity combining
technique. Theoretical basis of our proposed system is
presented in section 4. In section 5 a proper cost
function is introduced for obtaining the optimized filter
coefficients in a blind manner. Section 6 provides the
simulation results and discussions, before concluding
the paper in section 7.

2. SYSTEM MODEL

The equivalent low-pass discrete «time model of the
system is illustrated in Figure 1. In this work, we
employ BPSK modulation. The transmitted sequence
x(n)e{+1,-1} is drawn from an iid. source with

equi-probable symbols. The communication system
consists of M diversity branches. These branches are
assumed to be identical Rayleigh flat fading channels.

Hence, the SIMO channel can be presented by an Mx1
vector, as:

H=[h h, .. h,] (1)
where h, is the complex Rayleigh distributed random
gain of the ith channel as:

h, =h,, +jh,, )
h; and h,, are the real and the imaginary component

of the channel gain respectively. These two components
are independent, zero mean, Gaussian random variables
with variance o, =1. Furthermore, the branches are
assumed uncorrelated, i.e. :

E{h,h,}=0 for i j A3)
The channel fading is assumed sufficiently slow, such
that the channel® gains do not vary during one data

frame. The received signal from the ith channel is given
by:

yi(n)= b, x{n)w(n)

where -w,(n) isthe complex additive white Gaussian

i=1,2,..M (4)

noise at the ith receiver branch written as:

w,(n)=w; (n)+jw,,(n) (5)
w,,(n)-and w, (n) are uncorrelated, zero mean, Gaussian
random variables with variance . Equation (4) can be
expressed in matrix form:

Y(n)=Hx(n)+W(n) (6)
where H is the channel vector and v(n) and w(n) are

the received data vector and the noise vector,
respectively. These vectors are defined as:

Y(”):[Y1(”)“-)’M(”)]T 7
W(n)=[w(n)...w, (n)]" (8)
YH(”)
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Figure 1. System model
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As shown in Figure 1, the receiver consists of two
correlators banks, namely, inphase and quadrature
correlators. The complex received signal y(n) from

each branch is applied to both correlators. The outputs
of the inphase and quadrature correlators are the real
part ( y,(n)) and the imaginary part ( y,,(n)) of y,(n)
respectively. According to Equations (2) and Equation
(5), we can write:

yun) = b x(n)ew, () i=12. M
Yor ()= by, x(n )+ we, (n) @
We define the 2M x1 real vector Y(n) as:
§(n):[5/l(n) yz(”) 5’2&1(”)]T
10
o) e ) ) 3 ()] (10)
where:
- Yi(n) 1<i<M
X(n)_{yo(iM)(n) M+1<i<2M an

As shown in Figure 1, Y(n) is the input to the diversity

combining filters. This model is very convenient for
computational purposes, as we deal with real values
only. It is in fact similar to having 2M real fading
diversity branches modeled as Gaussian random
variables.

The output of the combiner, z(n), is applied to a

hard detector for making the output decision x(n).

3. BLIND HAMMERSTEIN DIVERSITY COMBINING
TECHNIQUE

A Blind Hammerstein Diversity -Combining (BHDC)
system is shown in Figure 2.  In this approach, a
Hammerstein filter of order (D is employed for each
diversity branch. The output poelynomial of the ith filter
is:

Zi(n):zle(kudd)gik .;'ik(n) i=12,..2M (12)

where g, is the kth coefficient of the output polynomial

of the ith filter and 3,(n ) is defined by Equation (11).

Note that only the odd powers appear in the summation
of Equation (12). Similar to our previous works, [30]
and [31], it can be proved that the terms corresponding
to the even powers are equal to zero.

The outputs of the filters are summed to produce the
combiner output z(n), i.e. :

Z(n):z:\:’ zle(kudd)gfk -}N/ik(n ) (13)
Equation (13) can be expressed in matrix form:
An)=Gy Y, (n) (14)
where G, isan M(D+1)x1 vector given by:
GH(”): B 8y = Bompy Bz 8Bxn o - 8Zam)p '
[ ) 3 (2m) ] (15)
, D odd
and Y, (n) isan M(D+1)x1 vector defined as:
v, (0)=[¥7 (n) ¥:(n) Yoi(n) ... ¥7(n)]"
W(m)=[¥ () V() () e ¥y ()] 6
, D odd
where Y, (n) is defined as the pth power of Y(n):
Y, (=[5 (n) 32(n) . 32(0)]" (17)

