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A B S T R A C T  
   

In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate the 
deformation and breakup of a falling droplet under the gravity force. First, this model is applied to ensure 
that the surface tension effect is properly implemented in this model. Two tests have been considered. 
First, it has been checked an initial square drop in a 2D domain can freely deform to a circular drop and 
secondly the coalescence of two static drops that merge to become a single circular drop is simulated. In 
order to further verify the model, Laplace law for static drops is performed. In the next step, wall effects 
on the droplet shape and its average velocity have been studied. It is seen that the average velocity of 
droplet at different times is independent of wall effects when the ratio of the width of the channel to 
droplet diameter (W/D) is more than 6. In the final section of the paper, deformation and breakup of a 
falling droplet for some range of Eotvos and Ohnesorge numbers are investigated. It is seen that at very 
low Eotvos numbers, where the surface tension force is dominant, the droplet deforms slowly and reaches 
a steady state without breakup. At higher Eotvos numbers gravitational force overcome the surface tension 
force and the droplet deforms more. For breakup modes at the small Ohnesorge number, if Eotvos number 
be increased to an intermediate value, the droplet deforms more than from a state of low Eotvos number 
value and eventually forms a backward-facing bag. Finally, for high Eotvos numbers, fragments of droplet 
are sheared from the edges and the shear breakup mechanism is seen. On the other hand, the stabilizing 
effect of the Ohnesorge number, (the ratio of viscous stresses and surface tension) is shown. At higher 
Ohnesorge number, the simulations show that the main effect of increasing Ohnesorge number is to move 
the boundary between the different breakup modes to higher Eotvos number. 
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1. INTRODUCTION1 

 
Deformation and breakup of a single droplet falling 
under gravitational forces is a crucial subject. The 
breakup mechanism of liquid droplets can be found in 
many industrial appliances such as fuel injectors, paint 
sprays, and ink - jet printers as well as in natural 
phenomena like raindrops, and is of great importance to 
applications such as mixing in multiphase systems, 
deformation of biological cells, blending of molten 
polymers, and, etc. There is a large body of work 
dealing with this subject under the general heading of 
two phase flows. Here, deformation and fragmentation 
of a single droplet falling under gravitational forces is of 
interest. Fakhri and Rahimian [ 1,  2] presented numerical 
simulations of descending droplets for a variety of 
                                                        
1* Corresponding Author Email:mfarhadi@nit.ac.ir   (M. Farhadi) 

Ohnesorge, Archimedes, and Eotvos numbers. All 
simulations were performed in 2D or axi-symmetric 
domains. Magarvey and Taylor [ 3] investigated the 
breakup of large falling drops in stagnant air by 
producing unstable droplets greater than about 7 mm in 
diameter. They observed that for the larger parent drop 
breakup is most likely to happen and the number of 
fragments tends to increase. Kojima et al. [ 4] studied 
deformation and breakup of a liquid droplet under 
gravity in another miscible fluid at low drop Reynolds 
numbers for low density and viscosity ratios. Ni et al. 
[ 5] investigated deformation and breakup of a falling 
droplet in a 2D channel with density ratios of 1.05 and 
1.125. They solved the Navier–Stokes equations (NSE) 
using a projection method together with a level set 
technique. They also examined wall effects on the 
motion and the breakup of the drop. Feng [ 6] studied the 
steady state flow f deformable and outside of a 
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deformable liquid drop falling at its terminal velocity 
using a Galerkin finite element method. Han and 
Tryggvason [ 7] studied the unsteady motion of falling 
liquid drops for different fluid–fluid combinations, 
using a finite difference front tracking method. Results 
are classified for two density ratios, 1.5 and 10, and 
different Eotvos and Ohnesorge numbers. Jalaal and 
Mehravaran [ 8] using the direct numerical simulation, 
studied the deformation, disintegration and dispersion of 
fragments of a single falling droplet. 
     Recently, the lattice Boltzmann method (LBM) has 
been developed from the lattice-gas automata [ 9,  10]. 
The LBM has emerged as an alternative method for 
conventional computational schemes. Unlike 
conventional numerical methods based on the 
discretization of macroscopic continuum equations, the 
LBM is based on microscopic models and mesoscopic 
kinetic equation. The LBM recovers the Navier-Stokes 
equations in the incompressible flow limit. This model 
is a power full method for simulation of single phase 
flows, such as dispersion and deposition of micro 
particles [ 11], nanofluid [12], nano-particles [ 13], 
porous media [ 14] and etc. 
     The LBM is a promising technique in modelling 
multiphase flow problems, particularly for flows with 
complex topological changes of the interface or in 
complex geometries. In recent years, it has been 
exposed to the attention of researchers due to the lower 
run-time compared with other CFD methods, simplicity 
of applying the multiphase flow equations in the LBM 
algorithm, and capability of LBM in solving unsteady 
problems. A number of models have been developed to 
model multiphase flows in LBM. The color function 
model Proposed by Gunstensen et al. [15] is the first 
multiphase model in LBM. Two components are used in 
this model to represent two types of fluids. The red and 
blue particle distributions each follow its own LB 
equation. The collision term in the equation includes 
both the self-interactions of particles of the same type, 
and the cross interactions of particles with different 
colors. The latter one is used to generate a surface 
tension between the two phases, and is calculated using 
the gradient of the color function.  

