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A B S T R A C T  

 
 

In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates 
are presented subjected to blast loading. The GMDH-type (Group Method of Data Handling) neural 
networks are then used for the modelling of the mid-point deflection thickness ratio of the circular 
plates using those experimental results. The aim of such modelling is to show how the mid-point 
deflection varies with the variations of the important parameters. Further, it is shown that the use of 
dimensionless input variables, rather than the actual physical parameters, in such GMDH-type network 
modelling leads to simpler polynomial expressions which can be used for modelling and prediction 
purposes. It is also demonstrated that Singular Value Decomposition (SVD) can be effectively used to 
find the vector of coefficients of quadratic sub-expressions embodied in such GMDH-type networks. 
Such application of SVD will highly improve the performance of GMDH-type networks to model the 
nonlinear dynamic behavior of circular plates. 
 

doi: 10.5829/idosi.ije.2014.27.10a.18 
 

 
1. INTRODUCTION1 
 
Solid phase-based forming has attracted a great amount 
of interest as a new technology of forming since it can 
compensate the disadvantages of the conventional 
forming processes. However, it still has difficulties in 
industrial production due to problems such as the 
reheating of the billet, high manufacturing costs, and an 
inability to produce large parts[1]. High rate metal 
forming processes are fairly well developed. These 
techniques have some advantages over conventional 
metal forming. These include the ability to use single-
sided dies, reduced spring back, and improved 
formability[2]. 

One of the structural problems widely analyzed has 
been that of a metallic circular plate fully clamped 
around its outer boundary subjected to transverse 
impulsive loads [3]. 

Studies of the behavior of plates subjected to 
impulsive loading have been carried out by Nurick and 
Martin [4, 5]. They presented an overview of the 
theoretical and experimental results that dealt mostly 
                                                        
1*Corresponding Author’s Email: ghbabaei@guilan.ac.ir (H. Babaei)  

with a plate that was loaded uniformly over the plate 
area. Experimental works on structural components 
subjected to blast loading were performed in order to 
study permanent large inelastic deformation (mode I) to 
investigate both tensile tearing (mode II ) and transverse 
shear rupture (mode III ) at the supports [6]. 
A technique that is generally adopted for sheet metal 
forming operations using impulsive loading that 
involves very large sheets and usually axi-symmetric 
can be found in the literature[6-8]. The method is 
essentially dynamic and the forming is induced by 
exposing sheet metal surface to an incoming pressure 
wave generated by explosion. However, the direct 
application of the pressure wave on the metal surface 
gives rise to a stress-strain field distribution of 
unacceptable profile, which may lead to premature 
failure of material. Hence, to improve the formability 
limit an alternative technique referred as “plug cushion 
forming” has been introduced. A plug of soft material is 
inserted in contact with plate between the source of 
explosion and the plate. Thus, the pressure wave instead 
of reaching the plate directly exerts itself on the plate 
via the plug. Depending on the thickness of plate and 
plug, the deformation process is slowed down, since the 
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plug acts as a conduit to transfer the energy at a 
relatively slower rate to the plate [9]. There have been 
many research efforts for theoretical modelling of the 
dynamic response and deformation of thin plates to 
predict the relationship of deflection-thickness ratio as a 
function of the amount of impulse, plate geometry, plate 
dimension, and plate material [10].  

Modelling of processes and system identification 
using input-output data have always attracted many 
research efforts. In fact, system identification techniques 
are applied in many fields in order to model and predict 
the behaviours of unknown and/or very complex 
systems based on given input-output data [11]. 
Theoretically, in order to model a system, it is required 
to understand the explicit mathematical input-output 
relationship precisely. Such explicit mathematical 
modelling is, however, very difficult and is not readily 
tractable in poorly understood systems. Alternatively, 
soft computing methods [12, 13], which concern 
computation in imprecise environment, have gained 
significant attention. The main components of soft 
computing, namely, fuzzy-logic, neural network, and 
genetic algorithm have shown great ability in solving 
complex non-linear system identification and control 
problems. Several research efforts have been expended 
to use evolutionary methods as effective tools for 
system identification [12-14]. Among these 
methodologies, the Group Method of Data Handling 
(GMDH) algorithm is self-organizing approach by 
which gradually more complicated models are generated 
based on the evaluation of their performances on a set of 
multi input- single-output data pairs (X i , yi ) (i=1, 2, 
…, M). The GMDH was firstly developed by 
Ivakhnenko [15] as a multivariate analysis method for 
complex systems modelling and identification. In this 
way, GMDH was used to circumvent the difficulty of 
having a priori knowledge of a mathematical model of 
the process being considered. The main idea of GMDH 
is to build an analytical function in a feed-forward 
network based on a quadratic node transfer function [14, 
16] whose coefficients are obtained using a regression 
technique. GMDH, which is an inductive learning 
method, is similar to neural approach but is bounded in 
nature. In neural networks, the output of each unit 
passes through a threshold logic unit which can be 
linear or nonlinear transfer function such as sigmoid 
functions. Each unit depends on the state of many other 
units which creates different level of interactions in such 
unbounded network structure [16].  The error of output 
is back-propagated in order to re-tune the connection 
weights adaptively. However, in inductive GMDH 
algorithms, a bounded network structure with all 
combinations of input pairs is trained by scanning the 
measure of threshold objective function through the 
optimal connection weights for all inputs-output data 
pairs [17-19]. 