In fact, as shown in Figure 3, a Hammerstein combiner
can be modeled as a nonlinear subsystem for generating
Y, (n) followed by a linear subsystem defined by the

vector G, .
Our goal is to find G, such that the combiner
output z(n) is an optimum estimate of the transmitted

symbol. In section 5, we present a proper cost function
for obtaining the optimum filter coefficients.
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Figure 2. Blind Hammerstein Diversity Combining Technique (BHDC)
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4. THEORETICAL BASIS

In this section, we explain our motivation for using
Hammerstein filters in the proposed system. For
simplicity, we first consider a system with M=1. In
this case, at any specific time n, the observed signals at
the receiver are:

{}fl(n) =h,, x(n)+w,l(n)
¥ (") =hy, X(” )+W01(”)

Based on the observed data, we would like to
estimate the transmitted symbol x(n). Using MMSE
criterion, the optimum Bayesian estimator z(n) is
defined as below [33]:

(18)

= E{q5.5 )= [ xp(x7.5) dx (19)

where the notation p(.) denotes the probability density
function (PDF), and the time index is omitted for
notation simplicity. The conditional PDF can be written
as:

p(3.5.|x)p(x)

p(x%.5.) ==
[ p(5.5|x) p(x) dx

—x

(20)

The noise components in Equation (18) are uncorrelated
zero mean Gaussian random variables. Hence, for a
particular channel occurrence, the joint conditional PDE
of the observed data{3 .7}, conditioned on the

transmitted sequence becomes:

p(3.3:x)= p(5] x) p(5] x)

_ 1 _(y’l_hnx)z (y’z_hm")z 21
- (2710 Z)CXP][ 20'“,2 - 20'“,2

Also, based on our assumptions, we have:

p(x)=3 [6(x+1)+6(x-1)] (22)

Finally, by substituting Equations (20)-(22) in Equation
(19), the MMSE estimator can be obtained as:

z= tanh[z(hllyl-'—holyz)] (23)

Now, we generalize this result for any arbitrary value of
M as below:

2M
Z(n)=tanh[2Y h, ¥,(n)] (24)
i=1
where:
- h, 1<i<M
Thoy, M+l<i<2M (25)

The Maclaurin expansion of Equation (24) yields:
oAn)= [22 h ?,(n)}g [22 3 ?,(n)}
. - (26)

2 2M
+— |2 h y,(n — e
T i Yi(n)

3

Y,, (n)= SIG(n)+ NOI(n)

Y(n) Nonlinear 2n)= Gy Yu(n) = z5(n) + 2y (n)
—> > Gy ———
Subsystems

Figure 3. Hammerstein combiner

We can write this equation as z(n)=S,(n)+ S,(n), where:

{s.(n)—zi“”, S G (n)

S,(n )= Other Terms

@7

Here, the coefficients C, are known parameters that
can be obtained from Equation (26). As can be seen,
S,(n) is similar to Equation (13) which is the output of
a BHDC system. Furthermore, S,(n) is a subset of the
optimum estimator z(n). From the above discussion,

we conclude that-a BHDC system can be considered as
a subset of the optimum estimator for the transmitted
symbols.

5. CALCULATION OF THE
COEFFICIENTS

OPTIMUM

5. 1. Cost Function Since in blind systems no
training sequence exists, an exact value of error signal is
not available. Hence, instead of MMSE criteria we
present a more convenient cost function for our
optimization problem. To obtain a closed form for our
cost function, we first recall that a system with M
complex Rayleigh channels can be modeled by a system
with 2M real Gaussian channels. Hence, to simplify
our notations, in this section we assume real values for
the channel and the noise vectors, without any loss of
generality. Having made this assumption, Equation (16)
becomes:

o=yl o ) A P ] 28

Each element of this vector can be divided into two
terms as below:

=) <[ ) o) -

J=0
k-1 (29)

k i kej
a0 3 ok) ) =l o

Y
where s,(n) and n,(n) are the noise-free (signal)

term and the noisy term respectively.
From Equations (28) and (29) we have:

Yalo)= [5() - s0) -~ sh@)]

:[Sn(") SMI(“) SMD(”)]T (30)
+[n,(n) -~ ny(n) - ny(n)] = SIG (n)+ NOI(n)
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where as shown in Figure 3, s1G(n) and NOI(n) are the

signal vector and the noise vector at the output of the
nonlinear subsystem of the Hammerstein combiner,
respectively. The combiner output can then be written
as:

2(n)= G Y, (n)= G (SIG (n)+NOI (n))
= GLSIG (n) + GENOI (n)= z,(n)+zy(n) (31

—~ —
Output signal term Output noise term

where zy(n) and z,(n) are the signal part and the
noise part of the combiner output respectively.

