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A B S T R A C T  
   

This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded 
truncated conical shell under non-uniform internal pressure subjected to magnetic and thermal fields. 
The material properties are assumed to obey the power law form that depends on the thickness 
coordinate of the shell. The formulation of the problem begins with the derivation of fundamental 
relations of thermo-elasticity in the conical coordinate system. Subsequently, the differential 
quadrature method (DQM) is employed to discretize the resulting differential equations and transform 
them into a system of algebraic equations. Numerical results are presented to illustrated effects of non-
homogeneity properties of material and thermal loads on the distributions of displacement, stress, 
temperature and induced magnetic fields. Finite element method is used to validate the results of DQM 
for a functionally graded truncated conical shell which shows excellent agreement. 

 
 

doi: 10.5829/idosi.ije.2013.26.12c.05 

 
 

NOMENCLATURE 

K  Coefficient of heat conductivity iT  Inner surface temperature of the cone 

ijσ  Components of stress tensor oT  Outer surface temperature of the cone 

α  Coefficient of thermal expansion ,Gλ  Lame’s constants 

U
r  Displacement vector L  Length of the generator of the cone 
, ,u v w Displacement components lf  Lorentz’s force 

1L  Distance between the origin and the top surface of the cone H
r

 Magnetic field vector 

0E  Elastic constant µ  Magnetic permeability 

J
r

 Electric current density vector N, M, P  Number of grid points along the thickness, 
circumferential and generator, respectively 

h
r

 Induced magnetic field vector υ  Poisson's ratio 

1R  Inner radius of the cone at its small end   γ Semi-vertex of the conical shell 

2R  Inner radius of the cone at its large end hsh Thickness of the shell m   

n
 

Inhomogenity constant 
( )nA , ( )nB  

, ( )nC  
Weighting coefficients of the nth derivative along the 
thickness, generator and circumference, respectively 

 
1. INTRODUCTION 1 

 
Nowadays, the magneto-thermo-elasticity theory that 
deals with the interaction between different physical 
fields has been the subject of high level researches. It is 
                                                        
*Corresponding Author Email: raalashti@nit.ac.ir(R. Akbari Alashti) 

found that a conducting truncated conical shell under 
the effect of magneto-thermo-elastic field, experiences 
combination of different kinds of loads such as the 
Lorentz force exerted by the applied primary magnetic 
field, thermal load and also the internal pressure, 
simultaneously. The aim of the magneto-thermo-elastic 
stress analysis is usually to determine whether a 
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structure under a prescribed loading behaves as desired 
or not. Hence, determining the distribution of stress 
field is the top priority of an engineering design [1].  

During the last decade, tremendous research efforts 
have been devoted to optimize materials performances 
and promote their load bearing capabilities. In order to 
accomplish this task, a revolutionary design paradigm of 
the material technology is developed among which, the 
functionally graded material (FGM) is the most notable 
one. The basic concept behind FGMs is to engineer 
gradual variation or smooth change in the material 
properties in a structure. By virtue of gradients of 
material properties, an FGM posses some desirable 
characteristics such as high temperature resistance, 
thermal fatigue and impact performances [2].   

Shadmehri et al. [3] proposed a semi-analytical 
approach to obtain the linear buckling response of 
conical composite shells under axial compression load. 
The principle of minimum total potential energy was 
used to obtain the governing equations and Ritz method 
was applied to solve them. Sofiyev et al. [4] studied the 
stability of three layered conical shell containing an 
FGM layer subjected to axial compressive load. The 
fundamental relations for stability and compatibility 
equations were transformed into a pair of time-
dependent differential equations via Galerkin's method. 
Xu et al. [5] used the dynamic virtual work principal to 
derive non-linear equations of transverse motion of 
truncated conical shells. The Galerkin procedure was 
used to develop a system of equations for time functions 
which were solved by the harmonic balance method. 
Patel et al. [6] studied the thermo-elastic stability 
characteristics of cross-ply oval cylindrical/conical 
shells subjected to uniform temperature rise through 
non-linear static and finite element method. Zhang and 
Li [7] discussed the buckling behavior of functionally 
graded truncated conical shells subjected to normal 
impact loads and employed the Galerkin procedure and 
Runge-Kutta integration scheme to solve non-linear 
governing equations. Aghdam et al. [8] carried out 
bending analysis of moderately thick clamped FG 
conical panels subjected to uniform and non-uniform 
distributed loadings. The First Order Shear Deformation 
Theory (FSDT) was applied to derive the governing 
equations and Extended Kantorovich Method (EKM) 
was used to solve the equations. Wu et al. [9] presented 
the three-dimensional solution of laminated conical 
shells subjected to axisymmetric loadings using the 
method of perturbation. Petrovic [10] investigated stress 
analysis of a cylindrical pressure vessel loaded by axial 
and transverse forces on the free end of the nozzle 
applying the finite element method. Jabbari et al. [11] 
developed a general analysis of one-dimensional 
thermal stresses in a hollow thick cylinder made of 
functionally graded material, using the direct method to 
solve the governing equations. Eslami et al. [12] 
obtained a general solution for the one-dimensional 

