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A B S T R A C T  
   

This article deals with the mechanical analysis of a fixed-fixed nano-beam based on nonlocal theory of 
elasticity. The nano-beam is sandwiched with two piezoelectric layers through its upper and lower 
surfaces. The electromechanical coupled equations governing the problem are derived based on 
nonlocal theory of elasticity considering Euler-Bernoulli beam assumptions. Also, nonlocal 
piezoelectricity is according to Maxwell’s electrostatic equations. The piezoelectric layers are 
subjected to a voltage to tune the stiffness of the nano-beam. The equations are solved through step by 
step linearization method and Galerkin’s weighted residual method. The results are compared with 
those of the local model. The effect of piezoelectric voltages on the non-locality of the model is 
investigated as well. 

 

doi: 10.5829/idosi.ije.2013.26.12c.12 

 

 
1. INTRODUCTION 1 
 
Nano-beams/tubes are vastly considered in the nano-
electromechanical systems (NEMS); that is why 
studying the mechanical behavior of the tiny media has 
become more attractive during the last decade. For 
example, Shabani et al. [1] studied static and dynamic 
response of carbon nanotube nanotube based nano-
tweezers. Jafari et al. [2] validated the shell theory for 
modeling the radial breathing mode of a single-walled 
carbon nanotube. Mohammadimehr et al. [3] 
investigated postbuckling equilibrium path of a long 
thin-walled cylindrical shell (Single-Walled Carbon 
Nanotube) under axial compression using energy 
method. Shafiei et al. [4] studied the effect of 
composition on properties of Cu-Ag nanocomposites 
synthesized by heat treatment. Scientists have found out 
that mechanical behavior in tiny structures may be 
strongly influenced by phonon dispersion and atomic 
interaction according to lattice dynamics; these length 
dependent properties of materials are considered in 
length scale constant. According to, classical theory of 
                                                        
*Corresponding Author Email: g.reazadeh@urmia.ac.ir (G. 
Rezazadeh) 

elasticity could not be exacted. Eringen attended stress 
at a point of a medium dependent on the whole points of 
the medium [5, 6]. Furthermore, the stress gradient 
should be considered. Many works have been focused 
on studying the mechanical behavior of the nano-
beams/tubes  based on the non-local theory. 

Firstly, Eringen [7] proposed the general theory of 
non-local piezoelectricity. The problems for a crack or 
two cracks considering non-local theory in elastic or 
piezoelectric materials were investigated by Zhou and 
Jia [8] and Zhou et al. [9]. Ke et al. [10] investigated the 
nonlinear vibration of the piezoelectric nano-beams 
based on the nonlocal theory and Timoshenko beam 
theory, where the piezoelectric nano-beam is subjected 
to an applied voltage and a uniform temperature change. 
Ghorbanpour Arani et al. [11] studied electro-thermo 
nonlinear vibration of a piezo-polymeric rectangular 
micro plate made from polyvinylidene fluoride (PVDF) 
reinforced by zigzag double walled boron nitride 
nanotubes (DWBNNTs). 

In spite of  the few studies on nonlocal piezoelectric 
medium, there is a large number of the works on 
sandwiched and FG  piezo beams. Rezazadeh et al. used  
piezoelectric actuation to control the pull-in voltage of a 
fixed–fixed and cantilever MEM (micro electro 
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mechanical)  actuators [12]. Azizi et al. [13] modeled a 
FG Fixed-Fixed beam, the composite varying through 
the thickness from piezoelectric base to silicon. Also, 
Azizi et al. [14] studied parametric excitation of a 
piezoelectrically actuated system near Hopf bifurcation. 
Saeedi-Vahdat et al. [15] probed thermoelastic damping 
(TED) in a tunable micro-beam resonator sandwiched  
with a pair of piezoelectric layers. Ahmadian et al. [16] 
studied piezoelectric and functionally graded materials 
in designing electrostatically actuated micro switches. 
In these achievements, the authors have employed linear 
electric potential distribution through the piezoelectric 
layer according to Crawley proposed model [17]. Quek 
and Wang [18] proposed electric potential distribution 
as the combination of half-cosine and linear distribution. 

According to this model Pietrzakowski [19] 
investigated the effect of electric potential distribution 
on the piezoelectrically vibration control of composite 
Kirchhoff plate, and Shah-Mohammadi-Azar et al. [20] 
investigated the effect of electric potential distribution 
on electromechanical behavior of Micro-beam with 
piezoelectric and electrostatic actuation. Ke et al. [10] 
used  combination of half-cosine and linear distribution 
of electric potential distribution to derive governing  
equation of the electric displacement through the 
piezoelectric layer based on nonlocal elasticity theory. 
To the authors' knowledge, the nonlocal model of 
piezoelectrically sandwiched nano-beam has not been 
studied yet. 