Now, we define our proposed cost function as below:

P, (32)

J=15
P,

where P, and P, are the average powers of zy(n) and
z,(n) respectively, given by:

P=E{4 )= E{(6816(n) ) (SIGT ()G, )] (33)
P, =E{Z, = E{(GINoI(n))(NOI"(n)G, )} (34)
Hence, we can write:

P, GLRG,
TR GG, G3)
where Ry and R are the autocorrelation matrices of

SIG(n) and NOI(n) respectively:
R, = E{SIG (n)SIG" (n)} (36)
R, = E{ NOI (n)NOI" (n)} 37

Our goal is to achieve an estimate for the transmitted
symbol using the noise free part of the combiner output.
On the other hand since the transmitter employs BPSK
signaling, P, must be equal to one in absence of

AWGN and the fading effect.. Hence, we maximize the
cost function J in Equation (32) with the constraint
constraint P, = 1. This constrained optimization problem

will be solve in subsection 5-3.

5. 2. Blind Estimation of the Autocorrelation
Matrices To find the cost function J in Equation
(32), we first need to calculate the autocorrelation
matrices R, and R,. An insight into Equations (29)
and (30) reveals that while the elements of Y, (n) are
observable at the receiver, the elements of SIG(n) and
NOI (n) are not directly available. Hence, Ry and R,
have to be estimated from the observable information,
using an indirect method.

In this blind method, as the first step, we obtain the
closed forms of Ry and Ry. To explain our method,
without loss of generality, we calculate these
autocorrelation matrices for the special case where
M=2 and D=3. Using the equations and the

assumptions mentioned before, in this case we obtain:

hy b, b} hih
hh, h  Bh, h
R — 1772 2 1772 2
STl h* B, b BB (38)
hh o b BB, B

and:
o, 0 3K ol +30) 0
R.— 0 o 0 3K o +30) 39
N3 6% 430" 0 I +60K e’ 9hho’ (39)

0 3K o, +30", 9hh,c? 9k o2, +60K o°,

As can be seen, the elements Ry and R, are functions

S
of channel taps and noise moments. To estimate these
parameters, we first calculate the following statistical
averages:

a=E{yn)}=h +o? (40)
B=E{ y,(n)j=h; +o, (41
v =E{ y(n)y,(n) }=h,h, (42)
Using the above equations, we can write:

6=hf:(a—ﬁ)+ («;—ﬁ)zw? 43)
na =L (44)
(=0 =|a-0] (45)

Since the signals y (n) and y,(n) are observable at

the receiver, it is possible to estimate the parameters at
the left hand side of Equations (40)-(45). The estimated
values are:

Q-5 2 %) (46)
fo S 20 47
P=3r 2 nlo) (43)
g laAla-p ey (49)
ﬁz%f (50)
£=|a-d| (51)

where N. is the number of received symbols. Having
calculated these parameters, the estimated values of Ry
and R, can be obtained from Equations (38) and (39).

Note that in our technique, there is not any training
sequence and N, received symbols used for the

estimations are parts of information data. Hence,
BHDC is a completely blind method. It is worth saying
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that the proposed technique can easily be applied to any
modulation scheme and any arbitrary value of M and
D.