steady state thermal and mechanical stresses in a hollow 
thick sphere made of functionally graded material. The 
analytical solution of heat conduction equation and the 
Navier equation were presented using the direct method. 
Paliwal and sinha [13] considered large deflection static 
analysis of shallow spherical shells on Winkler 
foundation, applying Bergler's and Modified Bergler's 
methods. Jane and Wu [14] studied thermo-elasticity 
problem in the curvilinear circular conical coordinate 
system. The hybrid Laplace transformation and finite 
difference were developed to obtain the solution of two 
dimensional axisymmetric coupled thermo-elastic 
equations. Chandrashekhara and bhimaraddi [15] 
presented the thermal stress analysis of doubly curved 
shallow shells using shear flexible finite element 
method. The basic equations were the extensions of 
Sanders shell theory to include shear deformation and 
thermal strains. Obata et al. [16] carried out thermal 
stresses analysis of a thick hollow cylinder, under two-
dimensional temperature distribution. Xing and Liu [17] 
studied the magneto-thermo-elastic stresses in a 
conducting rectangular plate subjected to an arbitrary 
variation of magnetic field using differential quadrature 
method. Higuchi et al. [18] investigated the magneto-
thermo-elastic stress fields induced by a transient 
magnetic field in an infinite conducting plate and 
numerically solved the corresponding electromagnetic, 
thermal and elastic equations. Lee et al. [19] considered 
three-dimensional axisymmetric coupled magneto-
thermo-elasticity problems for laminated circular 
conical shells subjected to magneto-thermo-elastic 
loads, using Laplace transform and finite difference 
methods. Bodaghi and Shakeri [20] carried out an 
analytical investigation on free vibration and transient 
response of functionally graded piezoelectric cylindrical 
panels subjected to impulsive loads. The present work, 
investigates the three-dimensional problem of an FG 
truncated conical shell made of non-ferromagnetic metal 
such as aluminum permeated by a primary uniform 
magnetic field and subjected to internal pressure and 
rapid temperature change at the inner surface. The 
corresponding governing equations  in three dimensions 
are extracted  and the differential quadrature approach is 
applied to discretize the governing equations, boundary 
conditions and heat conduction equations. Different 
values of the in-homogeneity constant and inner-wall 
temperature are used to demonstrate their important 
roles on the distribution of displacement, stresses, 
temperature and induced magnetic fields. Results 
obtained by the present method are validated through 
comparison with results of the finite element method. 

 
 

2. GOVERNING EQUATIONS 
 

Consider a three-dimensional conducting truncated 
conical shell made of FGM, as shown in Figure 1.  The 
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conical shell is referred to the orthogonal coordinate 
system (s, θ, ζ) with the origin located at the vertex of 
the complete cone where s is chosen to lay along the 
generator and on the internal surface, θ is the 
circumferential coordinate and ζ is taken along the 
thickness; 

shh  denotes the thickness of the shell; L and 
L1 are the generatrix length and the distance from the 
vertex to the top surface of the cone, respectively; γ is 
the semi-vertex angle of the conical shell; R1 and R2 
represent the inner radii of the cone at its small and 
large ends, respectively. 

The perfectly electro conductive truncated conical 
shell is assumed to be immersed in a constant magnetic 
vector field H

r
 that is uniform along the s and θ 

directions and acts on the inner surface in ζ direction 
and subjected to a non-uniform internal pressure ( )P θ  
that is uniform along generatrix defined by a cosine 
function. Furthermore, the truncated conical shell is 
subjected to a rapid temperature change T (ζ) at the 
inner surface. The stiffness, magnetic permeability, heat 
conductivity and thermal expansion coefficients are 
assumed to vary only through the wall thickness 
according to the following power law distribution 
function: 

0 ( 1 )n

sh

Y Y
h
ζ= +  

(1) 

where Y0 and n represent the material property at the 
inner surface and the in-homogeneity constant, 
respectively. Let u, v and w denote corresponding 
displacement components in s, θ and ζ-directions, 
respectively. The strain-displacement relations, based 
on the three-dimensional elasticity formulations and 
referred to the designated general curvilinear coordinate 
system are defined as follow [21]: 
 
