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A B S T R A C T  
   

In this paper, we develop a mathematical model to examine the transmission dynamics of curable 
malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has 
been taken as varying due to the emigration of susceptible population. The total population is divided 
into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by 
assuming co-infection among them. The model has two basic parts, qualitative and numerical. In 
qualitative part, we analyze the transmission dynamics of this co-infection by using equilibrium and 
stability analysis. In numerical part, the computational simulation is used to transmission flow of 
disease among various classes. The sensitive analysis is also performed. 
 
 
 

doi: 10.5829/idosi.ije.2013.26.07a.08 
 

 
1. INTRODUCTION 1 
 
Despite the development of antibiotics and vaccine, 
infectious diseases are still one of the major causes of 
human mortality, particularly in developing countries. 
The death toll in India from malaria and mTB, 
mycobacterium tuberculosis, is still very significant and 
the number of HIV infected people is quite high in 
India. The HIV, human immunodeficiency virus, leads 
to acquired immunodeficiency syndrome (AIDS). 
According to global report at Geneva (2004), 40 million 
people, worldwide, are infected with HIV, and due to 
this disease about 20 million people have died in last 
two decades. About 14000 people are newly infected 
each day. The disease HIV is untreatable, and only with 
the help of the antiretroviral therapy (ART) life span of 
an infected person can be increased and can remain 
healthy before acquired full-blown AIDS. The risk of 
being HIV infected can be reduced by using less risky 
behavior like using safety measures in sexual activities 
or avoiding sharing of needle for injection drug users. A 
good number of adults have adopted safer sexual 
behavior in response to the AIDS epidemic [1, 2]. 
                                                        
1*Corresponding Author Email: atarsingh1968@gmail.com (A. 
Singh) 

Mathematical models are playing a vital role in 
analyzing the spread of infectious diseases among the 
people [3, 4] and predicting the timing and extent of 
infection [5]. 

It is observed that in developing countries mTB and 
malaria are very common infections occurring among 
HIV-positive persons. Co-infection of TB and HIV are 
playing leading role in deaths from infectious diseases 
[6]. The spread of HIV infection plays vital role in 
increasing the mTB infection due to break down of the 
immune system. A person infected with mTB may have 
latent or active infection. If the infection is latent then 
this infection will not take off the form of active disease 
due to the strong immune system. It may happen that a 
person will remain infected with latent TB for years or 
forever. For infectiveness of HIV - related TB, DOTS 
strategy has been recommended by WHO to control the 
TB (Tuberculosis) [7]. There are other ways to control 
the TB cases like reducing HIV infection by some 
intervention programmes, providing understanding of 
spreading HIV, treating the patients by HAART etc. [8]. 
When the susceptible individuals who are not infected 
with TB, get infection first, they enter into latent 
infection class of TB. The latent TB becomes active TB 
or TB disease at the rate of 0.001 per year in case of 
HIV negative [9-11] and in case of HIV positive latent 
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TB progresses TB disease at the rate of 0.1 per year [12-
15]. Persons who are re-infected with TB, only 4.9% 
cases of TB leads to active disease  for HIV-negatives 
and 50% cases of Latent TB progresses to TB disease in 
case of HIV- positive infection [16]. The HIV cases in 
the population increase more rapidly in the presence of 
other diseases particularly mTB; to control the spread of 
HIV, the mTB must be treated effectively [17, 18].   

The HIV infection also increases risk of developing 
severity of malaria [19]. In the area of high malaria 
transmission, the HIV infection enhances the mortality 
rate among severe malaria cases by 1.6 to 2.5 fold. To 
control the impact of HIV on malaria, HAART 
technique has been recommended [20]. In area of high 
intensity transmission, HIV-1 increases the incidence of 
clinical among adults [21]. The effect of HIV-1 on 
malaria incidence is more apparent in adults as 
compared to children [22]. The impact of HIV-1 on 
malaria in sub-Saharan African population was studied 
and distribution of CD4 count among HIV infected 
persons was modeled [23] studied an age-structured 
homogeneous epidemic model. The education 
campaigns on HIV/AIDS are much more effective to 
slow down the HIV epidemic [24, 25]. There is a recent 
literature that addresses the development of various 
mathematical models of infectious disease; to slow 
down the infection rate the different techniques viz 
global stability, explicit series solution, study of 
vaccination, bifurcation analysis etc. are used to solve 
the different mathematical models [26-34].  