5. 3. Optimization As mentioned before, in BHDC
technique the filter coefficients are calculated such that
the cost function J in Equation (32) is maximized with
the constraint P,=1. Hence, we are encountered with a

constrained optimization problem, which depending on
the rank of matrix Ry, has two different solutions as

follows:

5.3.1.Case 1
have r=t, where r and t=M(D+1) are the rank and

R, has a full rank. In this case we

the dimension of R, respectively. We can write the

singular value decomposition (SVD) of the positive
definite matrix Ry as:

R=QA’Q"=(QA)(QA) (52)

where Q is a txt matrix that consists of the
orthonormal eigenvectors of Ry:

Q=[q, a, - q,] (53)

and A’ is a diagonal txt matrix of the eigenvalues of

A, 0 .0

L looa, 0
A= TR (54)

0 0 2

and A is a matrix with elements equal to the square
root of the elements of A”. Note that since Ry has a

full rank, its eigenvalues <are all positive. We, then
define the tx ¢ matrix R, as below:

-1

R.-(QA)'R (A1) (59)

Finally, as proved in the Appendix, the optimum values
of the filter coefficients are:

G,=(AQ") 1, (56)

opt
where A_. is the minimum eigenvalue of Ry, and I

is its unit-length vector corresponding eigenvector.

5.3.2.Case 2

we have r<t and the SVD of the positive semidefinite
matrix Rg is written as:

R, -[u| N]H“} [u[N] (57)

R, has not a full rank. In this case,

where S? is a diagonal rxr matrix of the non-zero
eigenvalues of Ry as:

.. 0
S*=|: - (58)
0 ... A

r

and U isa txr matrix that consists of the eigenvectors
of R, corresponding to signal space:

U=[u,...u,] (59)

Also, N is a tx(t-r) matrix that consists of the
eigenvectors of R, corresponding to null space:

N:[n”I ...n1] (60)

We now define the rxs matrix R, as:

N

~ -1
RN:S"UT[FRNN(NTRNN) NT]

(61)

-1
RN[FN(NTRNN) NTRN]US"

where S is a matrix that its elements are the square root
of the elements of 'S”. As proved in the Appendix, the
optimum values of the filter coefficients in this case are
now obtained as:

GH:[IAN(NTR,\.N)7INTR,\.]US"IM (62)

opt

where 1, 1is the eigenvector of R, corresponding to
its minimum eigenvalue.

6. SIMULATION RESULTS AND DISCUSSION

In this section, the simulation results of our proposed
BHDC technique are presented and compared with the
results obtained from an ideal maximal ratio combining
(MRC) system. In this work, Rayleigh flat fading
channels are considered, and simulations are performed
for 200,000 random channel realizations. The average
system performance is then obtained by Monte Carlo
method. Since each Rayleigh channel is equivalent to
two Gaussian channels, our results are also valid for
Gaussian flat fading channels. As mentioned before,
BHDC is a blind technique in which, the received bits
used for estimation are a part of information data. In this
work, the received data blocks with block length
N, =100 are used for channel estimation.

6. 1. Average System Performance  The average
BER versus SNR for both BHDC and ideal MRC
systems are shown in Figure 4. This figure is plotted for
one Rayleigh channel equivalent to two Gaussian
channels, and simulations are performed for two
different filter orders D=3 and D=5. As can be seen,

the performance of BHDC is very close to ideal MRC.
This is a valuable result, especially because higher
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bandwidth efficiency is also achieved as compared with
MRC.

A similar comparison is shown in Figure 5 for two
Rayleigh channels equivalent to four Gaussian channels.
As in the previous case, the performance of BHDC is
very close to ideal MRC, especially at lower values of
SNRs. It is also apparent from these results that the
system performance does not change significantly when
D changes, hence, we choose D=3 in our simulations.

To see the effect of received data block length N,

on system performance, simulations are performed for
three different values of N, € {20,100,500}. As can be

seen from Figure 6, the results are almost the same, and
we therefore choose N, =100 .

6. 2. Reliability Although the BER, averaged over all
possible channel realizations, is usually considered as a
measure for system performance, in many practical
situations like voice communications, the users expect
reliable communications while using the system and do
not care about the average performance. On the other
hand, there are some rare channel realizations that cause
significant error rate reducing the average system
performance.

Here, we focus on individual channel realizations
and compare the performances of BHDC and ideal
MRC systems. Based on the above discussion, we
define Relative Reliability Factor (RRF) as ‘the
probability that for a particular channel occurrence, H
the BER of BHDC is less than or equal to the BER of
ideal MRC, i.e.:

RRF = Prob( BER . < BERyc | H ) (63)

DC —

RRF versus SNR is calculated for, 200,000 two Rayleigh
diversity channels and the result is plotted in Figure 7.
As can be seen, when SNR>7 dB, in almost 90 percent

of channel realizations the performance of BHDC is
equal to or better than ideal MRC. For SNR>10 dB this

probability is almost 100 percent. This result shows that
at moderate and high SNRs the performance of BHDC
for most channel realizations is not worse than ideal
MRC.

