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A B S T R A C T  

 
 

An analytical approach is presented to assess the response of offshore structures under seismic 
excitation. This paper evaluates the impacts of different fluid field models and the mass of equipment 
at the top of offshore structure which is simulated as lumped mass on the responses of offshore 
structures. To do this, two and three dimensional fluid field models are developed. In three 
dimensional models different approximation regarding the free surface boundary condition associated 
with high and low frequency excitations are adopted. Then the alternation of response of structure with 
changing in the value of lumped mass is calculated. Finally the impacts of different models on the 
value of maximum displacement for Kobe earthquake are evaluated. It is shown that different 
approximations regarding the fluid field could largely change the value of maximum displacement 
evaluated by the models.  
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1. INTRODUCTION 
1 
For maximum water depth less than 1000 m, it is usual 
to use platforms fixed in the bottom. Fixed bottom 
platforms include different kinds ranging from jackup 
rigs, gravity platforms, jacket platforms to compliant 
tower platforms. Considering fixed platforms, 
equipment mass aresimulated as lumped mass at the 
top of offshore structure. The surrounding fluid could 
have large impact on overall response of these 
structures when they are excited by earthquakes. The 
mathematical derivation of fluid-structure interaction 
requires some approximation on the fluid field that 
could affect the magnitude of the response estimated 
by the model.  

Yeung [1] found the added mass and damping of 
floating circular cylinder in finite depth water. He 
derived added mass and damping for heave, sway and 
roll motions of the cylinder. Rahman et al. [2] obtained 
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added mass and damping coefficients for a circular 
cylinder clamped at the seabed. They used 
eigenfunction expansion including propagating and 
evanescent modes and finally developed asymptotic 
high and low frequency solutions for added mass and 
added damping. Williams [3] investigated dynamic 
response of surface piercing clamped circular cylinder 
under horizontal ground excitation. Employing high 
frequency approximation of free surface boundary 
condition, he developed Green function to obtain 
integral solution for compressible fluid flow. Tung [4] 
studied the behavior of submerged vertical cylindrical 
tank under harmonic ground excitations. Assuming 
incompressible, inviscid and irrotational fluid flow, 
Laplace equation was solved for two inner and outer 
regions of the fluid field and then, applying boundary 
and continuity conditions, hydrodynamic forces were 
obtained and effect of tank geometry properties on the 
hydrodynamic forces in graphical form were presented. 
Maheri et al. [5] experimentally calculated the added 
mass for rigid and flexible cylinders. Han et al. [6] 
derived an analytical solution for added mass of 
flexible cylinder under harmonic ground motion 
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excitation. They also developed a simple formula for 
computing natural frequency of the coupled system. 
Hsi-teh [7] investigated earthquake response of circular 
column for partially submerged water. The added mass 
for submerged floating tunnel in the case of deep and 
shallow water was derived by Shahmardani et al.[8]. 

Anagnostopoulos [9]who studied dynamic response 
of offshore platforms under wave loading used a time 
domain solution using Morrison’s equation to account 
for fluid-structure interaction. Lee et al. [10] 
investigated the seismic response of flexible 
underwater oil storage tanks under horizontal ground 
motion. Bhata et al. [11] investigated dynamic 
response of vertical circular cylinder under wave loads 
with small amplitude. They considered three motions, 
surge, heave and pitch in finite-depth water and 
assuming four velocity potentials for water field, 
utilized an analytical solution for solution of fluid- 
structure interaction. Wu et al. [12] obtained exact 
solutions for natural frequencies and mode shapes of an 
immersed wedge beam with a tip mass at the end. They 
found good agreement between their results and finite 
element method. Oz [13] used analytical and finite 
element methods to calculate natural frequency of a 
beam partially immersed in the water with a tip mass. 
He considered transverse vibration of beam and 
showed that by increase in water height, tip mass and 
water density, there is a decrease in natural vibration 
frequencies. Naghipour [14] described various time-
domain methods useful for analyzing the experimental 
data obtained from a circular cylinder force in terms of 
both wave and current for estimation of the drag and 
inertia coefficients applicable to the Morison’s 
equation. 