In order to maintain phase segregation, the particle 
density near the interface needs to be redistributed to 
minimize mixing. The interparticle potential model 
proposed by Shan and Chen [ 16] is the most widely 
used multiphase LBM model due to its simplicity and 
versatility, and for this study due to simplicity of taking 
place external force in the model because of existence 
separate forces term, and capability of model for 
simulating flows at small Ohnesorge numbers (Oh<0.1). 
An interaction force between the particles is introduced 
to account for the molecular interactions in non-ideal 
fluids. Consequently, the fluid spontaneously segregates 
into dense and dilute phases under proper condition 
according to the equation of state of the fluid. The 

automatic phase separation is an attractive feature in this 
model, since it does not require the interface-tracking or 
interface-capturing step that is often necessary in other 
models. The implementation of the model is also 
straight forward since the interaction force can be 
simply calculated from the pair-wise interaction 
potential. In recent years, many researches have been 
conducted to discuss the properties and the 
improvements of the interaction potential model (Shan, 
[ 17]; Sbragaglia et al., [ 18]). The free energy approach 
proposed by Swift et al. [ 19] is based on the 
thermodynamic equilibrium of fluid phases. The free 
energy functional at a fixed temperature includes both 
the bulk part and the interface part. The former 
introduces equilibrium between two phases, while the 
latter introduces surface tension. The model is 
incorporated into LBE by adding a term to the 
equilibrium distribution to ensure the correct stress 
tensor condition. The free energy model is also capable 
for automatic phase separation, and it is easier to specify 
density and surface tension values in the free energy 
model than in the interaction potential model. However, 
a major criticism of the free energy model is that it lacks 
Galilean invariance, i.e. the physical properties in the 
model are dependent upon the velocity. Proposed by He 
et al. [ 20,  21], the mean-field theory treats the 
interparticle interaction using the mean-field 
approximation. The mean-field theory model uses two 
sets of particle distribution function (pdfs) to simulate 
the hydrodynamic properties. The first set of pdf 
describes pressure and velocity fields, whereas the 
second set tracks the dynamics of the interface. 
     In this paper, the multiphase model proposed by 
Shan and Chen (S-C model) [ 16] is employed to 
investigate the deformation and breakup of a droplet 
falling due to the gravitational effects. There are many 
studies which applied this model in the two-phase flow 
problems. However, in this study for the first time S-C 
model has been used to simulate falling droplet in the 
vertical channel and first time lattice Boltzmann method 
is applied to investigate the deformation and breakup of 
droplet under gravity at small Ohnesorge number 
(Oh<0.1). In fact, this study demonstrated the ability of 
S–C model in the LBM for simulated falling droplet at 
small Ohnesorge numbers. In the previous studies of 
falling droplet in 2D vertical channel by LBM, dynamic 
behaviour of the droplet at small Ohnesorge number 
(Oh<0.1) has not been studied. In this study, the side 
wall effects have been studied on falling droplet in the 
elongated vertical channel by LBM for the first time. 
     In the next sections of this paper, following subjects 
are studied: In Section 2, the governing equations and 
methodology of the S-C model of the lattice Boltzmann 
method are given. In section 3, this model validation is 
presented. Section 4 represents the numerical results of 
deformation and breakup of a falling droplet. Finally, a 
summary of the results and conclusions are given. 
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2. SHAN AND CHEN INTERPARTICLE POTENTIAL 
LBE MODEL  
 
2. 1. Description of the Model   the Interparticle 
potential model of the lattice Boltzmann method 
proposed by Shan and Chen [ 16] is applied to study 
droplet falling in the vertical channel under gravity 
force. Shan and Doolen [ 22] have reviewed this 
multiphase model and the details of the multiple 
component LBE model with interparticle forces are 
given. For a 2D vertical channel, simulations are 
conducted on D2Q9 [ 23] lattice. The inteparticle 
potential model can be applied to simulate a binary 
mixture. In this case, each component σ (σ = 1 or 2) has 
its own distribution functions if

σ  that are governed by 
their own evolution equations: 

( )1( , ) ( , ) ( ( , ) ( , ))ix c x x u+ + − = − − eq
i t t i i i eqf t f t f t f nσ σ σ σ σ σ

σ
δ δ

τ
 (1) 

where, ( , )if x tσ  is the number density distribution of 
component σ  with velocity ci at position x  and time t. 

στ  is the relaxation parameter of component σ and 
( )eq

if
σ  is the equilibrium distribution given by: 

(2) 
2

( ) 2
2 4 2

. .
1 ( )

2 2
i eq i eq eqeq

i i
s s s

f n
c c c

σ σ σ
σ σω

 
= + + − 

 

c u c u u

 

Discrete lattice velocities in the above equation are 

[ ]1 2 3 4 5 6 7 8

0 1 0 1 0 1 1 1 1
, , , , , , , =

0 0 1 0 1 1 1 1 1
− − − 

 − − − 
c c c c c c c c  (3) 

and weighting factors are 

4 ,      i=0
9
1 ,      i=1,2,3,4
9
1 ,    i=5,6,7,8
36

iw




= 




 
(4) 

Relaxation parameter (τσ) related to the kinematic 
viscosity by: 

2( 0.5 )sc tσ στ τ δ= −  (5) 

where, υσ is kinematic viscosity of component σ. 1tδ =  
and 2 1

3sc RT= =  are chosen, where cs is speed of sound in 

Lattice scale. The number density and velocity of 
component σ can be obtained by: 

( , ) ( , )

( , ) ( , )

i
i

i i
i

n t f t

n t f t

σ σ

σ σ σ

=

=

∑

∑

x x

u x c x
 

(6) 

The mass density is 

m nσ σ σρ =  (7) 

where, mσ is the molecular mass of component σ. 