 
Figure 1. Schematic representationof the experimental test rig 

 
 
In recent years, the use of such self-organizing 

network has lead to successful application of the 
GMDH type algorithm in a broad range area in 
engineering, science, and economics [18, 20-22]. In this 
paper, it is shown that GMDH-type neural network can 
effectively model and predict the deflection of circular 
plate subjected toblast loading. In this way, a method 
for designing such network is proposed and its 
performance is enhanced using Singular Value 
Decomposition (SVD). In this paper, experimental data 
are used to find an equation for predicting deflection-
thickness ratio using GMDH-type neural network and 
SVD method. In this way, input variables are re-
grouped as dimensionless parameters which are then 
used to obtain the equation of deflection-thickness ratio 
of circular clamped plates under impulsive loading. 
 
 
2. EXPERIMENTAL TESTS  

 
Test specimens were prepared from commercially pure 
(99.5%) copper, aluminium alloy 1200-H4 and mild 
steel. The specimens were 200mm by 200mm and 
varied in thickness from 1.6 mm to 3.0 mm. Plate 
specimens were clamped in a frame, comprising of two 
(200mm×200 mm) frames made from 20mm thick mild 
steel plating. Two stand-off distances were employed to 
vary the spatial uniformity of the loading – 50 mm and 
300 mm. A tube of required length was screwed into the 
front clamp; the back frame had a 100 mm diameter 
hole (same as the internal tube diameter). Each 
specimen had a circular exposed area with a diameter of 
100 mm. Plastic explosive (PE4) was moulded into the 
appropriate charge diameter disc and sited at the open 
end of the blast tube, as shown in Figure 1.  
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TABLE 1. Summary of tensile test results on steel, copper 
and aluminium  

Material 
ρ  

Density(kg/m3) 
Nominal 

thickness (mm) 
Yield 

stress(MPa) 

Steel 7800 1.6, 2.0, 3.0 318 

Copper 8940 
2.0 277 

3.0 201 

Aluminium 
Alloy 1200 
H4 

2700 2.0, 3.0 120 

 
 
 

The blast loading was generated by electrical 
detonation of the explosive charge allowing the 
resulting blast wave to travel down the blast tube and 
impinge upon the target plate. Tensile test specimens 
were prepared from commercially pure (99.5%) copper, 
aluminium alloy 1200-H4 and mild steel with different 
thicknesses. The mean average values of yield stress 
and ultimate tensile stress are calculated for each 
material for different thicknesses. A summary of the 
properties of different plate materials is given in Table 
1. More details of experimental procedure has been 
reported in the literature [23]. 

 
 
 

3. EXPERIMENTAL RESULTS 
 
Photographs of deformed plate of the plates tested at 50, 
300mm stand-off distance are given in Figure 2. The 
experimental results obtained from large number of tests 
are presented in Table 2. The charge masses listed 
include the 1.g leader charge attached to detonator, for 
example 9.g equals to (8+1)g. For the first set of test, 
the stand-off distance was held constant at 50mm and 
300mm. For each material (steel, copper and 
aluminium) with three different thicknesses, the effect 
of impulse values was investigated.  
 