Esper [15] investigated the seismic response of an 
offshore structure using ANSYS. He used Westergaard 
added mass model to account for fluid structure 
interaction. He concluded that accounting for inertial 
effect of surrounding water reduces the maximum 
acceleration at platform level. Amundsen [16] 
investigated the influence of different models regarding 
fluid-structure interaction on the overall seismic 
response of a concrete platform. He considered two 
models, the first is an added mass model employing 
Morrison’s equation and the second involves coupled 
analysis of the fluid and structure fields in ABAQUS. 
He found that although the change in the period of the 
system in the two models is negligible, the frequency 
content of the responses could have appreciable 
differences. The effect of added mass fluctuation on 
vertical vibration of TLP in the case of vibration in still 
water for both free and forced vibration subjected to 
axial load at the top of the leg was presented by 
Tabeshpour et al. [17]. 

Accounting for fluid-structure interaction through a 
complex coupled field analyses is numerically 
expansive. On the other hand, oversimplification of 

this interaction through commonly adopted Morrison’s 
equation, which does not account for reduced added 
mass near free surface, could significantly affect the 
accuracy of the analysis. This shows the need for 
analytical models capable of reproducing global 
response of the coupled field with good accuracy. 

In this study, dynamic response of vertical circular 
cylinder with lumped mass is investigated under 
seismic excitation. Two and three dimensional models 
are adopted to consider fluid-structure interaction. 
Then governing equation of the system under 
simultaneous application of the fluid pressure and 
seismic excitation is obtained. Finally, variations of 
maximum displacement and natural frequencies of the 
coupled system with change in the ratio of lumped 
mass to the cylinder mass are investigated. 

 
 

2. FORMULATION FOR JACKET 
 
Offshore structure is simulated as a vertical circular 
cylinder with a lumped mass which is the mass of 
equipment at the top of it. As it has been shown in 
Figure 1, height, radius and thickness of cylinder are 
denoted by h1, r and t, respectively; and lumped mass 
M is located at the top of cylinder. In this study the 
only rotary inertia of the lumped mass is ignored. The 
equilibrium equation of the cylinder with surrounding 
water is (Williams and Moubayed [18]): 
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where m and EI are mass per unit length of cylinder 
and flexural rigidity of cylinder. Decomposing the 
deflection of the cylinder we have: 
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here wtand w are total and relative (to ground) lateral 
deflection of cylinder and wg is ground displacement. 
In Equation 1, F simulates the external fluid force on 
cylinder body. The boundary conditions of cylinder are 
(To [19]): 
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Considering free vibration of beam (F=0 in Equation 
1) with tip mass (boundary conditions of Equation 3), 
we could derive the eigen-functions (mode shapes) of 
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the beam. Now, employing Equation (2), we could 
expand total lateral deflection in terms of eigen-
functions of beam with tip mass as [19]: 
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where An(t) is modal amplitude of the nth mode and εn 
is corresponding eigen-value. The eigen-value is 
determined solving the following equation [19]: 
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Hereafter we define α as mass ratio. As it is shown in 
Figure 2, increasing the ratio of lumped mass to mass 
per length of cylinder (M/mh or mass ratio) there is 
decrease in the value of εn, which these decreasesare 
smaller for higher mode numbers. On the other hand, 
as it could be inferred from this figure, for larger mass 
ratios the change in the value of eigenvalue decreases 
and they become essentially constant. 

  
 

3. FORMULATION FOR FLUID FIELD 
 

Accounting for fluid-structure interaction through a 
complex coupled field analyses is numerically 
expansive. On the other hand, oversimplification of 
this interaction through commonly adopted Morrison’s 
equation does not account for reduced added mass near 
free surface and consequently could affect the accuracy 
of the analysis. This shows the need for numerical 
inexpensive analytical models capable of reproducing 
global response of the coupled field with good 
accuracy.Assuming that the surrounding fluid is 
incompressible, inviscid and for irrotational fluid flow, 
it is possible to treat the flow field by potential theory. 
With this assumptions, the velocity potential function 
should satisfy Laplace equation: 

02 =∇ φ  (6) 

Here we adopt two approaches to evaluate the fluid 
pressure on the cylinder body. In the first approach, the 
fluid field is treated as two dimensional (2D) field, 
assuming constant inertial effect of the fluid field along 
cylinder length (ignoring free surface boundary 
condition). In the second approach, the fluid field 
istreated as three dimensional (3D) field to account for 
the change in the inertial contribution of the fluid field 
along the cylinder length (especially near free surface).  