Both mTB and malaria enhances the risk of 
progression of HIV and decrease the survival period of 
patients with HIV infection. In view of this it is very 
relevant to study the co-infection of malaria-mTB-
HIV/AIDS in the population.  

Our model is extended version of ref. no. 18 (co-
infection of mTB-HIV/AIDS), the addition of one 
compartment of malaria in the form of co-infection of 
malaria-mTB-HIV/AIDS make the set of equations 
complex.  

The organization of paper is as follows. In section 2, 
description of the model and notations used for 
mathematical formulation are given. Section 3 contains 
governing equations and their solution in micro-vessel 
and tissue region. Section 4 provides equilibrium 
analysis. In section 5, the stability analysis is given. The 
numerical results are provided in section 6. Finally, in 
section 7, conclusions are drawn.  

 
 

2. THE MATHEMATICAL FORMULATION AND 
NOTATIONS   
 
The total population is divided into five classes as 
susceptible class of persons, treatable malaria infected 
population, mTB infected population, HIV infected 
class of persons and class of people with AIDS.  Let S 

(t), I1 (t), I2 (t), I3 (t), and A (t) be susceptible 
population, malaria infected population, mTB infected 
population, HIV infected population and population 
with AIDS at time t, respectively.  

We assume that susceptible individuals enter into the 
population from outside the system with constant 
immigration rate Q. The susceptible individuals become 
malaria infected at the rate of 1β . The susceptible 
individuals contact the mTB infected individuals at the 
rate of 2β  and the contacted persons become mTB 
infected. The transmission rate per unit time between a 
HIV infected individual and susceptible individual is 3β
. Some malaria infected individuals get HIV infection 
following the contact with HIV infective at the rate 4β  
and mTB infected population gets infection following 
the contact with HIV infective at the rate 5β . Let ε  be 
the rate at which the HIV infected individuals’ progress 
to AIDS and α   be the death rate due to AIDS. Also let 
d is the natural death rate from each class. 1λ  and 2λ  
denote the rates at which individual leave the malaria 
infected class and mTB infected class respectively, due 
to temporary immunity and again become susceptible. 
We also consider that there is no co-infection of malaria 
and mTB but getting HIV infection, there is a co-
infection of malaria-mTB-HIV/AIDS. The rate of 
transition diagram of infectious diseases is shown in 
Figure 1. 

 
 

 
Figure 1. Graphical depiction of the transmission          
dynamics of the disease. 
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3. THE GOVERNING EQUATIONS 
 
The transition flow of diseases among various classes is 
governed by the system of equations as given below: 

2211
332211 IIdS

N
SISISIQ

dt
dS λλ

βββ
++−

++
−=  (1) 

11131
4111 IdIII

NN
SI

dt
dI
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22232
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dt
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 (5) 

The total population at time t is denoted by 
)()()()()()( 321 tAtItItItStN ++++=  and Equations (1)-(5) 

can be written as:  
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4. EQUILIBRIUM ANALYSIS 
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4. 1. Theorem 1.      There are seven equilibrium 
values or points: 

(I) Equilibrium when population is free from the 
disease. 







 0,0,0,0,0 d

QP
 

The equilibrium point is obtained.  
 
(II) When the population is malaria infected only. In 
this case 032 === AII , as such the equilibrium point is 
given by 

( ) 







+− 0,0,0,)((, 11

1
1 λβ

β
d

d
Q

d
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P
 

It is possible only when )( 11 λβ +> d    
 
(III) When the population is mTB infected only. For 
this case 031 === AII , thus equilibrium point is: 

( ) 







+− ,0,0,)(,0, 22

2
2 λβ
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d
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This case exists only if )( 22 λβ +> d  
 
(IV) When the population is HIV infected but free from 
malaria and mTB, the equilibrium point is-   

( )AINP ,,0,0, 33
 

where  
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This case exists only if )(3 εβ +> d . 
 