6. 3. Comparison of MRC and BHDC for Soft
Decision Applications In soft decision systems
where no hard limiter is present, the combiner output is
taken as the decoding information [2]. To compare our
proposed combiner with ideal MRC in soft decision
purposes, we have plotted the histograms representing
the variation of the combiner output values around the
transmitted symbol values. The simulations were
performed for a particular two diversity Rayleigh
channel with normalized coefficients and 4,000,000
transmitted binary symbols. The results for both MRC
and BHDC techniques are plotted in Figures 8 and 9 for

SNR=5dB and SNR=20 dB respectively. It is apparent

from these figures that for both SNRs, the outputs of
BHDC combiner are much closer to the desired symbol
values +1 as compared with the corresponding values
in MRC system. Hence, for soft decision applications it
is superior to MRC technique.
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7. CONCLUSION

In this paper, we proposed a blind diversity combining
technique using Hammerstein type filters. To show the
performance of our proposed technique, simulations
were performed for Rayleigh flat fading channels and
BPSK modulation in presence of AWGN. Simulation
results of BHDC technique were compared with the
results obtained from an ideal maximal ratio combining
(MRC) system. We also defined relative reliability
factor (RRF) to compare the performances of BHDC
and ideal MRC for any channel realization. From our
simulation results, we conclude that:

i) The average BER of BHDC is very close to
ideal MRC. This is a valuable result, especially
because higher bandwidth efficiency is also
achieved as compared with MRC.

i) At moderate and high SNRs, for any channel
realization, the probability of the BER of
BHDC being lower than or equal to ideal MRC
is very high.

i)  The outputs of BHDC combiner are much
closer to the desired symbol values +1 as

compared with the corresponding values in
MRC system. Hence, for soft decision
applications it is superior to MRC technique.
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APPENDIX

In this appendix the proofs of the Equations (56) and
(62) are presented. As explained in section 5.3, we
desire to maximize the cost function J in Equation (32)
with the constraint P, =1, i.e., to find G, such that

PN

=GR, G, is minimized given P,=G R G, =1. We

consider two cases:
Case 1: R, has a full rank. In this case we have r=t,

where r and t=M(D+1) are the rank and the
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dimension of R, respectively. According to Equation
(33) and Equations (52)- (54) we have:

P.=GIRG,=Gi(QA)(QA)G, =1 (A1)
and:
QQ"'=Q'Q=1I (A-2)

We define the tx1 vector a as:

a=(Qa) 6, =(AQ")g, (A-3)
the constraint P, =1 can now be written as:
GIR,G,=a"a=1 (A-4)
This means that a is a unite-length vector. Morever,
since Ry has a full rank, the matrix AQ" is invertible

and we have:
G,=(AQ") a (A-5)
Substituting Equation (A-5) in Equation (34) leads to:

P,=GIR,G, :a"((/\ Q")f']IRV(A Q") a

:a"(NQA)"RV(A Q")'a (A6)

=a"R,a

where R, is defined by Equation (55). Finally, P, in
Equation (A-6) is minimized with the constraint
Equation (A-4). Using the lagrangian method for
optimization [33], the following equation must be
minimized:

A=aTﬁNa—K(aTa—1) (A-7)
where K is constant value. We have:
VA=2R,a-2Ka=0 = Rya=Ka (A-8)

where V is the gradient operator. Consequently, if a is
an orthonormal eigenvector of Ry, it can be a solution

for Equation (A-8) and< K is its corresponding
eigenvalue. Therefore, there exist ¢ solutions for the
above equation among which only one leads to the
global minimum. To find this global minimum, we use

the SVD of the positive definite matrix R, as below:

R =LT’L" (A-9)
where L is a txt matrix that consists of the
orthonormal eigenvectors of R, :

L=[1, 1, .. 1] (A-10)

and T’ is a diagonal txt matrix with eigenvalues of

i, 0 0
0 A, .. 0

r= : :2 " : (A-11)
0 0 x

Equation (A-9) can be written as:

