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An analytical approach is presented to assess the response of offshore structures under seismic
excitation. This paper evaluates the impacts of different fluid field models and the mass of equipment
at the top of offshore structure which is simulated as lumped mass on the responses of offshore
structures. To do this, two and three dimensional fluid field models are developed. In three
dimensional models different approximation regarding the free surface boundary condition associated
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changing in the value of lumped mass is calculated. Finally the impacts of different models on the
value of maximum displacement for Kobe earthquake are evaluated. It is shown that different
approximations regarding the fluid field could largely change the value of maximum displacement
evaluated by the models.
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1. INTRODUCTION

For maximum water depth less than 1000 m, it is usual
to use platforms fixed in the bottom. Fixed bottom
platforms include different kinds ranging from jackup
rigs, gravity platforms, jacket platforms to compliant
tower platforms. _Considering fixed platforms,
equipment mass aresimulated as lumped mass at the
top of offshore structure. The surrounding fluid could
have large impact on overall response of these
structures when they are excited by earthquakes. The
mathematical derivation of fluid-structure interaction
requires some approximation on the fluid field that
could affect the magnitude of the response estimated
by the model.

Yeung [1] found the added mass and damping of
floating circular cylinder in finite depth water. He
derived added mass and damping for heave, sway and
roll motions of the cylinder. Rahman et al. [2] obtained
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added mass and damping coefficients for a circular
cylinder clamped at the seabed. They used
eigenfunction expansion including propagating and
evanescent modes and finally developed asymptotic
high and low frequency solutions for added mass and
added damping. Williams [3] investigated dynamic
response of surface piercing clamped circular cylinder
under horizontal ground excitation. Employing high
frequency approximation of free surface boundary
condition, he developed Green function to obtain
integral solution for compressible fluid flow. Tung [4]
studied the behavior of submerged vertical cylindrical
tank under harmonic ground excitations. Assuming
incompressible, inviscid and irrotational fluid flow,
Laplace equation was solved for two inner and outer
regions of the fluid field and then, applying boundary
and continuity conditions, hydrodynamic forces were
obtained and effect of tank geometry properties on the
hydrodynamic forces in graphical form were presented.
Maheri et al. [S] experimentally calculated the added
mass for rigid and flexible cylinders. Han et al. [6]
derived an analytical solution for added mass of
flexible cylinder under harmonic ground motion
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excitation. They also developed a simple formula for
computing natural frequency of the coupled system.
Hsi-teh [7] investigated earthquake response of circular
column for partially submerged water. The added mass
for submerged floating tunnel in the case of deep and
shallow water was derived by Shahmardani et al.[8].

Anagnostopoulos [9]who studied dynamic response
of offshore platforms under wave loading used a time
domain solution using Morrison’s equation to account
for fluid-structure interaction. Lee et al. [10]
investigated the seismic response of flexible
underwater oil storage tanks under horizontal ground
motion. Bhata et al. [11] investigated dynamic
response of vertical circular cylinder under wave loads
with small amplitude. They considered three motions,
surge, heave and pitch in finite-depth water and
assuming four velocity potentials for water field,
utilized an analytical solution for solution of fluid-
structure interaction. Wu et al. [12] obtained exact
solutions for natural frequencies and mode shapes of an
immersed wedge beam with a tip mass at the end. They
found good agreement between their results and finite
element method. Oz [13] used analytical and finite
element methods to calculate natural frequency of a
beam partially immersed in the water with a tip mass.
He considered transverse vibration of beam and
showed that by increase in water height, tip mass and
water density, there is a decrease in natural vibration
frequencies. Naghipour [14] described various time-
domain methods useful for analyzing the experimental
data obtained from a circular cylinder force in terms of
both wave and current for estimation of the drag and
inertia coefficients applicable to the Morison’s
equation.

Esper [15] investigated the seismic response of an
offshore structure using ANSYS. He used Westergaard
added mass model to account for fluid structure
interaction. He concluded that accounting for inertial
effect of surrounding water reduces the maximum
acceleration at platform level. Amundsen [16]
investigated the influence of different models regarding
fluid-structure interaction on the overall seismic
response of a concrete platform. He considered two
models, the first is an added mass model employing
Morrison’s equation and the second involves coupled
analysis of the fluid and structure fields in ABAQUS.
He found that although the change in the period of the
system in the two models is negligible, the frequency
content of the responses could have appreciable
differences. The effect of added mass fluctuation on
vertical vibration of TLP in the case of vibration in still
water for both free and forced vibration subjected to
axial load at the top of the leg was presented by
Tabeshpour et al. [17].