 
 

 
Figure 1. Physical model and system coordinates of the 
truncated conical shell 

 

((
) ((

2

2 2 2 2

2 2

2

0.5

cos( )sin( ) 0.5 cos( ) sin( )

sin( ) cos( )

cos( ) sin( )

0.5

ss u w
s s

Z uw w

u v u v v u w

v v w Z v w u

w w

Z

θθ

ζζ

θζ

ε

ε γ γ γ γ

γ γ
θ θ

γ γ
θ θ θ

ε
ζ ζ

ε

∂ ∂ = +  ∂ ∂ 

= + +

 ∂ ∂    + + − +    ∂ ∂    
 ∂ ∂  ∂     − + + +      ∂ ∂ ∂      

 ∂ ∂
= +  ∂ ∂ 

= ( )

)

(

)

cos( ) sin( ) cos( )

cos( ) sin( )

sin( ) cos(

) sin( ) sin( )

s

w u v w

v w v u v w v

Z u v w w v w
s s

u u
s

θ

γ γ γ
ζ θ

γ γ
ζ ζ θ ζ

ε γ
θ θ

γ γ γ

  ∂  ∂ + + −    ∂ ∂  
     ∂ ∂ ∂ ∂ − − + +      ∂ ∂ ∂ ∂      

 ∂ ∂ ∂ ∂      = − + +       ∂ ∂ ∂ ∂      
∂ + − ∂ 

cos( )

s

v w v v
s s

u w w w
s sζ

γ

ε
ζ ζ

∂  ∂   − +    ∂ ∂   
   ∂ ∂ ∂ ∂   = + +      ∂ ∂ ∂ ∂      

 

(2) 

where: 1 /( sin( ) cos( ))Z s γ ζ γ= +  
The mechanical constitutive relations which relate 
components of stress field to components of strain field,

ijε  
including the thermal effect for an isotropic material 

in the matrix form are: 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ss ss

s s

s s

Tc c c
Tc c c
Tc c c

c
c

c

θθ θθ

ζζ ζζ

θζ θζ

ζ ζ

θ θ

σ ε α
σ ε α
σ ε α

τ ε

τ ε

τ ε

−    
     −    
   − 
   =  
    
    
    
        

 
(3) 

where 
ijσ  and 

ijτ  
represent the Kirchhoff stress 

components and ijε  
represents the strain components, T 

is the temperature distribution determined from the heat 
conduction equation and α is the coefficient of thermal 
expansion. 

The material elastic constants of the FG truncated 
conical shell i.e. ci,j, i,j=1, 2, 3, 4, 5, 6 are defined in 
terms of the elastic module E and the Poisson's ratioυ  
with the help of two Lame’s coefficients  λ and G 
defined as follow: 

,
( 1 )( 1 2 ) 2( 1 )

E EGυ
λ

υ υ υ
= =

+ − +
 (4) 

and for the FG truncated conical shell the material 
elastic constants  ci,j, i,j=1, 2, 3, 4, 5, 6   which can be 
obtained  from  elastic modulus E and Poisson's ratioυ  
are as follows:  
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11 12 44

12 21 13 31 32 23

11 22 33 44 55 66

2 , , ,
,

,

c G c c G
c c c c c c
c c c c c c

λ λ= + = =

= = = = =

= = = =

 (5) 

By substituting Equation (2) into Equation (3), 
components of the stress field are defined in terms of 
components of the displacement and temperature fields 
which are given in Appendix A: 

The constitutive electromagnetic relations for a 
perfectly conducting, elastic body neglecting the electric 
displacement are given in the following form [22]: 

, ( ) , 0 ,

( ) ( )

J h e r h divh

e r U h

µ

µ

= ∇ × ∇ × = − × =

= − × ×

ur r r r

r ur r
 (6) 

According to above relations the initial magnetic field 
vector H

r
 produces an induced magnetic field h

r
 and an 

electric current density vector J
r

. In order to obtain the 
induced magnetic field vector h

r
 from Equation (6), we 

have to invoke the following relation [23]: 

( ) ( ) ( ) ( . )curl U H U div H Hdiv U H U
→ → → →

× = − + ∇ −
r r r r

( . )U H
→

∇
r  

(7) 

The terms in Equation (7) can be evaluated using all 
vector differential operators of gradient, divergence and 
curl defined in the general conical system ( , , )s θ ζ . 
The above mentioned operators for the vector function 
X (vs,vθ,vζ) are expressed as in Equations (8a) and (8b): 

( ) sin( ) cos( )s
s

vv vdiv v Z v v
s

ζ θ
ζγ γ

ζ θ
∂∂ ∂ = + + + + ∂ ∂ ∂ 

 (8a) 

and the Conical-curl-component is: 