In this paper, the coupled electromechanical 
equations of  a sandwiched nano-beam based on 
nonlocal elasticity theory are derived. The nano-beam in 
the case of Fixed-Fixed boundary conditions attended to 
be parallel with a Fixed substrate and be applied to 
electrostatic and Casimir pressures. The effect of non-
locality on the nano-beam static stability and deflection 
due to applied pressures is studied.  
 
 
 
2. PROBLEM FORMULATION 

 
As shown in Figure 1a fixed-fixed nano-beam (NEM 
actuator), bonded with piezoelectric layers from the 
upper and lower sides is considered. Length L , 
thickness h , width b , gap from the fixed substrate og  
and piezoelectric layers with thickness ph  are the nano-
beam’s geometrical properties. The nano-beam is 
actuated with an electrostatic voltage V and is tuned by 
a piezoelectric voltages pV . 

Firstly, Eringen [5]  expressed the dependence of 
stress field at a point to strains of the body whole points. 
According to this stress tensor at a point x  can be 
expressed as: 

 , Ω( )
V

K x x x dx      (1) 

where  Ω x  is the classical, macroscopic stress tensor at 
point x , and K  denotes the nonlocal modulus, x x

the Euclidean distance, and   the dimensionless length 
scale (material constant) which depends on the internal 
and external properties like the Lattice spacing and 
wave length. 

0e a
L

   (2) 

0e  is the material constant, and a  and L  are the 
internal and external characteristic lengths, respectively. 
For stress tensor we have following form: 

   Ω : ( )x C x x  (3) 

where ( )C x is the fourth order elasticity tensor and 
denotes the ‘double dot product’. 
According to Eringen [7] expression coupled 
electromechanical nonlocal constitutive equations have 
the following form: 

 
 

2 2
0  

2 2
0

ii ii ijkl kl kij k

ii ii ikl kl ik k

e a c e E

D e a D e E

  

 

   

   
 (4) 

where E  is the Young’s modulus and ( )x  and ( )x  
are the normal stress and strain in the axial direction of 
the nonlocal nanotube. For limiting nano-scale 0 0e a 
, the nonlocal effect can be neglected and the nonlocal 
stress   approaches that of the corresponding classical 
stress ( )E x   .  Equation (3) in one-dimensional 
form can be reduced into Equations (5) and (6) [10]: 
 
 

 
(a) 

 

 

(b) 

Figures 1. Schematic of  the fixed- fixed NEM actuator with 
piezoelectric layers 
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 (6) 

where 11c , 31e , 3
 , 1

  are indicated modified 
coefficients of piezoelectric material [21] which are 
presented in appendix 1, and for / 5b h   the elastic 
layer effective modulus of elasticity can be 
approximated by plane stress as: 2/ (1 )E E   .  
The electric potential distribution in the actuator layers 
proposed like the form suggested by Quek and Wang 
[18], as the combination of a half-cosine and linear 
variation as following: 

     1 1, , cos( ) ,p a
p p

z zx z t x t t
h h


       (7) 

where 1z  is the local coordinate measured from the 
center of the piezoelectric layer center. The first term of 
Equation (7) shows direct piezoelectric layer effect, 
famed as eigen potential, induced due to mechanical 
strain of the beam and a pV    is the external applied 
potential difference along the piezoelectric layer 
thickness of the actuator layer. According to 
electrostatic Maxwell’s electric field equation of the 
beam , electric field and electric potential are related to 
each other as: 

 

 
1

3

1
1

1
3

,
0  , 

,

cos( )  , 

sin( )  

p

p

p
p

p p p

x z
E E

x
x z

E
z

z
E

h x

VzE
h h h






    




  







   

 
(8) 

On the other hand, the free charge density f  inside the 
piezoelectric fixed-fixed nano-beam is  
zero. The electrostatic Maxwell’s electric displacement 
equation is as following : 

3 1.   , 0 0 f f
D DD
z x

 
 

     
 

 (9) 

If we substitute 1E  and 3E of Equation (8) and 
2

2x
wz

x
  


we will have: 

2 2
3

3 312 2

1
3

2
1 1

1 12

( sin( ) )

(cos( ) )

p
p

p p p

p

p

D wD e z
x x

Vz
h h h

D zD
h xx











    
 

  


 



 
(10) 

By applying weighted integration over the electric 
displacements in Equation (10),  we can obtain 
Equations (11) and (12) [10], also considering Equation 
(9) at last  Equation (13) is obtainable. 