Accounting for fluid-structure interaction through a
complex coupled field analyses is numerically
expansive. On the other hand, oversimplification of

this interaction through commonly adopted Morrison’s
equation, which does not account for reduced added
mass near free surface, could significantly affect the
accuracy of the analysis. This shows the need for
analytical models capable of reproducing global
response of the coupled field with good accuracy.

In this study, dynamic response of vertical circular
cylinder with lumped mass is investigated under
seismic excitation. Two and three dimensional models
are adopted to consider fluid-structure interaction.
Then governing equation of the system under
simultaneous application of the fluid pressure and
seismic excitation is obtained. Finally, variations of
maximum displacement and natural frequencies of the
coupled system with change in the ratio of lumped
mass to the cylinder mass are investigated.

2. FORMULATION FOR JACKET

Offshore structure is simulated as a vertical circular
cylinder with a lumped mass which is the mass of
equipment at the top of it. As it has been shown in
Figure 1, height, radius and thickness of cylinder are
denoted by h;, r and t, respectively; and lumped mass
M is located at the top of cylinder. In this study the
only rotary inertia of the lumped mass is ignored. The
equilibrium equation of the cylinder with surrounding
water is (Williams and Moubayed [18]):

54

2 .
Wy B12 Y o v, + EIw™ = F (1)
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where m and EI are mass per unit length of cylinder
and flexural rigidity of cylinder. Decomposing the
deflection of the cylinder we have:

wi(z,1) = W(z,1) + w,(8) )

here wand w are total and relative (to ground) lateral
deflection of cylinder and w, is ground displacement.
In Equation 1, F simulates the external fluid force on
cylinder body. The boundary conditions of cylinder are
(To [19]):

i -0

zZ=

6;1 ~0
0z|z=0
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Considering free vibration of beam (F=0 in Equation
1) with tip mass (boundary conditions of Equation 3),
we could derive the eigen-functions (mode shapes) of
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the beam. Now, employing Equation (2), we could
expand total lateral deflection in terms of eigen-
functions of beam with tip mass as [19]:

w(z1)= Zi)IA,,(t)

. z . z sing, +sinhg z z
sinhg, ~—sing,~———2 """ (coshg,~—cose,—) 4)
h h cosg,+coshg, h h

(0= 3 A4, (09, (2) + w, (1)

where A,(t) is modal amplitude of the n™ mode and &,
is corresponding eigen-value. The eigen-value is
determined solving the following equation [19]:

sing,coshe, —sinhg,cose, mh 1

€ -
8 1+cosg,coshe,, M o ®)

Hereafter we define o as mass ratio. As it is shown in
Figure 2, increasing the ratio of lumped mass to mass
per length of cylinder (M/mh or mass ratio) there is
decrease in the value of g, which these decreasesare
smaller for higher mode numbers. On the other hand,
as it could be inferred from this figure, for larger mass
ratios the change in the value of eigenvalue decreases
and they become essentially constant.

3. FORMULATION FOR FLUID FIELD

Accounting for fluid-structure interaction through a
complex coupled field analyses is .numerically
expansive. On the other hand, oversimplification of
this interaction through commonly adopted Morrison’s
equation does not account for reduced added mass near
free surface and consequently could affect the accuracy
of the analysis. This shows the need for numerical
inexpensive analytical models. capable of reproducing
global response of the coupled field with good
accuracy.Assuming ~that the surrounding fluid is
incompressible, inviscid and for irrotational fluid flow,
it is possible to treat the flow field by potential theory.
With this assumptions, the velocity potential function
should satisfy Laplace equation:

Vip=0 (6)

Here we adopt two approaches to evaluate the fluid
pressure on the cylinder body. In the first approach, the
fluid field is treated as two dimensional (2D) field,
assuming constant inertial effect of the fluid field along
cylinder length (ignoring free surface boundary
condition). In the second approach, the fluid field
istreated as three dimensional (3D) field to account for
the change in the inertial contribution of the fluid field
along the cylinder length (especially near free surface).