The 3D models are developed employing 
simplification of free surface boundary condition. Two 
3D models are developed which are only applicable for  

  
Figure 1. Schematic view of vertical circular cylinder 

 
  

  
Figure 2. Variations of eigenvalues with changing in the 
mass ratio 

 
 
 

excitation with high or low frequency content. These 
analytical models could provide an upper and lower 
boundaries for displacement of the offshore.The 
general free surface boundary condition has the 
following form: 
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To derive the simplified free surface boundary 
condition for high and low frequency excitation, we 
consider harmonic excitation in the form of eiωt. For 
this excitation we have: 
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now the boundary condition (7) becomes: 
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and consequently: 
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Considering low frequency excitation, this leads to: 

z
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 (11) 
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and for high frequency excitation to: 

),,( zr θϕ =0
 (12) 

In the following subsections, the solutions for two and 
three dimensional fluid fields are presented. 

 
3. 1. Two Dimensional Fluid Field       For two 
dimensional case, the Laplace Equation (6) becomes: 
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The potential function must also satisfy the following 
boundary conditions: 
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The first boundary condition accounts for still water in 
large distance from the jacket, and the second 
boundary condition satisfies the compatibility of 
deflection in the fluid-structure interface. Imposing the 
boundary conditions, the velocity potential function is 
obtained in the following form: 

θθϕ cos),(
2

r
Rwr t&−=  (15) 

Integrating the fluid pressure on wet surface of the 
cylinder, the fluid force will be: 

tatf wmwRF &&&& −=−= 2πρ  (16) 

Now introducing this fluid force in Equation (1), we 
have: 

0)( )( =++ iv
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 (17) 

Substituting wt from Equation (4), multiplying both 
sides of equation by φi and integrating through the 
length of the beam and finally employing the 
orthogonality of cylinder’s mode shapes, the 
differential equation for modal amplitudes could be 
derived: 
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3. 2. Three Dimensional Fluid Field        The three-
dimensional model accounts for the change in the 
inertial contribution of the fluid along the cylinder 
length. In this section the external force is calculated 
for two different conditions, imposing different 
assumptions regarding the free surface boundary 

condition. In this case the Laplace equation takes the 
following form: 
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subjected to the following boundary conditions: 
∞→= ras :0ϕ  (20a) 
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The first equation accounts for still water at large 
distance from jacket, and the second equation considers 
the compatibility of deflection between jacket and its 
surrounding water. The last equation is the 
impermeability boundary condition at bottom (no fluid 
flow (velocity) in the direction normal to sea bed). 
We derive the asymptotic solution for two cases of 
near zero and high frequency excitations. To do this, 
two 3D solution accounting for two simplified 
boundary conditions for free surface (Equations (11) 
and (12)) are considered.  

Considering Equation (12), in the case of high 
frequency excitation (solution denoted by φ1), the free 
surface boundary condition simplifies to: 

hzat == :01ϕ  (21) 

In the same time, considering Equation (11), for near 
zero (low) frequency excitation (solution denoted by 
φ2), the free surface boundary condition reduces to: 
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Imposing the boundary conditions, the analytical 
solution for the potential function are obtained as: 
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where K1 is the modified Bessel function of second 
kind of order one and λm and βm are the problem 
eigenvalues. The only difference between two 
solutions is in the value of eigenvalues. To avoid 
repetitive derivations, we only derive the solution for 
φ1.  

Considering the compatibility condition at fluid-
structure interface, we conclude: 
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Now making use of the orthogonality of harmonic 
functions, we have: 
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Thus the potential function takes the following form: 
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Integrating the fluid pressure over the cylinder wet 
surface, the fluid induced inertial force imposed on the 
structure could be evaluated as: 
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Introducing this fluid force in structure’s equilibrium 
equation (Equation (1)), we have: 

∑ ∑
∞

=

∞

=
++

1 1
)()()()()(

m m
gmmm

iv
m twmtAzmtAzEI &&&&φφ

[ ] 0)cos()(
1 1

=++ ∑ ∑
∞

=

∞

=m n
mmgmnnma zCtwAm λγγ &&&&

 
 (31) 

Multiplying both sides of Equation (31) by ф i(z) and 
integrating over 0 to h, we obtain a set of coupled 
ordinary differential equations: 
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The differential equation for modal amplitudes of φ2 
becomes: 
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These sets of differential equations are solved using 4th 
order Runge-Kutta integration method.The added mass 
matrix will have following components: 

∑
∞
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1m im
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mimain D

Cmm γ
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Existence of off-diagonal terms in this matrix shows 
the coupling of different modes in the differential 
equation for modal amplitudes. 