1 1, ,s sv vv vZ v Z v
Z s s Z

ζ ζ
θ θθ ζ ζ θ

 ∂ ∂   ∂ ∂∂  ∂    − − − +      ∂ ∂ ∂ ∂ ∂ ∂      

 
(8b) 

Applying an initial magnetic field vector
( )00 ,0 ,H H ζ=

r  that acts in the ζ-direction and the 

displacement vector ( ), ,U u v w=
r

 
in conical coordinate 

system ( , , )s θ ζ  to Equation (6) and employing 
Equation (7)  results in an approximation of the induced 
magnetic field and the electric current density vector 
within the shell: 

( )

( ))

(

( )) ))

0

2
0 0

2 2

0 2

2

, , , cos( ) ,

cos( ) 1 , sin( )

sin( )

cos( ) 1

s s

s

u vh h h h h Z u H h

u vZ v Z H h Z u H
s

u v u vJ H Z Z Z
s

A Z v

θ ζ ζ θ

ζ ζ ζ

ζ

γ
ζ ζ

γ γ
θ

γ
θ θ θ ζ ζ

γ

  ∂ ∂
= = + = +  ∂ ∂  

∂ ∂   + = − + +  ∂ ∂  
    ∂ ∂ ∂ ∂ ∂

= + + −     ∂ ∂ ∂ ∂ ∂ ∂  

+ +

 

( (

( ( ))

(

( )) ))

2 2
2

0 2

2
2 2

2

2

0

2
0

sin( ) sin( )

sin( ) cos( ) cos( ) ,

cos( )

cos( ) 1

u v uJ H Z Z
s s s

v u uu Z Z u

u u vJ H Z Z Z
s

vZ Z H

θ ζ

ζ ζ

ζ

γ γ
θ

γ γ γ
θ ζ ζ

γ
ζ θ θ ζ

γ

  ∂ ∂ ∂
= + + −  ∂ ∂ ∂ ∂  

∂  ∂ ∂+ + + − ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂ = − + +       ∂ ∂ ∂ ∂ ∂    

+ +

 

(9) 

The magneto-elastic interactions, subjects the 
conducting truncated conical shell to the Lorentz’s force 
fl , which has two components in the s and θ-directions 
as follows: 

( ) 0

0

, ( , , ), ,

, 0
l l s s

s

f J H f f f f f H J

f H J f
θ ζ ζ θ

θ ζ ζ

µ µ

µ

= × = =

= − =

ur r
 (10) 

In the presence of body forces, the stress equilibrium 
equations in s, θ and ζ -directions are expressed in 
Equations (11a), (11b) and (11c), respectively as: 

( )

) 1

sin( )

cos( ) 0

ss s ss s s

s

Z
s

f

ζ θθ ζ θσ τ σ σ γ τ τ
ζ θ

γ

∂ ∂ ∂  + + − + + ∂ ∂ ∂ 
+ =

 
(11a) 

)

2 cos( ) 2 sin

( ) 0

s sZ
s

f

θ ζθ θθ ζθ θ

θ

τ τ σ τ γ τ
ζ θ

γ

∂ ∂ ∂ + + + + ∂ ∂ ∂ 
+ =

 (11b) 

( )
)

sin( )

cos( ) 0

s sZ
s

f

ζ ζζ ζθ ζ ζζ θθ

ζ

τ σ τ τ γ σ σ
ζ θ

γ

∂ ∂ ∂ + + + + − ∂ ∂ ∂ 
+ =

 
(11c) 

Substituting constitutive law as shown in the Appendix 
and Lorentz’s force components of Equation (10) into 
the equilibrium Equations (11a), (11b) and (11c), a 
system of equilibrium equations in terms of 
displacement, thermal and magnetic components in 
three directions i.e. s ,θ and ζ are achieved:  
Equilibrium equation in the s-direction can be expressed 
as: 

(((
)

)

20

2 2 2 2 2

2

(1 )
(1 ) 0.5

(1 )(1 2 )

cos( )sin( ) 0.5 cos( ) sin( )

sin( ) cos( )

n

sh

E
h

u w
s s s

Z uw w u

v v u u v v

w w v Z v w

ζ

υ υ
υ υ

γ γ γ γ

γ γ
θ θ θ

θ θ

 +   ∂ ∂ ∂  − + +    ∂ + − ∂ ∂   


+ +

 ∂ ∂   ∂    + + − +      ∂ ∂ ∂      
∂   ∂   − + +    ∂ ∂    

cos( ) sin( )uγ γ


+ 


 