In order to induct nonlocal interaction among particles, 
Shan and Chen [ 16] defined an interaction potential 
between components σ andσ  

( ) ( ) ( )V G σ σ
σσψ ψ′ ′=x, x x x  (8) 

where, 
i tδ′x = x + c  is the location of the neighbor sites, 

σψ  and σψ  denotes the interaction potential of 
components σ  and σ , respectively. Gσσ  is the 
interaction strength between two components σ  and 
σ . For two immiscible fluids, when σ  and σ  are 
different (denoting two different phases), Gσσ  is 
positive, resulting in repulsion forces between the 
particles of the two phases. When σ  and σ  are the 
same, Equation (8) presents the interaction between the 
particles of one phase, which implies that the nature of 
the force is attractive and therefore Gσσ  should have a 
negative value. The magnitude of Gσσ

 controls the 
surface tension. For nearest neighbor interactions, Gσσ

 
is defined as: 

0         
( , )

     
i

i

t
G

G tσσ
σσ

δ
δ

′ − >
′ =  ′− =

x x c
x x

x x c
 (9) 

The interaction strength parameters G11 and G22 
describe the interaction within each individual 
component. The original form of the interaction 
potential introduced by Shan and Chen [ 16,  24] is 
widely used and is given as follows: 

0
0

( ) 1 exp ρψ ρ ρ
ρ

  −= −  
  

 (10) 

In Equation (10), ρ0 was set equal to 1. While 
component 2 is assumed to be ideal gas so that G22=0 
and ( )ψ ρ ρ=  [ 24- 26], the interaction between the two 
components and the immiscibility of the mixture are 
described by G12.  

In the multicomponent model proposed by Martys 
and Chen [ 27], the macroscopic velocity (

eq
σu ) is given 

by 

eq

σ σ
σ

σ

τ
ρ

′=
Fu u +  (11) 

where, ′u  is a velocity common to the various 
components defined as 

/
/

σ σ σ
σ

σ σ
σ

ρ τ

ρ τ
′ = ∑

∑
u

u  (12) 

and σF is the total interaction force on fluid component 
σ including fluid–fluid interaction (

f
σF ) fluid–solid 

interaction ( s
σF ) and gravity force (

g
σF ), i.e.: 

f s g
σ σ σ σ= + +F F F F  (13) 
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Given the form of potential in Equation (8), the rate of 
net momentum change induced at each site due to the 
interaction is simply given as in [ 16]: 

( ) ( ) ( ) ( )xF x, x x x + c c∇ ′= = − = − ∑ ∑ i i
i

dp V G t
dt

σ
σ σ σ

σσ
σ

ψ ψ δ  (14) 

In case of the fluid-solid wall interaction, separate 
forces should be calculated for each phase to account 
for the fluid-solid forces. T,he source term has the same 
formulation for both single component multiphase [ 28] 
and multicomponent multiphase flows [ 27], namely: 

(15) ( ) ( )s ads i i t i
i

G w Sσ σ σψ δ= − +∑F x x c c  

where, adsGσ  is the adsorption coefficient for phase σ, and 
w is the weighting factor as Equation (4) for the D2Q9 
lattice, S is a switch, which takes on the value 1 when 
the lattice node at i tδ+x c  is a solid node, otherwise it is 
zero, for the present study, the solid nodes are not 
moving and therefore S  is not a function of time. 
Interaction of the solid and fluid nodes determines the 
contact angle of the liquid and solid surface, the 
adsorption coefficient, adsGσ  determines the magnitude 
and type of the interaction force. Based on the 
magnitude of the adsorption coefficient, three different 
types of surface can be specified, namely: hydrophobic 
(non wetting), neutral, and hydrophilic (wetting) 
surfaces [ 27,  29]. 

Finally, the macroscopic densities and velocity are 
calculated from the distribution functions: 

( , ) ( , )

1( , ) ( , ) ( , ) ( , )
2

x x

x U x c x F x

=

= +

∑ ∑

∑ ∑ ∑

i
i

i i
i

t m f t

t t m f t t

σ σ

σ

σ σ σ

σ σ

ρ

ρ

 
(16) 

and function of total pressure are obtained [ 30, 31]. 

( , )
2

RTP t RT n Gσ σ σ
σσ

σ σσ

ψ ψ= +∑ ∑x  (17) 

 
2. 2. Gravity Force   Falling of a droplet is the result 
of gravity force and density difference between two 
fluids (components or phases). Figure 1 shows the 
schematic of gravity and buoyancy effects on droplet 
suspended in the other fluid. In order to consider the 
buoyant effect associated with density difference 
between two fluids, an effective buoyant force, ( ,e σF ) 
was introduced. It is defined by [ 26] 

,e
a pplied

σ σρ= ×F g  (18) 

In fact, because of the density difference between the 
phases, the buoyancy and gravity Consequence is 
defined as: 

, ( )net g eff eff eff H Lρ ρ ρ= ∆ = −F g g  (19) 

Equating Equations (18) and (19) yields to: 

 
Figure 1. Representation of the buoyancy force versus the 
weight force. Hρ  is the heavier fluid density (droplet fluid in 
this study), and Lρ  the lighter fluid density (surrounding fluid 
in this study). 
 
 

( )eff H L
a pplied

σ

ρ ρ
ρ

−
=

g
g  (20) 

where, ρH is the heavier fluid density and ρL is the 
lighter fluid density, and ρσ=H is the density of the 
droplet as actually used in the simulation. The gapplied 
represents the gravitational acceleration actually used in 
the simulation and applied to component σ only. Thus, 
Δρeff and geff are the Effective physical density difference 
and gravitational acceleration quantities. While the ρσ=H 
and gapplied are simply simulation surrogates that yield 
the same buoyancy effect. This approach of placing the 
buoyant effects into a body force greatly expands the 
range of effective density difference between droplet 
and surrounding fluid that can be readily simulated with 
the S-C model. 
 
 
3. NUMERICAL VALIDATION 
 
3. 1. Relaxation of Liquid Drops   To ensure that the 
surface tension effect is properly implemented in this 
model, two test cases is considered. First, it has been 
checked an initial square drop in a 2D domain can freely 
deform to a circular drop (see Figure 2) and secondly 
the coalescence of two static drops that merge to 
become a single circular drop is simulated (see Figure 
3). In the first test, physical setup is a square drop with a 
length of 40 lattice units which is placed in the middle 
of the computational domain with 100×100 lattice units. 
In the second test, physical setup is two circular drops 
with Radius 15 lattice units which is placed in the 
computational domain with.160×160 lattice units and in 
both of them periodic boundary conditions are applied 
in all directions. In all simulations for this paper, 
ρL=c=0.25, ρH=d = 1 (‘c’ denotes the continuous or 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

785                                                   S. E. Mousavi Tilehboni et al. / IJE TRANSACTIONS A: Basics   Vol. 26, No. 7, (July  2013)   781-794 

surrounding fluid and ‘d’ denotes droplet fluid). Thus, 
the density ratio (ρd/ρc ) is 4. For both fluids the 
kinematic viscosity is 0.1667. 