In Equations (32) and (33),Fs1 and Fs2 represent the 
earthquake induced lateral force along the cylinder 
external surface. These forces are composed of two 
terms. The first term is due to fluid flow adjacent to the 
cylinder body and the second term is associated with 
the cylinder’s own inertia. Note that difference in the 
value of Fs1 and Fs2 comes from the difference in the 
value of eigenvalues λm and βm. Figure 3 depicts the 
variation of MFs1 and MFs2 (masses associated with Fs1 
and Fs2) with mass ratio and mode number. Interesting 
point is that while MFs1 (the mass associated with the 
fluid induced lateral force on the cylinder body in the 
case of high frequency excitation) is larger for 
decreasing mode numbers and increasing mass 
ratios,MFs2 (the mass associated with the fluid induced 
lateral force on the cylinder body in the case of low 
frequency excitation) becomes zero for all mass ratios 
and mode numbers. This shows that in the case of low 
frequency excitation, the lateral force along cylinder 
body comes only from the mass inertia of cylinder and 
there is no contribution from surrounding fluid.  

Figure 4 shows the evolution of three dimensional 
added mass matrix for the cases of high and low 
frequency excitations when lumped mass is equal to 
zero. As it is evident from this figure, for both types of 
excitations diagonal terms are significantly larger than 
off-diagonal ones. This is an indication of negligible 
coupling between different modes in both cases. 

Variations of diagonal terms of added mass matrix 
with changes in the mass ratio are shown in Figure 5. 
As it could be inferred from this figure, there is 
completely different pattern for low and high 
frequency excitations in the case of low mass ratios. 
For higher mass ratios in both cases diagonal terms of 
added mass matrix are insensitive to the change in the 
mass ratio. 

Figure 6 illustrates a comparison of the diagonal 
terms of added mass matrix, obtained using two-
dimensional and three-dimensional models. It is shown 
that while in the 2D model, the value of added mass 
remains constant for different modes, in the 3D model, 
different modes have different ratios of added mass 
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which are less than the 2D model. This reduction in the 
added mass of 3D model is due to imposition of 
impermeability and free surface boundary conditions in 
this model.  
 
 

 
(a) 

 

 
(b) 

Figure 3. Variations of masses MFs1 and MFs2 with change in 
mass ratio and mode number, a) high frequency excitation 
and b) low frequency excitation 
 
 

 
(a) 

 

 
(b) 

Figure 4. Value of different elements of added mass matrix 
for five modes in the case of zero lumped mass (M=0), a) 
high frequency excitation and b) low frequency excitation 

 
(a) 
 

 
(b) 

Figure 5. Evolution of diagonal terms of added mass matrix 
with mass ratio, a) high frequency excitation and b) low 
frequency excitation 
 
 

 
Figure 6. Comparison of diagonal terms of added mass 
matrixes in 2D and 3D models 
 
 

 
(a) 
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(b) 

Figure 7. Kobe ground motion record, a) time history and b) 
Fourier decomposition. 

 
 

4. GROUND MOTION EXCITATION 
 
To evaluate the extent of the variation in response due 
to change in assumption regarding fluid field, in this 
section results of analysis of offshore structure for 
ground Kobe ground motion excitation are presented. 
The result shows how different models regarding fluid 
field could affect the evaluated response. By evaluating 
the response to Kobe ground motion record, it is not 
intended to obtain a global judgment about seismic 
response of the offshore structures. The main focus of 
the paper is on assessing the difference in the seismic 
response due to assumed models for fluid field. 

Tabulated in Table 1 are the values of the 
parameters used in the analysis of reinforced concrete 
vertical cylinder. Analyses are done for ground motion 
record of Kobe earthquake (090 component of 1995 
Kobe earthquake at Japan recorded at Nishi-Akashi 
station, KOBE/NIS000). In the following simulations 
the same value for h and h1 is used. Table 2 shows 
duration, peak ground acceleration and epicentral 
distance of ground motion record. Figure 7 depicts 
time history of the ground motion record and its 
Fourier spectrum. 

Figure 8 presents the variation in the natural 
frequencies of cylinder for different mass ratios for 3D 
model with high and low frequency excitations and 2D 
fluid field model, where ω1 and ωi are first natural 
frequency of cylinder when mass ratio is equal to zero 
(α=0) and natural frequencies of cylinder for different 
added mass ratios, respectively. In all models the 
largest change in the frequency is for the first mode.  
For large mass ratios, which is applicable for most of 
platforms, 3D fluid model applicable for high 
frequency excitation results in lower frequencies in 
nearly all modes compared to the other models. This 
indicates that the participation of higher modes in 3D 
model applicable for higher frequencies could be 
higher compared to the other models and as expected 
this model could give better estimate of actual response 
for excitations rich in higher frequencies. 