(12a) 
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(( (

2 0

0

2
2 2

2

(1 )
0.5

2(1 )

(1 ) (1 2 )

(1 )(1 2 )

0.5 cos( )sin( ) 0.5 cos( )

n

sh

n

sh

E
h

w w u

E
h

w w w Z
s s

u w Z uw
s s

w

ζ

ζ ζ ζ υ ζ

ζ
υ

ζ υ υ

γ γ γ

 +    ∂ ∂ ∂ ∂ + +  +    ∂ ∂ ∂ + ∂     


 + − ∂ ∂ ∂    + + +     ∂ ∂ ∂ + −     


∂ ∂  + − +  ∂ ∂  

+ )

)))

2 2 2

0

sin( ) sin( )

cos( ) cos( )

(1 )
sin( ) sin( ) sin( )

2(1 )

n

sh

u v u v v u

w v v v Z v w

E
h

u Z u

v w w v
s s

γ γ
θ θ

γ γ
θ θ θ

ζ

γ γ γ
υ θ θ

θ

 ∂ ∂    + + − +    ∂ ∂    
 ∂ ∂   ∂     − + + +       ∂ ∂ ∂       

+
 ∂  ∂ + −   + ∂ ∂ 

∂ ∂ ∂  + +  ∂ ∂ ∂  
( )

)

cos( ) sin( ) sin( )

cos( )

cos( ) 0

w u

u v w v v u w
s s s s

w w
s

γ γ γ

γ
ζ

γ
ζ

  + − 
 

 ∂ ∂  ∂  ∂ ∂       − + + +         ∂ ∂ ∂ ∂ ∂          
 ∂ ∂ + =  ∂ ∂  

 

and the equilibrium equation in the θ- direction can be 
expressed as:  

(((

)

))

) ))

0
2

2 2 2 2 2

(1 )
(1 ) cos( ) sin( )

(1 )(1 2 )

0.5 cos( ) sin( ) sin( )

cos( )

cos( ) sin( )

n

sh

E
hZ Z uw
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u v v w w v Z

v w u u
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ζ

υ γ γ
θ υ υ

γ γ γ
θ

γ
θ θ θ θ

γ γ υ

  + ∂  −
∂ + − 

 
  ∂ + + + +   ∂ 
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∂ ∂ + + + + ∂ ∂ 
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( )

22 0

0.5
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n
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(12b) 

and finally the equilibrium equation in the ζ- direction 
is: 

(
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∂
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=

 

(12c)  

The FG truncated conical shell is assumed to be 
subjected to a non-uniform pressure ( )P θ , at the inner 
surface, the boundary temperature (Ti) and permeated by 
the initial condition of magnetic field, 0H ζ . It is also 
supposed that the outer surface of the shell is traction 
free with its temperature (To) being kept at 0o. For the 
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sake of simplicity, the initial conditions are expressed 
as: 

( )00, cos , 0, 0, ,

, 0, 0, 0, 0, 0
rr s i O

sh rr s O

P T T H H
h T H

ζ θζ ζ

ζ θζ

ζ σ θ τ τ

ζ σ τ τ

= = = = = =

= = = = = =
 (13) 

Moreover, top and bottom surfaces are assumed to be 
clamped, hence boundary conditions at these surfaces 
are expressed as: 

1

1

, 0 , 0 , 0 , 0
sin( )

, 0 , 0 , 0 , 0
sin( )

t

b

Rs u w v T

Rs L u w v T

γ

γ

= = = = =

= + = = = =

 
(14) 

The temperature distribution can be determined by 
solving the steady-state heat conduction equation 
 for the FGM truncated conical shell through the 
thickness that is given by: 

2

2
1

cos( )
sin( ) cos( )

0

K TT K K
R s

T

γ
γ ζ γ ζ ζ ζ

ζ

  ∂ ∂ ∂+ + + + ∂ ∂ ∂ 
∂ =

∂

 
(15) 

where K is the coefficient of heat conductivity. 
 
 

3. THE METHOD OF SOLUTION 
 

The differential quadrature method as a powerful semi-
analytical tool is employed to obtain the discretized 
forms governing and boundary equations of the conical 
shell. The general rule of DQM postulates that 
derivatives of any smooth function at a discrete point in 
the domain can be expressed as a weighted linear 
summation of all the functional values at all discrete 
sampling points. The key to DQM is to determine the 
weighting coefficients for discretization of a derivative 
of any order.  