Both cases show deformation to the final circular 
drop, indicating that the surface tension effect is 
correctly implemented. 

 
 

    
T=0 

 
T=80 

 
T=160 

 
T=240 

 

    
T=320 

 
T=400 

 
T=1200 

 
T=4000 

 
Figure 2. Free deformation of a static drop from square shape to a circular shape at different lattice time steps (iterations of LBM). 

 
 

    
T=0 

 
T=400 

 
T=800 

 
T=1200 

 

    
T=1600 

 
T=2000 

 
T=4000 

 
T=8000 

 
Figure 3. Coalescence of two identical circular drops and free deformation to a circular shape at different lattice time steps (iterations 
of LBM). 
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3. 2. Laplace law   To further validate the code, the 
static drop test is performed. The interfacial tension was 
evaluated based on Laplace’s equation given by the 
following expression [ 32]: 

in outP P P
R
σ

∆ = − =  (21) 

where, R is the radius of the drop at equilibrium and σ is 
the surface tension coefficient, and ΔP is the pressure 
difference between the inside and the outside of the 
drop. In order to verify the Laplace law, initially static 
drops with different radii are generated inside the 
computational domain with 100×100 lattice units. The 
domain boundary used periodic boundary conditions. 
The pressure difference was calculated using equation 
of state in Equation (17). The predicted values of the 
pressure difference are plotted against 1 R in Figure 4. 
Figure 4 presents the pressure difference between the 
inside and the outside of a series of drops of different 
sizes as a function of the inverse drop radius. It can be 
seen that the Laplace’s law is satisfied, because the 
linear fit of the points on the plot is in very good 
agreement with points. The linear relationship between 
ΔP and the inverse of the drop radius confirms a 
constant value of the surface tension. The slope of the 
linear line is 0.063 representing the coefficient of 
surface tension between two fluids for this study. Figure 
5 shows the density profile along the centerline of a 
static drop, as indicated the density ratio, 4=H Lρ ρ  and 
R=25 lattice units. 

 
 

4. RESULTS 
 

In this section, the main objective of the paper is delved, 
i.e. simulation and discussion of the falling droplet 
under gravitational effects. For all subsequent 
simulations, bounce-back boundary condition (BC) is 
applied at the side walls and periodic BC is used at the 
up and down boundaries [ 33].  
 
 

1/R

∆P

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.002

0.004

0.006

0.008

 
Figure 4. Verification of Laplace law. Pressure difference 
between the inside and the outside of a series of drops as a 
function of inverse drop radius with linear fit of the points. 
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Figure 5. Density profile along the centerline of the drop. The 
heavier Liquid (drop fluid) is surrounded by the light fluid. 
 
 
 
 
4. 1. Non-dimensional Numbers       In the case of a 
falling droplet in a motionless media, the acceleration 
due to gravity, surface tension between the fluids, 
viscosity of fluids, initial diameter of the droplet and 
density of fluids are the main parameters. Considering 
these parameters, different non-dimensional groups 
governing the behavior of the droplet are proposed by 
researchers. A list of important dimensionless numbers 
for this study is as follows: 

2

1 2

1 2

g( )  : =

 : 
( )

(based on droplet properties)
 

 : 
( )

(based on continuous fluid properties) 

d c

d

d

c

c

DEotvos number Eo

Ohnesorge number Oh
D

Ohnesorge number Oh
D

ρ ρ
σ

µ
ρ σ

µ
ρ σ

−

=

=

 

( )
*

1
2

2 4

3

  : 

 : 

(based on droplet properties)

( )(  ) : 

ave

d

d c c c

TDimensionless time t
D g

V DReynods number Re =
v

gMorton number Mo = ρ ρ ρ ν
σ

=

−

 
(22) 

where, g is the gravitational acceleration, D is the initial 
diameter of the drop, ρd and µd are density and viscosity 
of the drop, ρc and µc are density and viscosity of the 
continuous phase, respectively, and dv and cν  are 
kinematic viscosities of droplet and surrounding fluid, 
respectively, T is the lattice time step (iterations of 
LBM) and Vave is the average velocity of droplet at any 
time. Since the Ohnesorge numbers are interdependent, 
in this paper results are presented based on Ohd and 
consequently obtained Ohc .Hence, The Ohc will be 
changed by changing the Ohd. 
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4. 2. Correlation with Other Works      Annaland et 
al. [ 34] studied the dynamic behavior of co-axial two 
initially spherical bubbles using the volume of fluid 
(VOF) method. In this section, before the study of 
falling droplet in the vertical channel, rising of two co 
axial bubbles with initially circular shape has been 
shown. Simulations are performed for Eo =16 and 

42 10Mo −= × . Figure 6 compares the results of this study 
with those obtained by Annaland et al. [ 34]. As in the 
case of co-axial bubbles, the leading bubble seems to 
freely rise in the surrounding liquid. The trailing bubble 
is affected by the leading bubble, and experiences more 
deformation when it enters the wake region behind the 
leading bubble. The difference between the two 
methods might be the result of the dimensions of the 
system and the difference in the density and viscosity 
ratios. Despite this difference in shape deformation, 
simulations of this study for bubbles shape are 
qualitatively agree well with the result of Annaland et 
al. [ 34] (Figure 6). 