 
4. MODELLING USING GMDH-TYPE NEURAL 
NETWORKS 
 
The classical GMDH algorithm can be represented as a 
set of neurons in which different pairs of neurons in 
each layer are connected through a quadratic 
polynomial and thus produce new neurons in the next 
layer. Such representation can be used in modelling to 
map inputs to outputs. The formal definition of the 
identification problem is to find a function f̂ which can 
be approximately used instead of actual one, f , in 
order to predict output ŷ  for a given input vector 

),...,,( ,
n

xxxxX
321

=  as close as possible to its actual 
output y .Therefore, given M observation of multi-
input-single-output data pairs so that: 

(1) ),...,,,( iniiii xxxxfy 321= (i=1,2,…,M),   

it is now possible to train a GMDH-type neural network 
to predict the output values 

i
ŷ for any given input 

vector ),...,,,(
iniii

xxxxX
321

= , that is: 

(2) ),...,,,(ˆˆ
iniiii xxxxfy 321=  (i=1,2,…,M). 

The problem is now to determine a GMDH-type neural 
network so that the square of difference between the 
actual output and the predicted one is minimised, that is: 

(3) min]),...,,,(ˆ[ →−
=
∑ 2

1
321 iiniii yxxxxf

M

i
 

 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Photographs of typical blast loaded plates [23];(a) 
steel plate (thick, 3mm),  (b) copper plate (thick, 3mm)and(c) 
aluminium alloy plate (thick, 3mm) 
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TABLE 2. Results of blast loading tests [23] 

Test number Plate 
material 

Thickness 
plate(mm) 

Charge 
mass(g) 

Diameter 
charge(mm) 