(V) When the population is free from mTB but co-
infection of malaria-HIV prevails. The equilibrium 
point for this case is:  
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The equilibrium point P4 exists if:  
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(VI) When the population is malaria infection free 
but co-infection of mTB-HIV exists. Then the 
equilibrium point is: 
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In this case P5 is positive only when, 
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(VII) When co-infection of malaria-mTB-HIV exists 
In this case also, we consider that malaria infected 
population is not immigrated, so that the equilibrium 
point is: 
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Where 
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The equilibrium point P6 positive only when 
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4. 2. Interpretation 
 
(a) When the population maintains itself at a fixed 

level and the equilibrium conditions are satisfied, 
then that particular point is called equilibrium 
point. When the population is free from disease 
then the equilibrium size of population is Q/d. For 
other cases of infections, the equilibrium size of 
population is reduced. From the equilibrium 
analysis, it is found that there are three basal 
reproduction numbers viz 

1

1
1 λ

β
+

=
d

R , 
2

2
2 λ

β
+

=
d

R and

ε
β
+

=
d

R 3
3 . If )( 11 λβ +≤ d , )( 22 λβ +≤ d  and )(3 εβ +≤ d , 

then the infection of malaria, mTB and HIV 
respectively will die out and disease will not 
become endemic.  

(b) Now we draw some other inferences from 
equilibrium values for co-infection of mTB-HIV. In 
this case also the population size is reduced from 
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Q/d to 







+
− *

3
1 I

d
Q

d α
αε . The higher contact rate       

2β  (
3β ) enhances the infection rate of mTB (HIV). 

The effect of mTB recovery rate (
2λ ) is also clear 

from the equilibrium values that the higher values 
of 2λ reduces the mTB infection but susceptible 
population increases; the effect of conversion rate   
(ε ) from HIV to AIDS is that the higher values of 
ε  for time being increases the number of AIDS 
patients and they will die out by disease-induced 
deaths. But ultimately the AIDS cases are reduced 
due to reduced cases of HIV.  

(c) Co-infection of malaria-HIV. In this case also, the 
equilibrium population size is reduced from Q/d to









+
− *

3
1 I

d
Q

d α
αε . The infection rate of malaria (HIV) 

increases as contact rate 
1β (

3β ) increases. From the 
equilibrium point, it is noted that higher values of 
temporary recovery rate (

1λ ) decreases the malaria 
infection and enhances the population of 
susceptible individuals. On increasing the 
susceptible population, the HIV cases increase what 
we expect from experience. Thus, we can say that 
the temporary recovery rate enhances the HIV 
cases. The conversion rate (ε ) from HIV to AIDS 
has significant effect on AIDS. Death rate increases 
asε increases but HIV cases decreases. 

(d)  Now we examine the co-infection of malaria- 
mTB-HIV. For this case the population size reduces 
and all type infection increases as immigration rate 
increases. The higher values of d decrease the 
infection cases in each. The higher contact rates

1β , 

2β and
3β  enhances the infection of malaria, mTB 

and HIV, respectively. The increase in contact rates 
1β and 

2β  also enhances the susceptible population. 
It is straightforward that on increasing 

1λ  (
2λ ), the 

infection reduces and susceptible population 
increases. AIDS and HIV cases increase as 

1λ  (
2λ ) 

decreases. The effect of conversion parameter (ε ) is 
very significant. On increasingε , the death rate (α
) due to AIDS increases but AIDS and HIV cases 
reduce. Thus we conclude that the malaria and 
mTB infections have significant effect in fueling 
HIV and AIDS. 

 
 

5. STABILITY ANALYSIS  
 
We discuss the stability analysis of equilibrium points 
by taking small perturbations in consideration.  
 