 
 
 

   
t*=2 t*=3 t*=4 

(a) 

   
 (b)  

Figure 6. Snapshots at different times of Rising two co-axial 
bubbles in the vertical channel. (a) present study (b) Annaland 
et al. [ 34] using VOF method. (Eo=16, Mo=2×10-4) 

 
 

  

  

 

  

(a) (b) (c) (d) (e) (f) (g) 
Figure 7. Snapshots of deformation of a falling droplet in domains with different ratios of W/D, (the first shape in each frame 
corresponds to t*=0, for all cases Δt*=1 and the last shape is plotted at t*=21,Eo=5,Ohd=0.105 and Ohc=0.053,(a) W/D=2, (b) W/D=3, 
(c) W/D=4, (d) W/D=5, (e) W/D=6, (f) W/D=7, (g) W/D=8 
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Figure 8. Wall effects on average velocity and Reynolds number, (a) Average velocity of droplet (b) Reynolds number of droplet, 
versus dimension-less time for domains with different ratios of W/D, for all cases Eo=5,Ohd=0.105 and Ohc=0.053 

 
 
 

TABLE 1. Terminal average velocity and Reynolds number of droplet for different ratios as W/D. 
W
D

 2 3 4 5 6 7 8 

aveV  0.08308 0.118969 0.129680 0.132805 0.133381 0.133665 0.134284 

Red  19.9359 28.5471 31.1170 31.8670 32.0052 32.0734 32.2218 

 
 
 

4. 3. Wall Effects on Shape and Velocity of Droplet 
on the Falling       In a domain with side walls, droplet 
shape and falling velocity are affected by the walls of 
the domain. The magnitude of these effects depends on 
the ratio of the droplet diameter (D) to the width of the 
domain (W). In order to quantify the wall effects, an 
ellipsoidal regime of droplet where, Eo = 5 and Ohd = 
0.105 is considered for this investigation, various ratios 
for width of the domain to the droplet diameter (W/D) 
are chosen. Figure 7 displays the effect of these ratios 
on droplet shape and Figure 8 Shows these effects on 
the average falling velocity and Reynolds number of the 
droplet at different times. As shown in Figure 8, as the 
ratio of W/D increase, the wall effect on the droplet 
behavior becomes less significant. According to Table 
1, for ratio of W/D=6 and 7, difference between 
terminal Reynolds number is less than 0.3 %. Thus, it is 
can be assumed that average velocity of droplet at 
different times is independent of wall effects when the 
ratio of W/D is more than 6. Figure 9 shows terminal 
Reynolds number versus W/D where 6<W/D, 
approximately desire to a constant value. Accordingly to 
all next simulations in this paper, W/D=6. is chosen. 

 
4. 4. Effect of Eo at Small Oh in the Falling Droplet   

When Ohnesorge number is small and surface tension is 
much more important than viscous stresses, Ohnesorge 
number has little influence on the breakup and Eotvos 
number is the main controlling parameter. Here, results 
are present for different Eotvos numbers While the 
Ohnesorge number is small (Oh<1). When a droplet is 
set into motion by a constant body force (gravity), the 
hydrodynamics pressure is higher at the poles and lower 
at the equator and the droplet deforms into an oblate 
ellipsoid. This deformation is opposed by the surface 
tension. Depending on the relative strength of the 
pressure forces and the surface tension, measured by 
Eotvos number, different breakup modes are observed.  
Based on these results, the evolution of droplets with 
ρd/ρc=4 at a small Ohnesorge number can be classified 
into four kinds in order of increasing Eotvos number: 
steady deformation, formation of a backward-facing bag 
and then breakup, oscillating indented droplet, and 
shearing of a film from the edge of the droplet and thus 
breakup. In Figure 10, the evolution of a droplet with a 
density ratio ρd/ρc=4, is shown for different Eotvos 
numbers. Values of Ohnesorge numbers, Ohd = 0.074 
and Oho = 0.037 are chosen, so that viscous stresses are 
low compared to surface tension. It is evident from 
Figure 10 that droplets breaking up in the backward-
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facing mode travel a much longer distance than those 
breaking up in the shear breakup mode.  

In addition, note that for the same breakup mode, the 
rate of droplet deformation increases as Eotvos number 
increases. When Eotvos number is very low, the droplet 
deforms into an oblate ellipsoid and moves with a 
steady state shape as shown in Figure 10a for Eo=2. 
When Eotvos number is increased to 6 in Figure 10b, 
the droplet deformation is more pronounced. Initially, 
the droplet assumes a shape similar to that shown in 
Figure 10a, but then the back of the droplet becomes 
increasingly more convex and eventually the droplet 
deforms into a thin disk-like shape that moves at a 
nearly steady state. When Eotvos number is increased to 
12 in Figure 10c, the droplet deforms more and 
eventually forms a backward-facing bag. Where Eotvos 
number is 24 (Figure 10d), the droplet moves with an 
essentially steady convex shape, showing no sign of bag 
formation. 

At Eo = 48 in Figure 10e and 11, initial stages of 
deformation are similar to the previous cases, but at 
final stages the droplet becomes slender at the poles. 
Ultimately, fine fragments of droplet are sheared from 
the edges and it can be seen the shear breakup 
mechanism. The type of breakup in Figure 10f and 12 at 
Eo = 72 is the same as previous case with Eo = 48. 
However, the rate of deformation of the droplet is 
increased and the breakup happens earlier. This 
behavior of the droplet is expected, because at higher 

Eotvos numbers surface tension force is smaller and 
gravitational forces are dominant, and results in high 
deformation of the droplet and eventually breakup. 
Figures 11 and 12 show different shapes of the droplet 
at four selected times on the Ohd =.074, for Figure 11 
and 12 the Eo = 48 and 72, respectively. 
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Figure 9. Terminal Reynolds number for all above 
simulations with different ratios of W/D. 
 