The 3D models are developed employing
simplification of free surface boundary condition. Two
3D models are developed which are only applicable for
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Figure 2. Variations of eigenvalues with changing in the
mass ratio

excitation with high or low frequency content. These
analytical models could provide an upper and lower
boundaries for displacement of the offshore.The
general free surface boundary condition has the
following form:

’p . 29
— 4o =0
612 g 62 (7)

To derive the simplified free surface boundary
condition for high and low frequency excitation, we
consider harmonic excitation in the form of ¢ For
this excitation we have:

(1,020 = ¢ ¢(1,0,2) (®)
now the boundary condition (7) becomes:

e 09(r,0, 2)

a(p 2 ol
o2 85,7 (-~ e(r,0,2)+g P )e'! )
and consequently:
—w2<p](r,9,z)+g%:o (10)

Considering low frequency excitation, this leads to:

20(1,0,2) _y
— 11
0z (an
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and for high frequency excitation to:
o(r,0,2)=0 (12)

In the following subsections, the solutions for two and
three dimensional fluid fields are presented.

3. 1. Two Dimensional Fluid Field For two
dimensional case, the Laplace Equation (6) becomes:

or? ror r?o6? (13)
R<r, 0<0<2r

Vz(p:az_(p+la_(p+ 1 a2(p

The potential function must also satisfy the following
boundary conditions:
limp =0

r—w

¢ (14)

=W, cosO
or|r=R

The first boundary condition accounts for still water in
large distance from the jacket, and the second
boundary condition satisfies the compatibility of
deflection in the fluid-structure interface. Imposing the
boundary conditions, the velocity potential function is
obtained in the following form:

RZ
9(1,0) =~ ——cos0 (15)

Integrating the fluid pressure on wet surface of the
cylinder, the fluid force will be:

F =—p  R*W, =—m, ¥, (16)

Now introducing this fluid force in-Equation (1), we
have:

(m+ m,)i, + EIw'™ =0 (17)

Substituting w; from Equation (4), multiplying both
sides of equation by ¢; and integrating through the
length of the beam ‘and finally employing the
orthogonality of cylinder’s mode shapes, the
differential equation for modal amplitudes could be
derived:

(m+m,)A + Elef A(0)=-2F,
g ()
F, = (m m) 6,(2)i, (01dz
0
3. 2. Three Dimensional Fluid Field The three-

dimensional model accounts for the change in the
inertial contribution of the fluid along the cylinder
length. In this section the external force is calculated
for two different conditions, imposing different
assumptions regarding the free surface boundary

condition. In this case the Laplace equation takes the
following form:

2% 189 1 0% %
Vip="rt 4Ly 2P T V) 19
T T P oo o (19)

subjected to the following boundary conditions:

0=0 as: r—ow (20a)
% _ -

E:w,cosé) at: r=R (20b)
-0 at: z=0 (20c)

Z

The first equation accounts for still water at large
distance from jacket,and the second equation considers
the compatibility of deflection between jacket and its
surrounding water. The last equation is the
impermeability boundary condition at bottom (no fluid
flow (velocity) in the direction normal to sea bed).
We derive the asymptotic solution for two cases of
near zero and high frequency excitations. To do this,
two 3D solution accounting for two simplified
boundary conditions for free surface (Equations (11)
and (12)) are considered.

Considering Equation (12), in the case of high
frequency excitation (solution denoted by ¢;), the free
surface boundary condition simplifies to:

¢, =0 at: z=h 20

In the same time, considering Equation (11), for near
zero (low) frequency excitation (solution denoted by
@), the free surface boundary condition reduces to:

6&:0 at: z=h (22)
0z

Imposing the boundary conditions, the analytical
solution for the potential function are obtained as:

0,(r,0.2,0) = 5 B, (DK, (A, r)cos( 1, 2) cos 0
m=1

- @m-Dr (23)
2h
and
0,(r,0,20 = 3 A (DK, (B,,r)cos( By 7) cos O
=l (24)
_mr
mTh

where K; is the modified Bessel function of second
kind of order one and A, and S, are the problem
eigenvalues. The only difference between two
solutions is in the value of eigenvalues. To avoid
repetitive derivations, we only derive the solution for
(8

Considering the compatibility condition at fluid-
structure interface, we conclude:
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3 By, (1K (7 R) cos(y2) cos(6)
m:lOO (25)
= $[p, (24,0, Jeos(®)