Stand-off 
distance(mm) Impulse(Ns) Mid-point 

deflection(mm) 
Failure 
mode2 

HG241008-3 steel 1.6 5 33 300 13.02 11.28 Mode I 
HG131008-4 steel 1.6 6 33 300 13.69 11.36 Mode I 
HG131008-8 steel 1.6 8 33 300 17.08 13.72 Mode I 
HG131008-5 steel 1.6 10 33 300 20.28 16.5 Mode I 
HG131008-9 steel 1.6 12 33 300 25.07 20 Mode I 
HG141008-3 steel 1.6 13 33 300 25.96 20.2 Mode I 
HG141008-2 steel 1.6 14 33 300 27.5 22.5 Mode I 
HG171008-4 steel 1.6 6 33 50 12.82 15.46 Mode I 
HG171008-5 steel 1.6 10 33 50 19.66 21.6 Mode I 
HG171008-6 steel 1.6 12 33 50 22.56 --- Mode II 
HG231008-3 steel 2 5 33 300 12.46 8.6 Mode I 
HG131008-7 steel 2 6 33 300 13.6 9.58 Mode I 
HG221008-3 steel 2 8 33 300 18.18 12 Mode I 
HG131008-6 steel 2 10 33 300 20.55 13.67 Mode I 
HG231008-8 steel 2 13 33 300 25.5 17.37 Mode I 
HG141008-6 steel 2 13 33 300 26.12 16.7 Mode I 
HG141008-5 steel 2 16 33 300 30.74 19.08 Mode I 
HG141008-7 steel 2 6 33 50 12 11.73 Mode I 
HG141008-8 steel 2 10 33 50 19.36 18.24 Mode I 
HG141008-9 steel 2 13 33 50 23.78 21.5 Mode I 
HG141008-10 steel 2 15 33 50 26.34 --- Mode II 
HG141008-1 steel 3 5 33 300 11.78 3.55 Mode I 
HG131008-1 steel 3 6 33 300 12.75 3.22 Mode I 
HG221008-11 steel 3 8 33 300 18.23 6.83 Mode I 
HG131008-3 steel 3 10 33 300 20.4 6.66 Mode I 
HG141008-4 steel 3 13 33 300 26.11 10.01 Mode I 
HG231008-4 steel 3 13 33 300 26.5 10.62 Mode I 
HG221008-12 steel 3 15 33 300 28.75 11.56 Mode I 
HG171008-1 steel 3 6 33 50 11.39 7.28 Mode I 
HG171008-2 steel 3 10 33 50 19.57 13.17 Mode I 
HG221008-15 steel 3 13 33 50 25.09 14 Mode I 
HG241008-5 Copper 2 4 33 50 9.35 9.82 Mode I 
HG241008-6 Copper 2 7 33 50 15.04 16.11 Mode I 
HG241008-7 Copper 2 10 33 50 19.22 22.18 Mode I 
HG241008-11 Copper 2 13 33 50 24.1 25.97 Mode I 
HG241008-14 Copper 2 14 33 50 26.4 --- Mode II 
HG221008-6 Copper 2 3 33 50 5.19 5.4 Mode I 
HG221008-7 Copper 2 6 33 50 13.99 14.9 Mode I 
HG221008-8 Copper 2 9 33 50 19.34 20 Mode I 
HG241008-8 Copper 2 5 20 50 8.46 9.43 Mode I 
HG241008-9 Copper 2 8 20 50 12.47 13.68 Mode I 
HG241008-10 Copper 2 11 20 50 17.04 17.23 Mode I 
HG241008-1 Copper 2 6 33 300 13.98 13 Mode I 
HG241008-2 Copper 2 8 33 300 18.18 16.34 Mode I 
HG241008-3 Copper 2 10 33 300 21.02 18.25 Mode I 
HG221008-1 Copper 2 5 33 300 12.6 10.85 Mode I 
HG221008-2 Copper 2 7 33 300 17.25 14.63 Mode I 
HG221008-3 Copper 2 9 33 300 20.7 17.6 Mode I 
HG221008-4 Copper 2 11 33 300 24.8 20.67 Mode I 
HG221008-5 Copper 2 13 33 300 28.6 --- Mode II 
HG231008-1 Copper 3 5 33 300 12.39 7.52 Mode I 
HG231008-2 Copper 3 9 33 300 19.13 11.85 Mode I 
HG231008-3 Copper 3 13 33 300 25.61 15.46 Mode I 
HG231008-5 Copper 3 16 33 300 30.2 18.12 Mode I 
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HG231008-6 Copper 3 19 33 300 34.63 21.2 Mode I 
HG221008-14 Copper 3 13 33 300 26.46 15.88 Mode I 
HG2318008-8 Copper 3 4 33 50 10.25 7.6 Mode I 
HG231008-9 Copper 3 7 33 50 14.22 11.24 Mode I 
HG231008-11 Copper 3 10 33 50 19.55 16.4 Mode I 
HG231008-12 Copper 3 13 33 50 22.98 18.97 Mode I 
HG231008-19 Copper 3 16 33 50 27.82 --- Mode II 
HG211008-7 Aluminium 2 2 33 300 5.16 8.6 Mode I 
HG201008-5 Aluminium 2 3 33 300 8.25 14.9 Mode I 
HG201008-7 Aluminium 2 4 33 300 10.82 24.22 Mode I 
HG211008-8 Aluminium 2 4.5 33 300 12.32 26.3 Mode I 
HG231008-7 Aluminium 2 3.5 33 300 9 21 Mode I 
HG211008-9 Aluminium 2 5 33 300 14.1 --- Mode II 
HG201008-8 Aluminium 2 2 33 50 2.72 7.35 Mode I 
HG211008-1 Aluminium 2 3 33 50 3.91 11.4 Mode I 
HG211008-2 Aluminium 2 4 33 50 8.62 23.3 Mode I 
HG241008-13 Aluminium 2 2.5 20 50 4.92 15.24 Mode I 
HG241008-12 Aluminium 2 3.5 20 50 7.44 19.04 Mode I 
HG211008-10 Aluminium 2 4.5 33 50 9.75 --- Mode II 
HG201008-1 Aluminium 3 4 33 300 9.72 14.1 Mode I 
HG211008-6 Aluminium 3 5 33 300 13.71 19.9 Mode I 
HG201008-2 Aluminium 3 6 33 300 14.96 21.9 Mode I 
HG201008-9 Aluminium 3 7 33 300 16.2 --- Mode II 
HG211008-5 Aluminium 3 3 33 50 2.72 5.4 Mode I 
HG211008-4 Aluminium 3 4 33 50 10.84 15.97 Mode I 
HG211008-3 Aluminium 3 5 33 50 11.54 22.9 Mode I 
HG231008-10 Aluminium 3 4.5 33 50 9.65 17.21 Mode I 
HG231008-14 Aluminium 3 4 20 50 7.28 14.56 Mode I 
HG231008-15 Aluminium 3 5 20 50 9.28 16.88 Mode I 
HG231008-16 Aluminium 3 6 20 50 10.2 21 Mode I 
HG231008-17 Aluminium 3 7 20 50 11.91 21.6 Mode I 
HG211008-11 Aluminium 3 6 33 50 12.8 --- Mode II 