The nth order derivative of a function F(x) at any 
discrete point of a domain with respect to s, θ and ζ at 
any sampling point i.e. si, θi and ζi are explicitly 
expressed as [24]: 

( ) ( )

( ) ( )
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,

2
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= =

= =

= = = =
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∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂
= =
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∑ ∑
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, , , ,
1 1
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N M
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f A B f
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∂
=
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(16) 

where ( )nA  are weighting coefficients for the nth-order 
derivative at point ζi  along the thickness direction; ( )nB  
are weighting coefficients for the nth-order derivative at 
point si along the generator and ( )nC  are weighting 
coefficients for the nth-order derivative at point θi in the 
circumferential direction;  P, M and N are numbers of 
sampling points along the s, θ and ζ, respectively .The 
computation of weighting coefficients in s and ζ-
directions have been made on the basis of polynomial 
differential qaudrature (PDQ) and in circumferential 
direction using the Fourier Expansion-based differential 
quadrature (FDQ) which are defined in Equations (17a) 
and (17b), respectively: 

( 1 ) (1 )
, ,

1 1
,

( 2 ) ( 1) (1 )
, , ,

1

1 1 ,  , ,

 

N N
i k

i j i i
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i j i k k j
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x x x x x x
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= =
≠ ≠

=

−
= ≠ =

− − −

=

∏ ∑

∑

 
(17a) 
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( ) ( )
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1 1 ( 2 ) (1) (1)
, , ,

0 0

( )  , , ( ) sin( ),
22sin( ) ( )

2

, ( 2 cot( )) ,
2
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M
i i k

ij i
i j k

j

M
i j

ii ij ij ij ii
j
i j

M M

ii ij i j j m m j
j j
i j

q x x xC i j q xx x
q x

x x
C C C C C i j

C C C C C

=

=
≠

= =
≠

−
= ≠ =

−

−
= − = − ≠

= − =

∏

∑

∑ ∑

 

(17b) 

By substituting the relations in Equation (16) into 
resulting equations, the following discretized governing, 
heat conduction and related boundary equations are 
transformed into a set of algebraic equations. The 
detailed discretized forms of governing, mechanical 
boundary and heat transfer equations are given in 
Appendix A.  
 
 

 
4. NUMERICAL RESULTS AND DISCUSSION

  
Based on the Chebyshev-Gauss-Lobatto formula, 
sampling points are obtained as follows: 
in s- direction:   

1
1( 1 cos( )) , 1, ..,

2 1i
L is L i P

P
π−

= + − =
−

 (18) 

in θ -direction:   
1 2 , 1,..,j

j j M
M

θ π
−

= =  (19) 

in ζ -direction: 
1( 1 c o s( )) , 1 , ..,

2 1
sh

i
h i i N

N
ζ π

−
= − =

−
 (20) 

Geometrical parameters of the shell are considered to be 
0

21, 15 , 0.2, 0.5shL h Rγ= = = =  for the truncated 
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conical shell. The shell is made of Aluminum with 
material properties as shown in Equation (21) [25]: 

6 0
0

7 6 0
0 0

70 , 0.33,  24 10 1/ ,

4 10 / , 92.6 10   /  

E Gpa C
µ H m K W m C

ν α

π

−

− −

= = = ×

= × = ×
 (21) 

The shell is assumed to be under the action of the 
internal pressure  ( )0 150cos MPaP θ=  and the initiail 
magnetic field 8

0 5 10 A/mH = × . 
The following non-dimensional values are employed 

to simplify calculations and present the results in a more 
appropriate form: 
__ __ __

0 0

0 0

, , , , ,

,

sh sh i

w Tw T
h h T P P

hh
H P

ζζ θθ
ζζ θθ

ζθ
ζθ

ζ

σ σζζ σ σ

τ
τ

= = = = =

= =

 
(22) 

The effect of variation of the in-homogeneity constant, 
n, on the material  properties of the cone i.e. 0/outY Y  is 
shown in Figure 2., where outY  and 0Y  are the material 
properties of the shell at the outer and the inner 
boundaries of the shell, respectively.    

The convergence and accuracy of the present 
approach is investigated in Figure 3. Numerical results 
for the distribution of non-dimensional displacement 
component, w through the shell thickness in case of 
axisymmetric loading condition for various number of 
grid points along the thickness and the generator are 
demonstrated. According to the presented results, 
converged results are achieved using total number of 

12N P× =  discrete points. As it can be seen, this 
method converges quite fast with considerably lower 
number of grid points. On the other hand, results 
obtained by the present method are verified with results 
obtained using the finite element software ANSYS, as 
illustrated in Figure 3. In the axisymmetric case, the 
truncated conical shell is modeled and meshed with 
Solid5 element that has eight nodes with up to six 
degrees of freedom per node and has 3-D magnetic, 
thermal and structural field capabilities with limited 
coupling between them. As it is observed, an excellent 
agreement exists between the results of the proposed 
method and the finite element method.  