Now making use of the orthogonality of harmonic
functions, we have:

©

2 .
B0 = S0 47, 0) (26)

where:

7o = [coS(1,2)p, (2)dz
0
, 27
v, =Jcos(A;z)dz
0

Thus the potential function takes the following form:

© = 2K
a0 =% SO
B (28)

s + 7,0, (002,20 c05(0)
Integrating the fluid pressure over the cylinder wet

surface, the fluid induced inertial force imposed on the
structure could be evaluated as:

Fr==m, 3 Sy, + 7t (0], cos(2,2 @)
where
_ 2K(),mR)
" BAnRK (2 R) (30)

Introducing this fluid force in structure’s equilibrium
equation (Equation (1)), we have:

ZI Elpp, (2) An(D) + leff’m(Z)An(t)Jr mw, (1)

T . (1)
vm, § I[y Ay + 7 g ()JCy 082 2) = 0

Multiplying both sides of Equation (31) by ¢i(z) and
integrating over 0 to h, we obtain a set of coupled
ordinary differential equations:

Vim Fy
Lm t)=—
DimA,.() D

im

EI(%)“A(thA-(t) +m, i] icm%nn

Fsl :|:Ina QZO:Cm’}/m’}/im_‘_InEil‘.;Vzg'(t) = [MFsl +mEi]Wg(t)

h
Dim = I¢i¢tndz
0

h
E; = [$:(2)dz
0

The differential equation for modal amplitudes of ¢,
becomes:

£ 4 . ® o Yim i F,
EI-Y)* B.(t)+ mBi.(f) +m. Lim B o(f) = -2
=) B (0 +m, X2 Con? D, () D,

(32)
F,= |:ma flcmym Vit mE,}Wg(t) = [M, +mE, i, (D

These sets of differential equations are solved using 4th
order Runge-Kutta integration method.The added mass
matrix will have following components:

Yim

D

00
my, =1m, z CmYmi
m=l1 im

(34)
Existence of off-diagonal terms in this matrix shows
the coupling of different modes in the differential
equation for modal amplitudes.

In Equations (32)and (33),F,; and F;, represent the
earthquake induced lateral force along the cylinder
external surface. These forces are composed of two
terms. The first term is due to fluid flow adjacent to the
cylinder body and the second term is associated with
the cylinder’s own inertia. Note that difference in the
value of F,; and Fg comes from the difference in the
value of eigenvalues A, and B, Figure 3 depicts the
variation of Mps; and Mg, (masses associated with Fy;
and Fyp) with mass ratio and mode number. Interesting
point is that while M (the mass associated with the
fluid-induced lateral force on the cylinder body in the
case of high frequency excitation) is larger for
decreasing mode numbers and increasing mass
ratios, Mr,, (the mass associated with the fluid induced
lateral force on the cylinder body in the case of low
frequency excitation) becomes zero for all mass ratios
and mode numbers. This shows that in the case of low
frequency excitation, the lateral force along cylinder
body comes only from the mass inertia of cylinder and
there is no contribution from surrounding fluid.

Figure 4 shows the evolution of three dimensional
added mass matrix for the cases of high and low
frequency excitations when lumped mass is equal to
zero. As it is evident from this figure, for both types of
excitations diagonal terms are significantly larger than
off-diagonal ones. This is an indication of negligible
coupling between different modes in both cases.

Variations of diagonal terms of added mass matrix
with changes in the mass ratio are shown in Figure 5.
As it could be inferred from this figure, there is
completely different pattern for low and high
frequency excitations in the case of low mass ratios.
For higher mass ratios in both cases diagonal terms of
added mass matrix are insensitive to the change in the
mass ratio.

Figure 6 illustrates a comparison of the diagonal
terms of added mass matrix, obtained using two-
dimensional and three-dimensional models. It is shown
that while in the 2D model, the value of added mass
remains constant for different modes, in the 3D model,
different modes have different ratios of added mass
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which are less than the 2D model. This reduction in the
added mass of 3D model is due to imposition of
impermeability and free surface boundary conditions in
this model.

Mg /m,
So A NWsEOON®DO

3

Mode Number a=M/mh
(b) ' '
Figure 3. Variations of masses Mg,; and Mg, with change in
mass ratio and mode number, a) high frequency excitation
and b) low frequency excitation
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Figure 7. Kobe ground motion record, a) time history and b)
Fourier decomposition.