2
2 3 1

3 2
2

2

2
2

1
3

31

12
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222
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  


 
 


  


 (13) 

In order to obtain the governing equation of the lateral 
vibration of the nano-beam, the total moment at a given 
cross section of the nano-beam is: 

 tot piezo elasticM M M   (14) 

where elasticM relates to the elastic layer moment, and 

 piezoM relates to the bonded piezoelectric layers 
moment. And also based on the Euler-Bernoulli moment 
we have: 

xM zdA   (15)

Considering Equation (5) and substituting 1E , 3E  and 

x  as told before the moment of piezoelectric and 
elastic layers will be as: 

2
22

 0 11 31 3 2
2

2
22

0 11 31 3 2
2

2
22

0 2
2
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s

s
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 (16) 
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Referring to Equations (14) and (16): 
 

2 2
312  

0 2 2

4
( ) ( )

tot piezo elastic

ptot
eq eq p

M M M
be hM we a EI

x x 

  

 
  

 

 (17) 

where w is the deflection and
 
 0 eq
e a  the equal nonlocal 

parameter assumed to be equal with each of the layers 
nonlocal parameter, and  eq

EI
 

the equal stiffness 

rigidity as:      eq elasti piezoc
EI EI EI  . Also based on 

the Euler-Bernoulli beam theory we have: 
2 2 2

2 2 2( , ) ( )tot
p eq

M w wN q x t bh
x x t


  

  
  

 (18) 

where, ( )eqbh is the equivalent mass of the nano-beam 
per unit length, and ( , )q x t  a distributed force on the 
nano-beam. The stretching force pN

 
induced by applied 

piezoelectric voltages is [20]:  
 31 312 2p a pN e b t e bV     (19) 

Considering Equation (17) and (19) we can obtain: 

   

 

24
312

0 4 2

24
22

0 02 2 2

2 2

2 2

4
(( ) ( )

,

)

(( ) ( ) )

( , )

p p
eq p eq

eq eq eq

peq

be hwe a N EI
x x

q x twe a bh e a
x t x

w wbh N q x t
t x







 
 

 



  

 
  

 

 (20) 

Applied pressures to the nano-beam are: 

   

2 2

2 4

  
2 240

o

o o

bV bq
g w g

c
w


 

 

  (21) 

where the first and second terms of Equation (32) refer 
to electrostatic [22],  and Casimir pressure [23] 
respectively. 341.055 10 Js   is the Planck's 
constant, 8 12.998 10C ms   the speed of light, and 

2
1

2  CA  Hamaker constant which lies in the range 

of 19(0.4 4) 10 J   [24]. Considering Equations (20) 
and (21) the governing equation of the deflection of the 
nano-beam can be simplified as: 

   

 

   
 
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be hw wbh e a
xt x

bV b we a
xg w g w
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c
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c
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




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



 



 
 

  
  

  
 


 

 

 
  










 

(22) 

The accompanying boundary conditions for the fixed-
fixed open circuit [25] sandwiched nano-beam are: 

   

       

0 0, 0,

0 0, 0, 0 0; 0

p p L
w ww w L L
x x

   

 
   

 

 (23) 

In order to make analysis easier, we prefer to non-
dimensionlize the governing equations as following: 

22

1 22 2 0p
p

w


 


 
   

 


 (24) 

   

       

24 4 2

1 2 34 2 *2 *2 2

22 2
25

3 5
6

4 2 2

2 2
7 8

2 44 6

( 1)

  
( ) ( )

1 1

  ( )
1 1 1 1

pw w w
t t

Vw w w
w w

V V
w w w w

  
  

 


 

   

   
   

    

  
   

   

  
   

  

  

 

   

 
(25) 

The new parameters are defined in appendix 2. 
 
 
 
3. SOLUTION 
 
In the static analysis, because of confronting with 
nonlinear force terms, gradual increment of the applied 
force is considered, which results in deflection and 
electric potential distribution in a slow trend. To this, 
according to the step by step linearization method 
(SSLM), governing equations are solved in sequent 
steps of force increment in linearized form keeping the 
first two terms of Taylor expansion. The value of the 
electrostatic pressure depends on both the voltage and 
gap where the value of Casimir pressure only depends 
on the gap.  