Results obtained for the circumferential distribution 
of the non-dimensional through thickness components 
of  displacement, w and the stress, 

ζζσ  for n=0 using 
the DQ and FE methods are shown and compared in 
Figures 4 and 5, respectively. It can be concluded from 
theses figures that these results are in very good 
agreement. Effects of in-homogeneity constant, n, on 
the dimensionless component of displacement field w, 
stress components, the induced magnetic field vector 
and temperature distributions along the circumferential 

direction are demonstrated in Figures 6 to 11. In these 
calculations n, varies from -2 to 2. Figure 6 presents the 
distribution of non-dimensional displacement 
component, w with various values of in-homogeneity 
constant along the circumferential direction. Results 
revealed that by changing n, from positive to negative 
the absolute value of w , increases. The highest 
amplitude level belongs to 2n = −  and the lowest one 
belongs to 2n = . It can further be observed from 
Figure 6 that all curves intersect at some specific 
positions i.e.  / 2θ π  and 3 / 2π  .In Figure 7 
variations of ζζσ  in the circumferential direction with 
different values of in-homogeneity constant for an FG 
truncated conical shell is depicted. It can be seen that by 
changing the value of n, from positive to negative, the 
value of stress through the thickness 

ζζσ , decreases. A 
careful study of results shown in Figure 7 will assist 
designers to strengthen a shell made of non-
homogeneous material against the internal pressure and 
magnetic field by selecting an appropriate 
inhomogeneous constant.  

Variations of the circumferential stress along the 
circumference with variation of n from -2 to 2 are 
shown in Figure 8. It can be readily seen that as n 
changes from positive to negative, the value of stress 
reduces and the distribution tends to be more uniform 
along the circumferential direction. It appears that the 
in-homogeneity constant has significant effects on the 
circumferential stress.  The behavior of shear stress ζθτ  
distribution of an FG truncated conical shell along θ, 
with different values of in-homogeneity constant n, is 
depicted in Figure 9. It is observed that the absolute 
value of shear stress ζθτ  gently increases as n, changes 
from positive to negative which implies that it is much 
less dependent to the value of n. It can also be noted that 
the maximum shear stress ζθτ  

occurs at / 2θ π  and 

3 / 2π  . Figure 10 illustrates the influence of n, on the 
distribution of the induced magnetic field along 
circumferential direction. As it is shown from the figure, 
as n changes from negative to positive, the absolute 
value of amplitude of the magnetic induction decreases 
and produce more uniform curve. It can be concluded 
that there is substantial influence of the in-homogeneity 
constant on the induced magnetic field. Figure 11 is 
plotted to show the variation of temperature along the 
thickness of the shell for different values of n. It is 
shown in the figure that as n, changes from -2 to 2, the 
temperature amplitude decreases. It is also found that 
for n=0, the temperature distribution is in linear form 
and for other values of n it has a parabolic shape. Stress 
components resulted from thermal fields play a great 
role in the fatigue crack initiation, rapid fracture of 
components causing failure of components at stress 
levels much below the nominal strength of the material. 
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Thermal load effects on various parameters of the shell 
are performed and results are shown in Figures 12 to 16. 
It is assumed that the in-homogeneity constant is equal 
to 1, i.e. n=1 and the outer surface temperature is kept at 
zero with Ti=10 0C, 170 0C and 350 0C. Figure 12 shows 
the distribution of non-dimensional displacement 
component, w  at the middle section of generator of the 
cone (

1 / 2s L L= + ) in the circumferential direction 
with different values of the inner-wall temperature. It is 
observed that as the temperature difference between two 
surfaces increases, the dimensionless displacement 
component, w  increases. Figure 13 shows the effect of 
uniform temperature rise of the inner surface of an FG 
truncated conical shell on the distribution of stress 
component, ζζσ  

by keeping the outer surface 
temperature at zero. As it is expected, increasing the 
temperature difference increases the magnitude of stress 

ζζσ . Distribution of the circumferential stress with 
different values of the inner-wall temperature along the 
circumference is shown in Figure 14. It is observed 
form the figure that as the temperature of the inner 
surface increases the circumferential stress increases. 
Since, the thermal effect strongly dominates the values 
of circumferential stress, usage of FGMs to increase 
impact resistance and resistance to thermal stress 
fractures is necessary and vital in appropriate designing 
of structural components. Figure 15 depicts the effect of 
the thermal field on the shear stress ζθτ for the FG 
truncated conical shell. It can be inferred from the figure 
that the corresponding response curves are overlapping. 
This low degree of dependency of the shear stress 
component ζθτ , to the thermal field are observed in the 
corresponding thermo-elastic formula which are given 
in Appendix A. The influence of the thermal field on the 
variation of the induced magnetic field is shown in 
Figure 16. The trend is observed to be similar to that of 
Figures 13 and 15 which means that the influence of 
temperature difference is noticeable in the induction of 
magnetic field within the shell. As the value of 
temperature of the inner-wall increases, the value 
induced magnetic field significantly increases.  
 