Evolution of maximum displacement at the top of 
structure with change in the mass ratio for four 
different cases, including 3D models with high and low 
frequency excitations, 2D model and ignoring fluid 
field (dry cylinder) are depicted in Figure 9. It can be 
seen that maximum displacement occurs when lumped 
mass is equal to zero and by increasing the value of 
lumped mass the maximum displacements decreases in 
all cases. 

Interesting point is that maximum displacement in 
the case of 3D model with low excitation frequency is 
very close to those of dry cylinder. This could be due 
to zero value of Ms2 for all modes in the case of low 
frequency excitation. On the other hand, the results for 
3D model with high frequency excitation tend to those 
of 2D model. However, note that there are appreciable 
differences in the estimations of the two models for 
maximum displacement. 
 
 

TABLE 1. Parameters used in the analyses 
Parameter Value 
E (N/m2)  2.69×1010 
h1, h (m) 100 

R (m) 5 
t (m) 0.8 

 
 

TABLE 2. Seismic data used in this study 
Input ground 

motion 
Duration 

(s) 
PGA 
(g) 

Epicentral distance 
(km) 

Kobe (1995) 40 0.4862 8.7 
 
 

 
(a) 

 
(b) 
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(c) 

Figure 8. Variations of natural frequencies with change in 
lumped mass ratio, a) 3D fluid field with high frequency 
excitation, b) 3D fluid field with low frequency excitation 
and c) 2D fluid field. 
 
 

 
Figure 9. Variations of maximum displacement with change 
in mass ratio. 
 
 
 

 
(a) 

 

 
(b)  

 
(c)  

 

 
(d) 

Figure 10. Fourier decomposition of response for different 
models, a) 3D model with high frequency boundary 
condition, b) 3D model with low frequency boundary 
condition, c) 2D model and d) response without fluid. 
 
 
 

The result also indicates that in the case of 
excitation rich in low frequencies, the evaluated 
maximum displacement employing 2D model will not 
be on the safe side. 

 Shown in Figure 10 is the Fourier decomposition 
of the response for mass ratio of one. As could be seen 
in all models main contribution comes from the first 
mode of response and the estimation of different fluid 
models from this frequency is essentially the same. 
This also shows that commonly adopted pushover 
analysis proportional to the first mode of response will 
give good approximation of actual response. 
 
 
5. CONCLUSIONS 

 
Response of vertical circular cylinder with a lumped 
mass at its top and surrounding fluid under ground 
motion has been investigated. Fluid force along the 
cylinder body is evaluated employing different 
approximations for fluid field. These include two 
dimensional fluid field and also three dimensional fluid 
field with different assumptions regarding free surface 
boundary conditions. Deriving the response for 3D 
models, the evolution of fluid force along the cylinder 
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body for different excitation frequencies is evaluated. It 
is shown that for low frequency excitation, the lateral 
force along the cylinder body comes only from the 
inertia of the cylinder body and there is no contribution 
from the surrounding fluid. The results also show that 
different approximations of the fluid field could have 
large impact on the value of calculated maximum 
displacement and in all models the main contribution 
comes from the first mode.  
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  چکیده
  

  

هاي مختلف این مقاله اثرات مدل. هاي دریایی تحت اثر بار زلزله ارائه شده استیک روش تحلیلی براي ارزیابی پاسخ سازه
ارزیابی میدان سیال و جرم تجهیزات در بالاي سازه دریایی را که بصورت جرم متمرکز مدل شده را بر روي پاسخ سازه دریایی 

 طیشرا به توجه با مختلفي هابیتقري بعد سهي هادرمدل. مدل دو و سه بعدي میدان سیال بسط داده شده است. کندمی
 مقدار در رییتغ با همراهسازه  پاسختغییرات  سپس. اتخاذ شده است نییپا و بالا فرکانس کیتحرا ب ارتباط در آزاد سطحي مرز
ی شده ابیارز کوبهلرزه نیزمي برایی جابجا حداکثر مقدار به مختلفي هامدلرات اث تیدرنها. است شده محاسبهمتمرکز  جرم
 بایی جابجا حداکثرمقدار  تواندیمي ادیز حد تامیدان سیال  با رابطه در مختلفي هابیتقر که است شده داده نشان. است
  .دهد رییغی شده را تابیارزي هامدل
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