Case I-IV.    Equilibrium points when population is 
either free from infection or   infected only by one 

disease. For the case when population is free from 
disease, the equilibrium point P0 is locally stable when 

)( 11 λβ +< d  (i.e.R1<1), 1)<R e. (i.)( 222 λβ +< d  and 
)1..()( 33 <+< Reid εβ  otherwise unstable. But in case when 

population is infected by any single disease, the 
equilibrium points P1, P2, and P3 are unstable. R1, R2 and 
R3 are the basal reproduction numbers for the malaria, 
mTB and HIV infection respectively. 

 
Case V.    The coefficients of a biqadratic equation give 
all roots with negative real part. Routh-Hurwitch 
conditions are:
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otherwise unstable. 

  
Case VI.     The coefficients of a biqadratic equation 
give all roots with negative real part. Routh-Hurwitch 
conditions are: 4

2
13213 )(0)4,2,1( bbbbbbandibi >−>= . For 

these conditions the equilibrium is locally stable. 
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stable. 
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6. NUMERICAL ANALYSIS  
 
In previous section, we have presented results of the 
existence of equilibrium solutions and local stability of 
the equilibrium solutions by linearising the set of 
equations analytically, but in this section we shall 
explore the behavior of the system and stability of the 
endemic equilibrium; to analyze this the analytic tools 
are not much convenient. Therefore, Range-Kutta fourth 
order method is the convenient one to find numerical 
solution of the set of equations with suitable parameters 
of the model in MATLAB software. The default 
parameter values are: 

0.12.0,29.0,3.0,021.0
,15.1,10.1,285.0,925.0,925.0,2000

21

54321

=====
======

αελλ
βββββ

andd
Q  and 

the initial values are: 
N(0)=20000,  I1(0)=3000,   I2(0)=4000,  I3(0)=4000, 
A(0)=600 
The co-infection equilibrium values are computed as 
follows: 
N*=33235.00, I1

*=3742.90, I2
*=2105.00, I3

*=6647.00, 
A*=1302.00 
 
 

1λ  0.0 0.1 0.2 0.3 0.4 0.5 

R1 44.04 7.64 4.18 2.88 2.17 1.77 

I1 50102 41072 33207 3742.4 1432.8 368.34 

2λ  0.0 0.1 0.2 0.3 0.4 0.5 

R2 45.04 8.64 5.38 2.89 1.99 1.42 

I2 46102 38243 29563 3554.9 1342.7 234.56 
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The numerical results are shown graphically in 
Figures 2-8. In Figure 2, the distribution of population 
with time is shown for different classes without 
migration and without recovery rates i. e. Q=0, 

021 == λλ . It is seen that susceptible population 
decreases continuously and infected population 
increases initially because there is no migration and 
recovery. Therefore all infected ultimately develop 
AIDS and will ultimately meet the disease induced 
deaths. Thus the total population in this case will be 
eradicating after some time period. Figure 3 depicts the 
variation of population with migration and with 
recovery rates. It is noticed in the figure that due to 
recovery rates, mTB and malaria infected populations 
decrease and susceptible population initially decreases. 
After some time, due to migration it tends to be 
constant. However, infection is not eradicated and it 
persists in the population. Figure 4 shows the variation 
of mTB infected population with respect to time for 
different recovery rates. We notice that on increasing 
recovery rate 2λ , the mTB infected population 
decreases, and in turn, the susceptible population 
increases.  In Figures 5 and 6 we see that the increment 
in ε  the HIV infected population decreases as they 
become part of the full blown AIDS population. In 
Figure 7 the variation of AIDS population for different 
values of disease- induced death rate is shown. It is seen 
that with the increase in disease-induced death rate the 
AIDS population decreases and ultimately dies away. 
The role of migration is shown in Figure 8. We observe 
that increasing migration increases the susceptible 
population and consequently increases AIDS 
population. From the above discussion, it is concluded 
that if mTB and malaria infections are treated 
significantly then acceleration to HIV infection can be 
kept under control.     