 
 
 
 

   
(a) Eo=2 (b) Eo=6 (c) Eo=12 
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(d) Eo=24 

 
(e) Eo=48 

 
(f) Eo=72 

 
Figure 10. Snapshots of deformation of a falling droplet at a fixed Ohnesorge number equal to 0.074 and 0.037 for droplet fluid and 
surrounding fluid, respectively (the first shape in each frame corresponds to * 0t =  and for all cases except for the case (f) ( * 1t∆ =  ). 
final dimensionless time for all cases are: *( ) 9fa t = , *( ) 12fb t = , *( ) 9fc t = , *( ) 12fd t = , *( ) 12fe t = , * *( ) =2 , 8ff t t∆ = . 

 
 

    
t*=3 t*=5 t*=7 t*=9 

Figure 11. Different shapes for the droplet in Figure 9e, Eo = 48, Ohd =.074, Ohc = 0.037. The results are shown for four selected 
times. 
 

 

    
t*=3 t*=5 t*=7 t*=9 

Figure 12. Different shapes for the droplet in Figure 9f, Eo = 72, Ohd =.074, Ohc =0.037. The results are shown for four selected 
times 
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(a) 

 
(b) 

 
(c) 

 

Figure 13. Snapshots of deformation of a falling droplet at a fixed Eotvos number (Eo = 12). (the first shape in each frame 
corresponds to t*=0 and for all cases * 1t∆ = ) (a) Ohd=0.074, Ohc=0.037, * 9ft = . (b) Ohd= 0.105, Ohc=0.053, * 13ft = . (c) 
Ohd=0.15,Ohc=0.074, * 9ft =  

 

    
t*=3 t*=6 t*=9 t*=11 

 
Figure 14. Different shapes for the droplet in Figure 12a, Eo = 12, Ohd =.074, Ohc =0.037. The results are shown for four selected 
times. 
 
 
4. 4. Effect of Ohnesorge Number    To study the 
effect of Ohnesorge number, Eotvos number which is 
held fix at 12 and Ohd is varied from 0.074 to 0.105 by 
changing droplet diameter (so the width of channel is 
increased), following that, Ohc will also change. Figure 
13 illustrates the effect of the Ohnesorge number (the 
non-dimensional viscosity) for droplets with a finite 
density ratio. As shown in Figure 13a (the same Figure 
10c), for lowest Ohnesorge number (Ohd=0.074) when 
Eotvos number is 12, the droplet deforms and 
eventually forms a backward-facing bag and finally 
breakup. The initial deformation of all three droplets in 
Figure 13 is similar, the other two droplets in Figure 

13b and 13c reach a steady state shape, of those, the less 
viscous droplet (see Figure 13b) is flatter. In Figures 14, 
15 and 16, the droplets are shown at several times in 
separate frames. Here, Ohd is equal to 0.074, 0.105 and 
0.15, respectively, and for all cases Eotvos number is 
12. These Figures show, as Ohnesorge number slightly 
increases, it can be seen that the rate of deformation is 
decreased and the droplet exhibits more resistance to the 
gravitational forces. It can be seen that (see Figure 13a–
c) the rate of deformation of the droplet is further 
reduced and the droplet tends to maintain its original 
shape. 
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t*=3 

 
t*=6 

 
t*=9 

 
t*=11 

 

Figure 15. Different shapes for the droplet in Figure 12b, Eo = 12, Ohd =0.105, Ohc =0.053. The results are shown for four selected times. 
 
 

    
t*=3 

 
t*=6 

 
t*=9 

 
t*=11 

 
Figure 16. Different shapes for the droplet in Figure 12c, Eo = 12, Ohd =.15, Ohc =0.074. The results are shown for four selected times. 

 
 

   
(a) (b) (c) 

Figure 17. Streamlines around the falling droplet at three different Eotvos numbers. For all cases Oh = 0.15 and t*=10. (a) Eo=2, (b) 
Eo=6, (c) Eo=24. 
 

  
(a) (b) 

Figure 18. Streamlines around the falling droplet at two different Ohnesorge numbers. For both two cases Eo=2 and t*=6. (a) 
Oh=0.074, (b) Oh=0.15.  
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In other words, the degree of deformation of the droplet 
is smaller at higher Ohnesorge numbers. At higher 
Ohnesorge numbers, the droplet is more viscous and the 
viscous forces hinder the intense deformation of the 
droplet. Based on the results shown in Figures 13-16, it 
is clear that increasing both Ohd and Ohc simultaneously 
results in a translation of the boundaries between the 
breakup modes to higher Eotvos number. 
 
4. 5. Streamlines     Finally, attractive wake flow and 
circulations inside and above of the falling droplet are 
shown in Figure 17. It can be seen that with the 
increasing Eotvos number, surface tension effect and 
subsequently the viscous damping are decrease. Thus, 
vortex ring becomes more complex. As shown in Figure 
17a-c, the increasing effect of the Eotvos number 
reduces the stability of the vortex and circulations in the 
wake flow. It is observed in Figure17a that the vortices 
are created inside the droplet, and as shown in Figure 
17b with increasing Eotvos number, vortices also 
created inside the flow field and above the droplet. 
Furthermore, figure 17c shows that for highest Eotvos 
number (Eo = 24), vortices created inside the flow field 
becomes larger. The external flow field is not also 
laminar compared with lower Eotvos numbers. 
     As shown in Figure 18, the effect of increasing 
Ohnesorge number at fixed Eotvos number on the 
circulations is same as decreasing Eotvos number at 
fixed Ohnesorge number.  
 