 
 

General connection between inputs and output 
variables can be expressed by a complicated 
polynomial of the form: 
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(4) 

which is known as the Ivakhnenko polynomial [24]. 
However, for most applications the quadratic form of 
only two variables is used in the form: 

(5) 2
5

2
43210),(ˆ jxaixajxixajxaixaajxixGy +++++==

 

to predict the output y. The coefficient ia  in Equation 
(5) is calculated using regression techniques [25-27] so 
that the difference between actual output, y, and the 
calculated one, ŷ , for each pair of ix , jx as input 
variables is minimized. Indeed, it can be seen that a 
tree of polynomials is constructed using the quadratic 
form given in Equation (5) whose coefficients are 
obtained in a least-squares sense. In this way, the 
coefficients of each quadratic function iG are obtained 
to optimally fit the output in the whole set of input-
output data pair, that is: 

(6) min
())(

→

∑
=

∑
=

−

=
M

i
iy

M

i
iGiy

r

1
2

1
2

2  

In the basic form of the GMDH algorithm, all the 
possibilities of two independent variables out of total  n  
input variables are taken in order to construct the 
regression polynomial in the form of Equation (5) that 
best fits the dependent observations iy( , i=1, 2, …, 

M) in a least-squares sense. Consequently, 
2

1
2

)( −=








 nnn  

neurons will be built up in the second layer of the feed 
forward network from the observations { );,,( iqxipxiy  

(i=1, 2, …, M)} for different },...,,{, Mqp 21∈ [28]. In 
other words, it is now possible to construct M data 
triples { );,,( iqxipxiy  (i=1, 2, …, M)} from observation 

using such },...,,{, Mqp 21∈  in the form: 
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Using the quadratic sub-expression in the form of 
Equation (5) for each row of  M  data triples, the 
following matrix equation can be readily obtained as: 

(7) Y=aA  

where  a   is the vector of unknown coefficients of the 
quadratic polynomial in Equation (5): 

(8) },,,,,{ 543210 aaaaaa=a  

and 

(9) T
Myyyy },...,,,{ 321=Y  

is the vector of output value from observation. It can be 
readily seen that 

(10) 
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22

2
2

2
22222

2
1

2
11111

1
1
1

MqMpMqMpMqMp

qpqpqp

qpqpqp

xxxxxx
xxxxxx
xxxxxx

A  

The least-squares technique from multiple-regression 
analysis leads to the solution of the normal equations in 
the form of: 

(11) YTT AAA 1−= )(a  

which determines the vector of the best coefficients of 
the quadratic Equation (5) for the whole set of  M  data 
triples. However, such solution directly from normal 
equations is rather susceptible to round off error and, 
more importantly, to the singularity of these equations. 
SVD is the method for solving most linear least 
squares problems where some singularities may exist 
in the normal equations. The SVD of a matrix, 

6×ℜ∈ MA , is a factorisation of the matrix into the 
product of three matrices, column-orthogonal matrix 

6×ℜ∈ MU , diagonal matrix 66×ℜ∈W  with non-
negative elements (singular values), and orthogonal 
matrix 66×ℜ∈V  such that 

(12) TVWUA=  

The most popular technique for computing the SVD 
was originally proposed by Taylor [29]. The problem 
of optimal selection of vector of the coefficients in 
Equations (8) and (11) is firstly reduced to find the 
modified inversion of diagonal matrix W (Press et al. 
[27]) in which the reciprocals of zero or near zero 
singulars (according to a threshold) are set to zero. 
Then, such optimal a is calculated using the following 
relation [24, 27]: 

(13) YTUjwdiagV )/([ 1=a  

Such procedure of SVD approach of finding the 
optimal coefficients of quadratic polynomials, a , 
improves the performance of self-organizing GMDH 

type algorithms that is employed to build networks 
based on input-output observation data triples. 