 
 
 

 
Figure 2. Variation of population in different classes for 
Q=0,d=0.021,  1,0,0 21 === αλλ  

,15.01,10.01,285.0,925.0,925.0,925.0 543211 ====== ββββββ  

 
Figure 3. Variation of population in different classes for 
Q=2000d=0.021 1,925.,925. 21 === αλλ , 
 
 

,15.01,10.01,285.0,925.0,925.0,925.0 543211 ====== ββββββ  

 
Figure 4. Variation of TB infected population for different 
values of 

2λ  
 
 

 
Figure 5. Variation of HIV-TB-Malaria infected population 
for different values ofε  
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Figure 6. Variation of AIDS population for different values of
ε  
 
 
 

Figure 7. Variation of AIDS population for different values of
α  
 
 
 

 
Figure 8. Variation of AIDS population for different values of 
Q 

7. CONCLUSION 
 
In this investigation, we have analyzed the transmission 
dynamics of malaria, mTB, HIV and AIDS. Our study 
has been devoted to examine the effect of malaria and 
mTB infection on transmission of HIV and AIDS by 
considering the three threshold parameters R1, R2 and R3 
related to malaria infection, mTB infection and HIV 
infection, respectively. R1<1, R2<1 and R3<1 then 
malaria, mTB and HIV infections die out, respectively 
and if R1>1, R2>1 and R3>1 then all the infections exist. 
All the seven equilibrium points have been determined. 
The equilibrium point P0 is locally asymptotically stable 
for the values of R1<1, R2<1 and R3<1, whereas the 
equilibrium points P1, P2 and P3 are unstable. The point 
P4 is locally stable, i. e., the population maintains itself 
at level of equilibrium whenever co-infection of 
malaria-mTB exists.  

The co-infection equilibrium points P4 (malaria-
HIV), P5 (mTB-HIV) and P6 (malaria-mTB-HIV) are 
always locally stable. Susceptible population enhances 
the infection rate. The disease becomes endemic due to 
immigration because immigration population is 
susceptible population. It is also found that higher 
temporary recovery rates increase the population of 
susceptible individuals. The infection may be controlled 
by reducing the susceptible population. Thus to reduce 
susceptible population, the permanent recovery is 
essential. The number of HIV infected cases increases 
due to the presence of other diseases, particularly 
malaria and mTB, separately and altogether. It is 
noticed that the HIV infection can be slowed down by 
treating malaria and mTB, effectively. For the sake of 
validity of our results, it is to be mentioned that on 
dropping malaria, our results of equilibrium and 
stability solutions are in agreement with the results of 
above ref. no. 18 and also ref. no. 22, 26.    
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APPENDIX     
 
Proof of theorem 2 is as follows: 
 
A. I: The population is free from disease 
  
Consider small perturbation about the equilibrium as

NnN ′+= ,
11 IiI ′+=  , AaAIiIIiI ′+=′+=′+= ,, 3322

. For 
equilibrium points P0, 0321 =′=′=′=′ AIII , so that for 
linearization and taking only first order quantities the set 
of Equations (6)-(10); yield: 
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dt
dn

α−−=  

( ) 111
1 )( id

dt
di

λβ +−=  

( ) 222
2 )( id

dt
di

λβ +−=  

( ) 33
3 )( id

dt
di

εβ +−=  

adi
dt
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The stability matrix X is formed from equations and is 
given by: 

Y=
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The characteristic equation is 0=− IY ω where ω  is 
eigen value and I is identity matrix. The eigen values of 
Y are: ),(),(, 2231121 λβωλβωω +−=+−=−= ddd  

)(),( 534 αωεβω +−=+−= dd . The first and last eigen 
values are always negative whereas second, third and 
fourth ones are negative only when )( 11 λβ +< d , 

)(),( 322 εβλβ +<+< dd . Thus in this case, we conclude 
that the matrix is locally stable otherwise unstable. 