 
5. CONCLUTION 
 
In this study, the deformation and breakup of a 2D 
falling droplet, accelerated by gravity force have been 
studied by lattice Boltzmann method. In addition, for 
some range of Eotvos and Ohnesorge numbers which 
were simulated for low Ohnesorge numbers (Oh<0.1), 
the Eotvos number is the main controlling parameters. 
At very low Eotvos numbers, the droplet deforms, but 
does not breakup. For Eotvos number around 12, the 
droplet breaks up by the formation of a backward facing 
bag. For Eotvos number around 24, the drop moves with 
an essentially steady convex shape, showing no sign of 
bag formation, and for high Eotvos numbers (Eo>45 in 
this paper) shear breakup mode is observed. As Oh is 
increased, the effect of the viscosity reduces the rate of 
deformation. The simulations show that the main effect 
of increasing Ohnesorge number is to move the 
boundary between the different breakup modes to 
higher Eotvos number. 
 
 
6. REFERENCES 
 
1. Fakhri, A. and Rahimian, M. H. "Investigation of deformation 

and breakup of a falling droplet using a multiple–relaxation–

time lattice Boltzmann method", Journal of. Computers & 
Fluids, Vol. 40, (2011), 156- 171. 

2. Fakhri, A., and  Rahimian, M. H., "Simulation of falling droplet 
by the lattice Boltzmann method", Communications in 
Nonlinear Science and Numerical Simulation, Vol. 14, (2009), 
3045–3046. 

3. Magarvey, R H. and Taylor, B W., "Free fall breakup of large 
drops", Journal of Applied Physics, Vol. 27, (1956), 1129-1135.  

4. Kojima, M. Hinch, EJ. and Acrivos A., "The formation and 
expansion of a toroidal drop moving in a viscous fluid", Physics 
of Fluids, Vol. 27, (1984), 19-32. 

5. Ni, M J. Komori, S. and Morley, N B., "Direct simulation of 
falling droplet in a closed channel", International Journal of 
Heat and Mass Transfer, Vol. 49, (2006), 366–376 

6. Feng, J.Q., "A deformable liquid drop falling through a 
quiescent gas at terminal velocity", Journal of Fluid 
Mechanics, Vol. 658, (2010), 438–462. 

7. Han, J. and Tryggvason G., "Secondary breakup of 
axisymmetric liquid drops, I Acceleration by a constant body 
force", Physics of Fluid, Vol. 11, (1999), 3650-3660 

8. Jalaal, M. Mehravaran, K., "Fragmentation of falling liquid 
droplets in bag breakup mode", International Journal of 
Multiphase Flow, Vol. 47, (2012), 115–132. 

9. Frisch, U., Hasslacher, B. and Pomeau, Y., "Lattice gas 
automata for Navier-Stokes equation", Physical Review Letters, 
Vol. 56, (1986), 1505-1508. 

10. Chen, H. Chen, S. and Matthaeus, W. H., "Recovery of the 
Navier-Stokes equations using a lattice-gas Boltzmann method", 
Physical Review A, Vol. 45, (1992) 5339–5342  

11. Hasanzadeh Afrouzi, H. Sedighi, M. Farhadi, M. and Fattahi, E. 
"Dispersion and deposition of micro particles over two square 
obstacles in a channel via hybrid lattice Boltzmann method and 
discrete phase medel", International Journal of Engineering, 
Vol. 25, (2012), 257-266. 

12. Jafari, M. Farhadi, M. Sedighi, K. and Fattahi, E., "Effect of 
wavy wall on convection heat transfer of water-Al2o3 nanofluid 
in a lid driven cavity using lattice Boltzmann method", 
International Journal of Engineering, Vol. 25, (2012), 165-176 

13. Abouali, O. and Ahmadi, G., "Three-dimensional simulation of 
airflow and nano-particle beam focusing in aerodynamic lenses", 
International Journal of Engineering, Vol. 20, (2007), 45-54. 

14. Fathaddin, M. T. and Awang, M. B., "Lattice gass automata 
simulation of adsorption process of polymer in porous media", 
International Journal of Engineering, Vol. 17, (2004), 329-
338. 

15. Gunstensen, A. K. and Rothman, D. H., "Lattice Boltzmann 
model of immiscible fluids", Physical Review A, Vol. 43, 
(1991), 4320-4327 

16. Shan, X. Chen, H., "Lattice Boltzmann model for simulating 
flows with multiple phases and components", Physical Review. 
E., Vol. 47, (1993), 1815–1819. 

17. Shan, X., "Pressure tensor calculation in a class of nonideal gas 
lattice Boltzmann models", Physical Review E, Vol. 77, (2008), 
(6 Pt 2):066702 

18. Sbragaglia, M. Benzi, R. Biferale, L. Succi, S. Sugiyama, K. 
Toschi, F., "Generalized lattice Boltzmann method with 
multirange pseudopotential", Physical Review E, Vol. 75, 
(2007). 

19. Swift, M. R., Orlandini, E. Osborn, W. R. and Yeomans, J. M., 
"Lattice Boltzmann simulations of liquid-gas and binary fluid 
systems", Physical Review E, Vol. 54, (1996), 5041-5052 

20. He, X. Shan, X. and Doolen, G. D., "Discrete Boltzmann 
equation model for non ideal gases", Physical Review E, Vol. 
57, (1998). 

21. He, X. Shan, X. and Doolen, G. D., " A novel thermal model for 
the lattice Boltzmann method in incompressible limit", Journal 
of Computational Physics, Vol. 146, (1998), 282-300 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

S. E. Mousavi Tilehboni et al. / IJE TRANSACTIONS A: Basics   Vol. 26, No. 7, (July  2013)   781-794                                            794 
   

22. Shan, X. and Doolen, G., "Multi-component lattice-Boltzmann 
model with interparticle interaction", Journal of. Statistical. 
Physics, Vol. 81, (1995), 379-385. 

23. Qian, Y. H., D’Humieres, D. and Lallemand, P., "Lattice BGK 
Models for Navier–Stokes Equation", Europhysics Letters, Vol. 
17, (1992), 479–484. 