In order to apply SSLM to Casimir pressure, we 
need a virtual parameter for gradually applying of this 
force. This can be possible by multiplying Casimir 
pressure to a virtual parameter ( )  and changing the 
virtual parameter from zero to 1, step by step [26]. 

1

1

1

1

k k

k k

k k k k

k k k k
p p p p

V V V

w w w w





 









   
    

    
       

 (26) 

k and k are the deflection and electric potential 
increment in ( )k th  step. In ( )k th step we have: 
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 
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
 (28) 

And in the case of ( 1)k th  step, substituting Equation 
(26) into the statically governing equations and 
subtracting the terms indicating into ( )k th  step we can 
obtain: 
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2 2

21 22 0
k k

k 
 

 
  

  
 

 (30) 

where k and k are assumed as a combination of a 
complete set of n  linearly independent shape functions 
[27] as: 

   
1 1

,
n n

n nk k k k

k k

a b   
 

     (31) 

By substituting Equation (31) into Equations (29) and 
(30), and employing Galerkin weighted residual method 
we can obtain: 

     

   

1
1 1 1

2
1 1 0

   

  

       

       

pim e
n n nn n n n

pia
n nn n n n

K K a K b F

K a K b
 (32) 

where the elements of the matrices are presented in 
Appendix 3. 
 
 
4. NUMERICAL RESULTS 
 
4. 1. Validation of Results   Using the foregoing 
numerical procedure and writing a code in Matlab 
software results for different cases are obtained and for 
some cases are compared with those, available in the 
literature.   

To this end, we compared our results for the static 
pull-in voltage with those of the MEMCAD (3D 
simulation) [28] and FDM (Finite difference method) 
[12] for a fixed-fixed electrostatic MEM actuator. For 
this purpose, we considered properties of the MEM 
actuator with Young’s modulus169GPa , thickness
3 m , width 50 m and gap1 m  for two different 
Length values, and settled zero the Casimir pressure and 
piezoelectric layer thickness. The results and 
comparisons are illustrated in Table 1. 
 
4. 2. Current Paper Results      Here as a case study 
PZT-4 is considered as the piezoelectric layers, which 
are bonded to the upper and lower side of the silicon 
nano-beam with original mechanical and electrical 
properties [29], and geometrical dimensions as listed in 
Table 1.  

In order to investigate the effect of non-locality, 
variation of the pull-in voltage versus the mid-point 
deflection of the fixed-fixed nano-beam considering 
different nonlocal parameters are shown in Figure 2. As 
shown in Figure 2, by increasing the nonlocal 
parameter, the pull-in voltage has a decreasing trend, 
where nonlocal parameter increases, the difference 
between the results of the classic theory and nonlocal 
theory is significant.  Also in Figure 3 variation of the 
non-dimensional frequency versus the applied 
electrostatic voltage considering different nonlocal 
parameters are shown.  
 
 
TABLE 1. The values of the pull-in voltages for the MEM 
actuator 

 
Obtained 
results*  

MEM 
CAD  [28] 

FDM 
[12] 

∆1 
(%) 

∆2  
(%) 

L=350
m  20.2 20.3 20.2 0.49 0 

L=250
m  39.4 40.1 39.5 1.75 0.25 
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Similar to the results presented in Figure 2, by 
increasing the nonlocal parameter differences between 
the results of the classic theory and nonlocal theory 
increase. As it is clear from Figures 2 and 3, in the case 
of the fixed-fixed nano-beam, increasing the nonlocal 
parameter results in decrement of the pull-in voltage. 

Deflection of the fixed-fixed nano-beam due to 
applied pressures for different nonlocal parameters are 
shown in Figure 4,. By increasing the effect of non-
locality, lateral deflection of the nano-beam increases. 
In Figure 5, effect of non-locality for different length to 
thickness ratios is investigated. As shown in this figure, 
if the thickness of the nano-beam is comparable with its 
length, non-locality effect on the mechanical behavior 
(pull-in instability) of the nano-beam becomes more 
important. In the case of lower length to thickness 
ratios, especially when the nonlocal parameter 
increases, results of the local and nonlocal elasticity 
theories differ with each other significantly. On the 
other hand, for higher length to thickness ratios results 
of the nonlocal theory converge to those of the local 
theory and the effect of increasing the nonlocal 
parameter becomes trivial. 
 