   

A. II: When the population is malaria infected 
only. 
 
Consider small perturbation about the equilibrium point 
P1 by taking NnN ′+= , 

111 IiI ′+= , aAiIiI === ,, 3322
. 

Putting these values in the set of Equations (6)-(10), we 
have: 
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All above equations (AII.1)-(AII.5) are linearly 
dependent; we may leave (AII.3)-(AII.5) equations. 
 The stability matrix Y is formed from equations by 
(AII.1)-(AII.2) and is given by:  

Y=
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The eigen values of matrix Y are:
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N
Idd
′
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−+−=−= . Both the eigen values 

are negative, but the second value contradict the first 
case so that we conclude that the matrix is unstable for 
small perturbation.  

 

A.III: When the population is mTB infected 
only.  
 
Consider small perturbation about the equilibrium point 
P2 by taking NnN ′+= , 

11 iI = , aAiIIiI ==′+= ,, 33222
. 

Putting these values in the set of Equations (6)-(10), we 
have: 
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

′
′

−−+−= 2
533

3 )()( ββεβ
 

(AIII.4) 

adi
dt
da )(3 αε +−=  (AIII.5) 

All Equations (AIII.1)-(AIII.5) are linearly dependent; 
we may leave (AIII.2), (AIII.4) and (AIII.5) equations. 
Then the stability matrix Y is given by: 

Y=

















′
′

−+−

−

2
2

22
2

)(0

0

βλβ
N
Id

d  

The eigen values of matrix Y are:

2
2

2221
2)(, βλβωω
N
Idd
′
′

−+−=−= . In this case also the 

matrix is unstable for small perturbation.  
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A.IV: When the population is HIV infected but 
free from malaria and mTB,  

 
Here also we consider small perturbation about the 
equilibrium point P3 by taking NnN ′+= , 

11 iI = , 
aAAIiIiI +′=′+== ,, 33322 . Putting these values in the set 

of Equations (6)-(10), we have: 

adn
dt
dn

α−−=  (AIV.1) 

1
3

4
3

111
1 )( i

N
I

N
AId

dt
di









′
′

−
′

′+′
−+−= ββλβ

 
(AIV.2) 

25
33

222
2 )( i

N
I

N
AId

dt
di









′
′

−
′

′+′
−+−= ββλβ

 
(AIV.3) 

a
N
I

i
N
I

i
N
I

i
N

AI
d

dt
di

′
′

−
′

′
−−

′
′

−−







′

′+′
−+−=

3
32

3
53

1
3

433
3

33
3

)(

)(
2

)(

βββ

βββεβ  
(AIV.4) 

adi
dt
da )(3 αε +−=  (AIV.5) 

Since Equations (AIV.1)-(AIV.5) are linearly 
dependent, we may leave (AIV.2) -(AIV.3) equations 
thus the stability matrix Y is given by: 

Y=



















+−
′

′+′
−+−

−

)(0

0
2

)(0

00

3
33

αε

βεβ

d
N

AI
d

d  

The latent roots of matrix Y are: 

N
AIdd

′
′+′

−+−=−= 3
3321

2)(, βεβωω and )(3 αω +−= d . The 

all latent roots are negative; this is the contradiction 
with the first case so that it is unstable.  
 
A. VII: When the population is free from mTB 
but co-infection of malaria-HIVprevails.   
 
Consider small perturbation about the equilibrium point 
P6 by taking NnN ′+= , 

111 IiI ′+= , 
aAAIiIiI +′=′+== ,, 33322 .  Putting these values in the set 

of Equations (6)-(10), we have: 

adn
dt
dn

α−−=  (AVII.1) 

n
N
Ia

N
Ii

N
Ii

N
I

i
N
I

N
AIId

dt
di

′
′

−
′
′

−
′
′

+−
′
′

−









′
′

−
′

′+′+′
−+−=

1
1

1
13

1
412

1
1

1
3

4
31

111
1

)(

2
)(

βββββ

ββλβ  
(AVII.2) 

n
N
I

i
N
I

a
N
I

i
N
I

i
N
I

N
AII

d
dt
di

′
′

−
′
′

−
′
′

−
′
′

−−









′
′

+
′

′+′+′
−+−=

3
32

3
3

3
31

3
43

34
1

3
13

3
3

)(

2
)(

βββββ

ββεβ  
(AVII.3) 

adi
dt
da )(3 αε +−=  (AVII.4) 