4. GROUND MOTION EXCITATION

To evaluate the extent of the variation in response due
to change in assumption regarding fluid field, in this
section results of analysis of offshore structure for
ground Kobe ground motion excitation are presented.
The result shows how different models regarding fluid
field could affect the evaluated response. By evaluating
the response to Kobe ground motion record, it is not
intended to obtain a global judgment about seismic
response of the offshore structures. The main focus of
the paper is on assessing the difference in the seismic
response due to assumed models for fluid field.

Tabulated in Table 1 are the values of the
parameters used in the analysis of reinforced concrete
vertical cylinder. Analyses are done for ground motion
record of Kobe earthquake (090 component of 1995
Kobe earthquake at Japan recorded at Nishi-Akashi
station, KOBE/NIS000). In the following simulations
the same value for h and hl is used: Table 2 shows
duration, peak ground acceleration and - epicentral
distance of ground motion record. Figure 7 depicts
time history of the ground motion record and its
Fourier spectrum.

Figure 8 presents the wvariation in the natural
frequencies of cylinder for different mass ratios for 3D
model with high and low frequency excitations and 2D
fluid field model, where w; and ; are first natural
frequency of cylinder when mass ratio is equal to zero
(a=0) and natural frequencies of cylinder for different
added mass ratios, respectively. In all models the
largest change in the frequency is for the first mode.
For large mass ratios, which is applicable for most of
platforms, 3D fluid model applicable for high
frequency excitation results in lower frequencies in
nearly all modes compared to the other models. This
indicates that the participation of higher modes in 3D
model applicable for higher frequencies could be
higher compared to the other models and as expected
this model could give better estimate of actual response
for excitations rich in higher frequencies.

Evolution of maximum displacement at the top of
structure with change in the mass ratio for four
different cases, including 3D models with high and low
frequency excitations, 2D model and ignoring fluid
field (dry cylinder) are depicted in Figure 9. It can be
seen that maximum displacement occurs when lumped
mass is equal to zero and by increasing the value of
lumped mass the maximum displacements decreases in
all cases.

Interesting point is that maximum displacement in
the case of 3D model with low excitation frequency is
very close to those of dry cylinder. This could be due
to zero value of Ms2 for all modes in the case of low
frequency excitation. On the other hand, the results for
3D model with high frequency excitation tend to those
of 2D model. However, note that there are appreciable
differences in the estimations of the two models for
maximum displacement.

TABLE 1. Parameters used in the analyses

Parameter Value
E (N/m?) 2.69x1010
h1, h (m) 100
R (m) 5
t (m) 0.8

TABLE 2. Seismic data used in this study

Input ground Duration PGA Epicentral distance
motion (s) (2) (km)

Kobe (1995) 40 0.4862 8.7
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Figure 8. Variations of natural frequencies with change in
lumped mass ratio, a) 3D fluid field with high frequency
excitation, b) 3D fluid field with low frequency excitation
and c) 2D fluid field.
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Figure 10. Fourier decomposition of response for different
models, a) 3D model with high frequency boundary
condition, b) 3D model with low frequency boundary
condition, ¢) 2D model and d) response without fluid.

The result also indicates that in the case of
excitation rich in low frequencies, the evaluated
maximum displacement employing 2D model will not
be on the safe side.

Shown in Figure 10 is the Fourier decomposition
of the response for mass ratio of one. As could be seen
in all models main contribution comes from the first
mode of response and the estimation of different fluid
models from this frequency is essentially the same.
This also shows that commonly adopted pushover
analysis proportional to the first mode of response will
give good approximation of actual response.

5. CONCLUSIONS

Response of vertical circular cylinder with a lumped
mass at its top and surrounding fluid under ground
motion has been investigated. Fluid force along the
cylinder body is evaluated employing different
approximations for fluid field. These include two
dimensional fluid field and also three dimensional fluid
field with different assumptions regarding free surface
boundary conditions. Deriving the response for 3D
models, the evolution of fluid force along the cylinder
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body for different excitation frequencies is evaluated. It
is shown that for low frequency excitation, the lateral
force along the cylinder body comes only from the
inertia of the cylinder body and there is no contribution
from the surrounding fluid. The results also show that
different approximations of the fluid field could have
large impact on the value of calculated maximum
displacement and in all models the main contribution
comes from the first mode.
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