 
TABLE 2. Geometrical and material properties of the silicon 
nano-beam and Piezoelectric layers  

 Nano-beam Piezoelectric Layer 

L 50nm   

b 50nm   

h 2nm  2nm  
E 169GPa   

  0.06  0.3  

  32,231 /Kg m  37,500 /Kg m  

 - 5.2  

 - 15.1 

 - 13.9GPa  

 - 7.78GPa  

 - 11.743GPa

 - 7.428GPa  

 - 95.62 10 /F m  

 - 6.46GPa  

 10nm   

 128.854187 10 F
m

   

 

 
Figure 2. The mid-deflection versus applied electrostatic 
voltage considering different nonlocal parameters and

0PV volt . 
 
 

 
Figure 3. Non-dimensional frequency versus the applied 
electrostatic voltage considering different nonlocal parameters 
and 0PV volt . 
 
 

 
Figure 4. Deflection versus the Length considering different 
nonlocal parameters and 0PV volt . 
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Figure 5. Pull-in voltage versus the Length to thickness ratio 
considering different nonlocal parameters and 0PV volt .  
 
 

Figure 6. Pull-in voltage versus the Piezoelectric voltage 
considering different nonlocal parameters. 
 
 

Figure 7. Pull-in voltage versus the Nonlocal parameter to 
length ratio considering different nonlocal parameters. 

In Figure 6 effect of axial force (piezoelectric 
voltage) on the non-local behavior of the nano-beam is 
investigated. 

By increasing the applied piezoelectric voltages, the 
pull-in voltage using nonlocal theory has higher 
increment rate compared to that of the local theory.The 
important point in Figure 6 is the coincidence of the 
results of local and nonlocal theories in a special applied 
piezoelectric voltage, which means, depending on the 
value of the applied piezoelectric voltage, the pull-in 
voltages using nonlocal theory may be more or less than 
the results of the local theory. 

Figure 7 shows the effect of nonlocal parameter on 
the pull-in value for different applied piezoelectric 
voltages. As shown, increasing the nonlocal parameter 
for lower applied piezoelectric voltages (lower than   
0.3 volt for the studied case study) decreases the pull-in 
voltage value but for higher piezoelectric voltages 
(higher than  0.3 volt) the opposite takes place. As one 
more point, applying particular piezoelectric voltage (in 
this case study   0.3 (volt)) the results of the local and 
nonlocal theories are close together.  
 
 
5. CONCLUSION 
 
In this paper, mechanical behavior of an electro-
statically actuated fixed-fixed nano-beam, sandwiched 
with two piezoelectric layers and subjected to a tuning 
voltage was investigated. The coupled equations 
governing the electromechanical behavior of the nano-
beam based on the nonlocal theory of elasticity were 
obtained and solved numerically. The results showed 
that increasing the nonlocal parameter for a given 
applied voltage increases the beam deflection and 
consequently decreases the pull-in voltage. The effect of 
the length to thickness ratio of the beam on the 
difference between results of the classic and nonlocal 
theories was investigated, and showed that for the lower 
length to thickness ratios this difference is significant. 
Furthermore, it was showed that the nonlocal theory has 
softening effect when the applied piezoelectric voltage 
is zero, but in the presence of the tuning applied 
piezoelectric voltage, nonlocal theory has softening and 
stiffening effect depending on the piezoelectric voltage. 
 
[1-29] 
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 چكيد�
 

  

پيز� �لكتريك پوشيد�  �نانو تير�� �� طر� با �� لايه. مقاله �فتا� مكانيكي يك نانوتير �� سر گير��� بر�سي شد� �ست   �ين�� 
بر - تير ��لر ��لاستيسيته بر �سا� فرضيا� معا�لهغيرمحلي معا�لا� �لكتر�مكانيكي كوپل حاكم با توجه به مد� . شد� �ست

�� �� . سيته بر �سا� معا�لا� �لكتر��ستاتيك ماكسو� �ستخر�� شدنديپيز� �لكتر غيرمحلي� همچنين با توجه به مد�  نولي
�ست �مد� با �ستفا�� �� ��� خطي ه معا�لا� كوپل ب. نانوتير �ستفا�� شد� �ست پاييسختتنظيم  بر���لتا� پيز��لكتريك 

همچنين تاثير  .�ندمد� با نتايج �لاستيسيته كلاسيك مقايسه شد���ست ه نتايج ب .لركين حل شدندسا�� گا� به گا� � ��� گ
    . مد� بر�سي شد� �ست غيرمحلي�فتا�  بر) نير�� كشش محو��(�لتا� پيز��لكتريك 
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