The stability matrix Y is formed from equations by 
(AVII.1)-(AVII.4) and is given by 
 
Y= 





































+−
′
′

−
′
′

+

′
+′+′

−+−
′
′

−
′
′

−

′
′

−
′
′

+−
′
′

−

′
′+′+′

−+−
′
′

−

−−

)(00

2)()(

)(

2)(

00

3
34

1

3

*
13

3
3

34
3

3

1
1

1
41

3
4

31
111

1
1

αε

ββ

βεββββ

ββββ

βλββ

α

d
N
I

N
I

N
AIId

N
I

N
I

N
I

N
I

N
I

N
AIId

N
I

d

The characteristic equation of given matrix Y is: 

043
2

2
3

1
4 =++++ aaaa ωωωω  

where 

211 2 δδα −−+= da  

N
I

N
I

N
I

ddda
′

′
′
′

+−+
′
′

+++−++= 31
4134

3
321212 ))(())(2()( ββββεβδδαδδα

 

( )
N
I

N
Id

N
Idddda

′
′

′
′

+++−+

′
′

−−+++−+=

31
14134

3
1321213

))(2()(

)2())(()2(

εβββαββ

δαεβδδααδδ  

N
I

N
Id

N
I

N
I

dda

′
′









′
′

−+−+









′
′

′
′

−+++=

31
43131

31
3441214

)()(

))(()(

ββββδαε

ββββδδα  

where 

N
I

N
AIId

′
′

−
′

′+′+′
−+−= 3

4
31

1111
2)( ββλβδ  

N
I

N
AIId

′
′

+
′

′+′+′
−+−= 1

4
13

332
2)( ββεβδ  

The coefficients of a biqadratic equation give all roots 
with negative real part. Routh-Hurwitch conditions are:

4
2
13213 )(0)4,2,1( aaaaaaandia i >−>= . For these 

conditions the equilibrium P6 is locally stable.  

 
A. VI: When the population is malaria infection 
free but co-infection of mTB-HIV exists. 
 
Here also we consider small perturbation about the 
equilibrium point P5. By substituting NnN ′+= ,

11 iI = ,
aAAIiIIiI +′=′+=′+= ,, 333222

, in Equations (6)-(10), we 
get:  

adn
dt
dn

α−−=  (AVI.1) 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

A. Singh et al. / IJE TRANSACTIONS A: Basics   Vol. 26, No. 7, (July  2013)   729-742                                                740 
   

1
2

2
2

2
2

23
2

52

25
3

2
32

22
2

)(

2
)(

i
N
I

n
N
I

a
N
I

i
N
I

i
N
I

N
AII

d
dt
di

′
′

−
′
′

−
′

′
−

′
′

+−









′
′

−
′

′+′+′
−+−=

βββββ

ββλβ  
(AVI.2) 

a
N
In

N
Ii

N
Ii

N
I

i
N
I

N
AIId

dt
di

′
′

−
′
′

−
′
′

−+
′
′

−









′
′

+
′

′+′+′
−+−=

3
3

3
32

3
351

3
3

35
2

3
23

3
3

)(

2)(

βββββ

ββεβ  
(AVI.3) 

adi
dt
da )(3 αε +−=  (AVI.4) 

The stability matrix Y is formed from equations by 
(AVI.1)-( AVI.4)  and is given by: 

Y=





































+−
′
′

−
′
′

+

′
′+′+′

−+−
′
′

−
′
′

−

′
′

−
′
′

+−
′
′

−

′
′+′+′

−+−
′
′

+−

−−

)(00

2)()(

)(

2)())((

00

3
35

2
3

23
3

3
35

3
3

2
2

2
525

3

2
32

22
2

22

αε

ββ

βεββββ

ββββ

βλβλβ

α

d
N
I

N
I

N
AIId

N
I

N
I

N
I

N
I

N
I

N
AIId

N
Id

d  

The characteristic equation of above given matrix Y is: 