24. Gupta, A. Kumar, R., "Lattice Boltzmann simulation to study 
multiple bubble dynamics", International Journal of Heat and 
Mass Transfer, Vol. 51, (2008), 5192–5203. 

25. Zhao, Y., "A novel lattice Boltzmann method for direct 
numerical simulation of multiphase slows", Ohio State 
University Thesis, (2009). 

26. Ngachin, M., "Simulation of rising bubbles dynamics using the 
lattice Boltzmann method", Florida International University, 
Thesis, (2011). 

27. Martys, N. S. and Chen, H., "Simulation of multicomponent 
fluids in complex three-dimensional geometries by the lattice 
Boltzmann method", Physical Review E, Vol. 53, (1996), 743-
750 

28. Shan, X. and Chen, H., "Simulation of non ideal gasses and 
liquid-gas phase transitions by the lattice Boltzmann equations", 
Physical Review E., Vol. 49, (1994), 2941-2948 

29. Huang, H., Thorne, D. T., Schaap, M. G. and Sukop, M. C., 
"Proposed approximation for contact angles in the Shan-and-
Chen-type multicomponent multiphase lattice Boltzmann 
models", Physical Review E, Vol. 76, (2007), 1-6 

30. He, X. and Doolen, G., "Thermodynamic foundations of kinetic 
theory and lattice Boltzmann models for multiphase flows", 
Journal of Statistical Physics, Vol. 107, (2002), 309-328. 

31. Gong, S., Cheng, P., and Quan, X., "Lattice Boltzmann 
simulation of droplet formation in microchannels under an 
electric field", International Journal of Heat and Mass 
Transfer, Vol. 53, (2010), 5863–5870 

32. Yang, Z. L., Dinh, T. N., Nourgaliev, R. R. and Sehgal, B. R., 
"Numerical Investigation of bubble growth and detachment by 
the lattice-Boltzmann method", International Journal of Heat 
and Mass Transfer, Vol. 44, (2001), 195- 206. 

33. Sukop, M. C. and Thorne, D. T., "Lattice Boltzmann modeling 
an introduction for geoscientists and engineers", Berlin: 
Springer, (2005) 

34. Annaland, M. S., Deen, N. G., and Kuipers, J. A. M., 
"Numerical simulation of gas bubbles behaviour using a three 
dimensional volume of fluid method", Chemical Engineering 
Science, Vol. 60, (2005), 2999 - 3011. 

 
 
 
 
 
Lattice Boltzmann Simulation of Deformation and Breakup of a Droplet under 
Gravity Force Using Interparticle Potential Model 
 
S. E. Mousavi Tilehboni, K. Sedighi, M. Farhadi, E. Fattahi 
 
Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Postal Code 4714871167, Babol, Iran 

 

 
P A P E R  I N F O   

 
 

Paper history: 
Received 16 January 2013  
Received in revised form 17 February 2013 
Accepted 28 February 2013  

 
 

Keywords:  
Falling droplet 
Breakup 
Lattice Boltzmann method 
Interparticle potential model 
Eotvos number 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  چکیده
 

  

ي در سازي تغییر شکل و جدایش یک قطرهي بولتزمن براي شبیهاي روش شبکهي حاضر مدل پتانسیل بین ذرهدر مقاله
در ابتدا با اعمال این مدل از درستی عملکرد اثرات کشش سطحی در آن . کار رفته استحال سقوط تحت نیروي وزن، به

ي مربعی دو بعدي در یک محیط قرار یک قطره: به همین منظور دو تست انجام گرفته است؛ اول. گرددل میاطمینان حاص
اي دهد و به حالت پایدار خود، یعنی شکل دایرهگردد که، قطره آزادانه تغییر شکل میشود وپس از آن مشاهده میداده می

ها با هم برخورد کرده و شود که آنشوند و مشاهده میرار داده میاي در کنار هم قي دایرهدو قطره: دوم. گرددتبدیل می
هاي ساکن براي تایید بیشتر مدل، قانون لاپلاس براي قطره .شوندتر میاي بزرگي دایرهپس از انعقاد تبدیل به یک قطره

ه است؛ که د مطالعه قرار گرفتي بعد اثر دیوار بر شکل و سرعت متوسط قطره موردر مرحله. مورد ارزیابی قرار گرفته است
باشد؛ سرعت متوسط قطره  6، بیشتر از )W/D(در شرایطی که نسبت عرض کانال به قطر قطره  ،شودسرانجام مشاهده می

ي در حال در بخش پایانی مقاله تغییر شکل و جدایش یک قطره. باشدهاي مختلف مستقل از اثرات دیوار میدر زمان
مشاهده . العه قرار گرفته استمورد مط) Ohnesorge(و اونسورگ ) Eotvos(بعد اتوسعداد بیاي از اسقوط در محدوده

دهد و بدون جدایش شود که در عدد اتوس بسیار پایین که نیروي کشش سطحی غالب است، قطره کمی تغییر شکل میمی
. دهدکند و قطره تغییر شکل بیشتري میدر عدد اتوس بالاتر نیروي وزن بر کشش سطحی غلبه می. رسدبه حالت پایا می

طره در عدد اونسورگ کوچک، اگر عدد اتوس تا مقادیر میانی افزایش یابد، قطره بیش از حالت هاي جدایش قبراي حالت
در نهایت براي اعداد اتوس بالا مشاهده . آیدي رو به عقب در میدهد و سرانجام به شکل یک کیسهقبل تغییر شکل می

از طرف دیگر عدد اونسورگ . گویندجدایش از لبه میشوند که به آن مکانیزم هایی از قطره از لبه بریده میشود که قطعهمی
دهد سازي نشان میشبیه. در برقراري ثبات قطره مورد مطالعه قرار گرفته است) هاي ویسکوز به کشش سطحینسبت تنش(

  .هاي مختلف جدایش، عدد اتوس باید افزایش یابدي حالتکه با افزایش عدد اونسورگ براي مشاهده
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