 
 

5. STRUCTURE IDENTIFICATION OF GMDH-TYPE 
NETWORKS 
 
For simultaneous determination of structure and  
parametric identification of GMDH-type neural 
networks, the numbers of layers as well as the number 
of neurons in each layer are determined according to a 
threshold for error Equation (6). In addition, unlike two 
previous approaches, some of input variables or 
generated neurons in different layers can be included in 
subsequent layers. The main steps of this approach are 
described as follows [24]: 
Step 1: Set K=1; Set Threshold. 
Step 2: Construct 

2
1)( −

=′ KK
K

NN
N  neurons according 

to all possibilities of connection by each pair of 
neurons in the layer. This can be achieved by forming 
the quadratic expression ),( ji xxG which approximates 
the output y  in Equation (5) with least-squares errors 
of Equation (6) either by solving the normal Equation 
(11) or by SVD approach Equation (13). 
Step 3: Select the single best neuron out of these kN′  

neurons, x′ , according to its value of 2r . If (Error < 
Threshold) Then END; Otherwise Set Vec_of_Var={

xxxxx
n

′,,...,,
32

,
1

}. 

Step4: Set 1+= kNkN ; goto 2. 
 
  
 

6. GMDH-TYPE NEURAL NETWORK MODELLING 
AND PREDICTION OF DEFORMATION OF 
CIRCULAR PLATES SUBJECTED TO IMPULSIVE 
LOADING 

 
The method described in previous sections is now used 
to design GMDH-type network systems for a set of 
dimensionless parameters constructed upon 
experimental input-output data in a series of explosive 
forming tests given in Table 2. Accordingly, the set of 
output-inputs variables used to train the GMDH-type 
neural network is a dimensionless set, Π=

},...,,,,{ kπππππ 4321 , rather than the set of real 

physical variables {y,X}={y, x1, x2, x3,…,xn}. Hence, 
given M observation of multi-input-single-output data 
pairs which have been converted to the equivalent 
dimensionless parameters [27] so that: 

(14) ),...,,,( kiiiifi πππππ 4321 = (i=1,2,…,M), 
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it is now possible to train a GMDH-type neural 
network to predict the output values i1π̂ for any given 

input vector ),...,,,( kiiii ππππ 432 , that is: 

(15) ),...,,,(ˆˆ kiiiifi πππππ 4321 = (i=1,2,…,M) 

The problem is now to determine a GMDH-type neural 
network so that the square of difference between the 
actual dimensionless output and the predicted one is 
minimised, that is: 

(16) min]ˆ),...,,,(ˆ[ →
=

−∑ 2
1

1432
M

i
ikiiiif πππππ  

Again, the quadratic form of only two variables is used 
in the form [28]: 

(17) 2
5

2
43

2101

jaiajia

jaiaajiG

ππππ

πππππ

++

+++== ),(ˆ
 

to predict the output 1π .  
In order to construct such independent 

dimensionless parameters in the case of modelling of  
mid-point deflection W◦(mm), total impulse I(N.s), 
plate thickness H(mm), plate radius Rp(mm), charge 
radiusRc (mm), stand-off distance S(mm), density ρ 
(kg/m3) and static yield stress oσ (MPa) have been 
considered as input parameters in neural network, that 
is: 

(18) W◦=f (I, H, Rp, Rc,S, ρ, oσ ). 

From this set of inputs-output parameters, 4 
independent dimensionless parameters have been 
constructed [26] according to 3 main dimensions (M, 
L, T), as follows: 

H
Wo=1π  , (19-a) 

opo

o

HR
IV

ρσπσ
ρ

π
2

2

2 == , (19-b) 

pR
S

=3π , (19-c) 

,
H
RC=4π  (19-d) 

It should be noted that in Equation (19-b) 
p

o M
IV =  and  

)( plateVolpM ρ= are the impact velocity and the mass of 

the plate, respectively, so that: 

(20) ),,( 3321 ππππ f=  

It should be noted that the simplest possible 
dimensionless parameters have been considered 
according to the involved physical parameters.  

The model is based on experimental data presented 
in Table 2; the multi-input-single-output set of 
constructed dimensionless data according to Equations 
(19-a) to (19-d) were developed. The method 
previously mentioned was used separately in 
conjunction with either normal equations approach or 
SVD approach for the coefficient of the quadratic 
polynomials. The result shows that SVD approach for 
finding the quadratic polynomial coefficients is either 
superior or very close to direct solving of normal 
equations. Table 3 demonstrates such comparison of 
modelling errors (which have been calculated by 
Equation (6)) using normal equations and SVD. 
Accordingly, Figure 3 shows the behaviour of the mid-
point deflection thickness ratio, using GMDH-type 
network model constructed with singular value 
decomposition approach for the coefficients of the 
quadratic polynomials. It is evident from Figure 3 that 
the confidence envelope for obtained model is reported 
as 85% for ±1 displacement–thickness ratio. The 
structures of GMDH-type network are depicted in 
Figure 4. Consequently, it is now possible to present 
the obtained polynomial equations for mid-point 
deflection thickness ratio based on the structure of the 
GMDH-type neural network depicted in Figure 4 using 
SVD approach for the coefficient of the quadratic 
polynomials in the form of 