043
2

2
3

1
4 =++++ bbbb ωωωω  

Where 

431 2 δδα −−+= db  

N
I

N
I

N
I

dddb
′

′
′

′
β−ββ+β+

′
′

εβ+δ+δα+−δδ+α+= 32
3552

3
343432 ))(())(2()(

 

( )
N
I

N
Id

N
Iddddb

′
′

′
′

+++−+

′
′

−−+++−+=

32
25235

3
3343433

))(2()(

)())(()2(

εβββαββ

δαεβδδααδδ  

N
I

N
Id

N
I

N
Iddb

′
′









′

′
−+−+









′

′
′

′
−+++=

32
53233

32
3552434

)()(

))(()(

ββββδαε

ββββδδα  

where 

N
I

N
AIId

′
′

−
′

′+′+′
−+−= 3

5
32

2223
2)( ββλβδ  

N
I

N
AIId

′
′

+
′

′+′+′
−+−= 2

5
23

334
2)( ββεβδ  

The coefficients of a biqadratic equation give all roots 
with negative real part. Routh-Hurwitch conditions are:

4
2

13213 )(0)4,2,1( bbbbbbandibi >−>= . For these conditions 
the equilibrium is locally stable.  
 

A. VIII: When co-infection of malaria-mTB-HIV 
exists.  
Consider small perturbation about the equilibrium point 
P7. Now substituting *NnN += , *

111 IiI += ,   

aAAIiIIiI +=+=+= **
333

*
222 ,, ,  in Equations (6)-(10), we 

have: 

adn
dt
dn

α−−=  (AVIII.1) 

n
N
Ia

N
Ii

N
Ii

N
I

i
N
I

N
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d
dt
di
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1
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*
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*
3

4*

**
3

*
2

*
1

111
1

)(

2
)(

βββββ

ββλβ

−−+−−





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(AVIII.2) 
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i
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AIIId
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(AVIII3) 
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adi
dt
da )(3 αε +−=  (AVIII.5) 

The stability matrix Y is formed from equations by 
(AVIII.1)-(AVIII.5) and by equilibrium points as: 

Y= 


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The characteristic equation of given matrix Y is: 
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2

3
3

2
4

1
5 =+++++ ccccc ωωωωω  

where 
3211 2 γ−γ−γ−α+= dc  

*
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where 
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The coefficients of above equation give all roots with 
negative real part. Routh-Hurwitch conditions are: 

0)5,4,3,1( >=ici
 

2
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2
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2
1

2
1

2
3321541 )())(( ccccccccccccccccand +−>−−−− .  

For these conditions the equilibrium point P7 is locally 
stable.  
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  چکیده
 

  

 درمان رقابلیغ دزیا / يو يآ اچ و علاج، قابل سل درمان، قابل يایمالار انتقال ییایپو یبررس يبرا مقاله، نیا در
 را یبررس مورد يجامعه ياندازه ان،یمبتلا مهاجرت به  توجه با   .میسازیم یاضیمدل ر کی آنها با همزمان يهاعفونت و

 يدارا مسلول،  ا،یمالاربه  آلوده مستعد، :يهاعنوان شاخه  تحت  ریز  پنج به تیجمع کل  .میریگیم نظر در ریمتغ
 دو يدارا مدل نیا .است شده میتقس آنها، انیم در همزمان عفونت فرض با دزیابه  مبتلا و يو يآ اچ عفونت
 استفاده با همزمان عفونت نیا انتقال ییایپو لیتحل و هیتجز به ما  ،یفیک بخش در .است یکم و  یفیک ،یاساس بخش

 هیشب از  به  مختلف طبقات انیم در  يماریب  انتقال انیجر   ،يعدد بخش در .میپردازیم ثبات  و تعادل لیتحل و هیتجز از
 .است شده انجام زین تیحساس  لیتحل و هیتجز .استفاده شده است  یمحاسبات يساز
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