Ry=2 70,17 (A-12)
Using Equations (A-6) and (A-12) P, can be written as:
PN=Zt:f,aTliliTa=Zt:f,|aTli|2 (A-13)

According to Equation (A-8), the vector a can be each
of the eigenvectors 1, . Therefore, due to orthonormality

of the eigenvectors we have:

By =l = Py = (A-14)

Nmin

where a,, is a solution of Equation (A-8) that leads to

t

the global minimum P, . Also, .. is the minimum

eigenvalue of Ry, and 1, is its unite-length

corresponding eigenvector. Using Equations (A-5) and
(A-14) the optimum values of the filter coefficients are:

G, =(AQ") L (A-15)

opt

Case 2: R, has not a full rank. In this case we have
r<t. According to Equations (57)- (60) we have:

U'u=1 U'N=0

N'N=1I N'U=0 (A-16)
Note that:

(SR IR |

NN" =1 (A-17)
Using Equations (57)- (59) R, can be written as:

R, =US'U" =(us)(us)' (A-18)
where:

Jo o0
s=| . (A-19)
0 A

the constraint P, =1 can now be written as:
P,=G'R,G, =GLUS(US) G, =1 (A-20)

Suppose that similar to Equation (A-3), the rx1 unite-
length vector a is defined as below:

a=(Us)' G, (A-21)
However, because R, has not a full rank, this equation
is not invertible and a unique solution for G, cannot

be obtained. Hence, in this case we cannot use the
definition Equation (A-21). We can write Equation (A-
21) as:

T
G, =SU'G,

u, \/A’_luIGH (A-22)

.. 0
. \/T o JruG,

In fact, Equation (A-22) implies that the rx1 vector a

a=(Us)
N/
IR
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is a mapping of the ¢x1 vector G, in the signal space.
To avoid the above problem, we now write G, as
below:

G, =Uc+Nb (A-23)
where ¢ and b are arbitrary rx1 and (t-r)x1 vectors

respectively. Note that Equation (A-23) can be written
as:

+--+b_n

r+l1 t—rt

G, =cu,+cu,+--+cu,+bn

mapping in the signal space

CI bl
b, (A-24)

mapping in the null space

Substituting Equations (A-18), (A-23) and (A-16) in
Equation (A-20) we have:

P,=GIR G, =(c"U"+b"N")(R,Uc+R Nb )

—c"UTUS U U c=c"S%=1 (A-23)
Now, we define the tx1 vector a as:
a=S8¢ = c=S"a (A-26)
Hence, we have:
¢'S’c=(Sc)'(Sc)=a"a=1 (A-27)

This means that a is a unite-length vector. Substituting
Equation (A-26) in Equation (A-23) becomes:
G,=US"a+Nb (A-28)
Substituting Equation (A-28) in Equation (34) leads to:
Py =GRy Gy
=(a"s"U"+b"N")R(US"a+Nb )
=a"STUTR,US"a+b"N"R,USa
+a"STUTRyNb+b"N"R N b

(A-29)

Finally, P, in Equation (A-29) is minimized with the

constraint Equation (A-27). Using the lagrangian
method, the following equation must be minimized:

A=P-K(a"a-1) (A-30)

Setting the derivative of Equation (A-30) with respect to
b equal to zero we get:

V,A=N"R,US"a+N"RTUS"a+2 N'RyN b=0 (A-31)

Note that R, =R}, and therefore we have:

b, =—(N"R,N) N'R,US"a (A-32)
Substituting Equation (A-32) in Equation (A-29) yields:
P, =a" { stuT [ I-R\N(NR,N) N }}

RN{[I—N(NTRNN)7'NTRN}U5*1}3 (A-33)

=a"R,a
where R, is defined by Equation (61). Substituting
Equation (A-33) in Equation (A-30) we have:
A=a"Rya-K(a'a-1) (A-34)
This equation is the same as Equation (A-7) and

therefore the optimum value for a is obtained as:

8=l =Py = (A-35)

opt — “min min

where A . is the minimum eigenvalue of R, and 1,
is its unite-length corresponding eigenvector. Finally,
substituting Equations (A-35) and (A-32) in Equation
(A-28) the optimum values of the filter coefficients are:

GH:[FN(NTRNN)"NTRN}US"IM (A-36)

opt
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