 

 
Figure 2. Variation of /out OY Y  

versus n 

 
Figure 3. Convergence study of DQ method , variation of w  
with number of grid points; FEM and DQM 
 
 

 
Figure 4. Circumferential distribution of w , FEM versus 
DQM 
 
 

 
Figure 5. Circumferential distribution of 

ζζσ , FEM versus 

DQM 
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Figure 6. Variation of w with n, in the circumferential 
direction 
 
 

 
Figure  7. Variation of ζζσ with n, in the circumferential 

direction 
 
 

 
Figure 8. Variation of θθσ  with n, in the circumferential 
direction 

 
Figure 9. Variation of ζθτ with n, in the circumferential 

direction 
 
 

 
Figure 10. Variation of h with n, in the circumferential 
direction 
 
 

 
Figure 11. Variation of T with n, in the circumferential 
direction 
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Figure 12. Thermal load effect on variation of w  in the  
circumferential direction 
 
 

 
Figure 13 .Thermal load effect on variation of ζζσ  in the 

circumferential direction 
 
 

 
Figure 14. Thermal load effect on variation of θθσ   in 
circumferential direction 
 

 
Figure 15. Thermal load effect on variation of 

ζθτ  
in the 

circumferential direction 
 
 

 
Figure 16. Thermal load effect on variation of h in the 
circumferential direction 
 
 
 
5. CONCLUSION  
 
The three-dimensional magneto-thermo-elastic problem 
of an FG truncated conical shell made of perfect 
conducting material in the presence of a constant initial 
magnetic field and subjected to thermal and mechanical 
loads is investigated in details. Characteristic 
parameters including the mechanical, magnetic and 
thermal properties are assumed to vary as function of 
the thickness and according to a power law formulation. 
The governing equations of the conical shell are derived 
and discretized with the help of the semi-analytical 
differential quadrature method. It is observed that 
results obtained by DQ method converge to very 
accurate numerical results using considerably small 
number of grid points and hence requiring relatively 
little computational effort.  Numerical results were also 
obtained for different values of the non-homogeneity 
property of the material and the inner-wall temperature 
to demonstrate their high effects on the behavior of the 
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normalized displacement, stress, thermal and induced 
magnetic fields. By observing the numerical results, it 
appears that optimum way of designing can be 
performed by selecting an appropriate non-homogeneity 
constant, n. For instance, changing the non-
homogeneity constant from negative to positive, causes 
the stress components along the circumference and the 
thickness of the shell to have smaller amplitudes. 

 
]۱-۲۵[  
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APPENDIX A 
 
 
The stress field in terms of components of the displacement 
and temperature fields: 
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The DQ form of the equilibrium equation in s- direction is 
presented as follow: 
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The DQ form of the equilibrium equation in ζ direction. 
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The DQ form of boundary conditions.
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The DQ form of heat transfer equation through the thickness: 
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 چکیده

 
  

الاستیک پوسته مخروطی ناقص ساخته شده از ماده مدرج تابعی تحت فشار غیر -ترمو-در این مقاله مسئله سه بعدي مگنتو
خواص مواد از قانون توانی وابسته به . شودهاي مغناطیسی و حرارتی بررسی مییکنواخت داخلی و در حضور میدان

الاستیسیته بر حسب -فرمولبندي مسئله با توسعه روابط بنیادي ترمو. کننددر راستاي ضخامت پیروي می مختصات پوسته
از روش کوادریچر تفاضلی براي گسسته سازي و تبدیل معادلات  متعاقبا. شودسیستم مختصات مخروطی آغاز می

اثیرات ناهمگنی خاصیت ماده و نیروهاي نتایج عددي ت. شوددیفرانسیلی منتجه به سیستم معادلات جبري استفاده می
از روش اجزاء محدود جهت راستی . دهدجایی، تنش، دما و مغناطیس القایی را نشان میهاي جابهحرارتی بر توزیع میدان

آزمایی جوابهاي حاصله از روش کوادریچر تفاضلی براي پوسته مخروطی ناقص ساخته شده از ماده مدرج تابعی استفاده 
  .دهدکه انطباق خوبی را نشان میشده است 
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