H=-0.1362+0.5843π1-0.1201π2-0.004156π1
2-            

0.02341π2
2-0.008238π1π2   , 

(21-a) 

π1=-1.608+0.5760π2+0.9266H-0.05507π2
2-

0.009021H2+0.02914π2H (21-b) 

In order to demonstrate the prediction ability of such 
GMDH-type neural networks in the case of 
dimensionless modelling, the data have been randomly 
divided into two different sets, namely, training and 
testing sets. The training set, which consists of 38 out 
of 77 inputs-output data pairs, is used for training the 
GMDH-type neural network models using either 
solving normal equations approach or SVD approach 
for the coefficients of the quadratic polynomials. The 
testing set, which consists of 39 unforeseen inputs-
output data samples during the training process, is 
merely used for testing to show the prediction ability of 
such GMDH-type neural network models during the 
training process.  

In this way, Table 4 demonstrates such comparison 
of modelling and prediction errors (which have been 
calculated by Equation (6))using normal equations and 
SVD. Accordingly, Figure 5 shows the modelling and 
prediction mid-point deflection thickness ratio, using 
GMDH-type network model constructed with singular 
value decomposition approach for the coefficients of 
the quadratic polynomials. It is evident from Figure 5 
that the confidence envelope for obtained model is 
reported as 89% for ±1 displacement–thickness ratio.  
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Figure 3.  Comparison of experimental values with computed 
values by GMDH-type network 

 
 

TABLE 3.Values of modeling error 

Method Using normal equations 
approach 

Using 
SVDapproach 

Error 0.009132 0.007979 

 
 

TABLE 4. values of modelling and prediction error 

Method Using normal equations 
approach 

Using 
SVDapproach 

Error 0.00956 0.00832 

 
 

 
Figure 4. GMDH-type network for mid-point deflection 
thickness ratio 
 
 
 
7. CONCLUSION 
 
The experimental results in this paper represent the 
behaviour of ferrous and non-ferrous plates subjected 
to impulse loading. The results can provide a model 
between mil-point deflections and applied impulsive 
load. A method for designing GMDH-type networks 
has been proposed and successfully used for the 
modelling and prediction of the process parameters of 

very complex process of deformation of circular plates 
subjected to impulsive loading. In this way, it has been 
shown that GMDH-type networks provide effective 
means to model and predict mid-point deflection 
thickness ratio according to different inputs. Moreover, 
it has been shown that singular value decomposition 
can effectively improve the performance of such 
GMDH-type networks over the traditional use of 
normal equations when all inputs-output data pairs are 
used for the modelling. 
 
 
 

 
Figure 5. Comparison of experimental values with 
computed/predicted values by GMDH-type network 
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  چکیده
  

  

در این مقاله پاسخ ورقهاي گیردار دایروي از جنس فولاد نرم، مس و آلومینیوم تحت بار انفجاري بصورت تجربی بررسی 
و با استفاده از آن مدلی براي نسبت خیز مرکز به ضخامت ورقهاي دایـروي بـا اسـتفاده از شـبکه هـاي عصـبی از نـوع        

GMDH چنین مدلی می تواند براي بررسی چگونگی تغییرات خیز مرکز ورق نسبت به سایر پارامترها به . ده استارائه ش
علاوه بر این در این مقاله نشان داده شده است که با جایگزین کردن متغیرهاي ورودي بدون بعد با پارامترهـاي  . کار رود

جمله اي درجه دوم ساده اي را براي مدلسازي و پیش می توان چند  GMDHواقعی فیزیکی در شبکه هاي عصبی از نوع 
همچنین ضرائب این چند جمله اي با استفاده از روش تجزیه مقادیر منفرد تعیـین مـی   . بینی خیز مرکز ورق بدست آورد

براي مدلسازي رفتار دینامیکی غیر خطی ورقهاي مدور  GMDHشود بگونه اي که عملکرد و کارایی شبکه عصبی از نوع 
  . ود می یابدبهب

doi: 10.5829/idosi.ije.2014.27.10a.18 
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