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A B S T R A C T

The Weibull distribution is widely employed in several areas of engineering because it is an extremely 

flexible distribution with different shapes. Moreover, it can include characteristics of several other 
distributions. However, successful usage of Weibull distribution depends on estimation accuracy for 

three parameters of scale, shape and location. This issue shifts the attentions to the requirement for 

effective methods of Weibull parameters estimation. It is a known fact that the estimation procedure is 
inherently a very complicated procedure when the three-parameter Weibull distribution is of interest. 

Hence, this study suggests a computational approach, greedy randomized adaptive search procedures, 

with several neighborhood local searches to enhance the quality of estimations. Computational 
experiments are also implemented to assess the quality of estimations as opposed to benchmark grid 

search algorithm. 
doi: 10.5829/idosi.ije.2017.30.03c.12

1. INTRODUCTION1

The probabilistic Weibull model is an extremely 

flexible distribution because of its different curve 

shapes. This property has made it capable in fitting of a 

wide range of experimental data very well and 

consequently has given rise to widespread real 

applications. For example, it is the most widely 

employed distribution for failure analysis in various 

types of systems in which decreasing and increasing 

hazard rates are taken into account [1]. Moreover, the 

Weibull distribution has been used in radar systems to 

model the dispersion of the received signal level caused 

by clutters. Furthermore, the distribution is especially 

useful for doing statistical analysis of satellite reliability 

and simulation of significant wave height [2]. Other 

application areas include wind energy potential [3], 

biomedical sciences [4], air quality determination [5], 

food products drying technology [6], model for 

growth/decline in product sales [7], and optimum 

adhesive thickness in structural adhesives joints [8].  

1*Corresponding Author’s Email: a.salmasnia@qom.ac.ir (A. 
Salmasnia) 

The probability density function of the three-

parameter Weibull distribution is as below [9]: 

𝑓𝑋(𝑥;  𝛼, 𝛽, 𝛿) =
𝛽

𝛼
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;     𝛼, 𝛽 > 0, 𝑥 ≥ 𝛿 (1) 

where, 𝛼, 𝛽 and 𝛿 are known as the scale, shape and 

location parameters, respectively. Because of its 

importance, many techniques have been suggested to 

estimate the three-parameter Weibull distribution 

parameters. However, the most existing estimation 

approaches relaxes one of its parameters to estimate the 

other two because of a known fact that the estimation 

procedure of the three-parameter Weibull distribution 

family is intrinsically complicated. In real world 

situations, successful application of Weibull distribution 

depends on having appropriate statistical estimates of 

the three parameters.  

The rest of this study is organized as follows: 

Section 2 reviewed related literature. Section 3 

describes the MLE estimation of three-parameter 

Weibull distribution. In Section 4, Greedy Randomized 

Adaptive Search Procedures (GRASP) algorithm are 
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designed. Section 5 discussed the computational results, 

and section 6 concludes the paper.  

 
 
2. RELATED WORKS 
 
Regarding the three-parameter Weibull distribution, 

Qiao and Tsokos [10] presented a stepwise algorithm 

including eight steps for fitting a Weibull distribution. 

Nosal and Nosal [11] employed array processing 

language and Monte Carlo simulation to investigate the 

performance of the gradient random search 

minimization procedure for estimating three parameters 

of Weibull distribution to a given data set. Teimouri et 

al. [12] classified the estimation techniques into five 

major categories: the approach of moments; the 

approach of maximum likelihood estimation; the 

approach of logarithmic moments; the percentile 

approach; and the approach of L-moments. They 

provided a comprehensive comparison of these 

estimation methods. Bartolucci et al. [13], Bartkute and 

Sakalauskas [14], Jukic etal. [15], Jukic  and Markovich 

[16], and Markovich and Jukic [17] suggested moments-

based approaches for estimation the Weibull distribution 

parameters. The most common way for estimation the 

parameters of the density function from an observed 

data set is the maximum likelihood estimation (MLE) 

technique [18-21]. Luus and Jammer [22] demonstrated 

that MLE gives the most reliable parameter estimation 

compared to the errors-in-variables and least-squares 

approaches. Ismail [23] employed a Newton–Raphson 

algorithm to maximize the MLE for hybrid censored 

data. He also through a Monte Carlo simulation 

calculated the mean square errors and biases of the 

MLE in order to investigate their performances.  

Since the estimation procedure of the three-

parameter Weibull distribution is a quite difficult 

problem, some researchers suggested intelligent-based 

heuristic approaches to discover satisfying solutions. 

Abbasi et al. [24] applied simulated annealing as one of 

the most popular meta-heuristics to maximize the 

likelihood function formed to estimate three-parameter 

Weibull distribution. Later on, in order to improve the 

performance of their method, Abbasi et al. [25] 

developed a hybrid variable neighborhood search and 

simulated annealing method. Furthermore, Abbasi et al. 

[26] suggested a neural network-based method which 

estimates the three parameters by using mean, standard 

deviation, median, skewness and kurtosis of the data. 

Wang [27] suggested bare bones particle swarm 

optimization algorithm to estimate the two-parameter 

Weibull distribution through maximizing MLE. Moeni 

et al. [28] developed a modified cross entropy method, 

as one of the modern simulation-based optimization 

methods, in the context of MLE of a three-parameter 

Weibull distribution. Yang and Yue [29] proposed a 

kernel density estimation-based method utilizing the 

genetic algorithm and neural network to estimate the 

three-parameter Weibull distribution. Orkcu et al. [30] 

employed differential evolution algorithm to maximize 

the MLE function. Recently, Orkcu et al. [31] showed 

that the performance of particle swarm optimization 

considerably depends greatly on its control parameters 

such as acceleration coefficients and inertia weight in 

the parameter estimation problem of Weibull 

distribution. 

For more details, we refer the interested readers to 

the surveys by Luus and Jammer [22] and Cousineau 

[32] which reviewed estimation methods for three-

parameter Weibull distribution. 
 

 

3. PARAMTER ESTIMATION USING MLE 
 
Estimation theory plays an important role in statistical 

analysis and engineering designs. In the last decade, 

several techniques such as maximum likelihood 

estimation, moments method [33, 34], graphical 

procedure, and weighted least square method [35, 36] 

have been introduced to estimate parameters. Among 

the existing approaches to estimate the parameters of a 

given probability distribution based on a data set, the 

MLE method is the most popular estimation technique 

because of its applicability in complex estimation 

problems. Furthermore, it is widely known that MLE 

provides asymptotically unbiased estimators with the 

minimum variance.  

This study suggests employing the MLE method to 

estimate three-parameters of Weibull distribution due to 

the desirable statistical properties of estimators obtained 

by this technique. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample 

of size 𝑛 drawn from probability density function of the 

three-parameter Weibull distribution 𝑓𝑋𝑖
(𝑥𝑖 ;  𝛼, 𝛽, 𝛿). 

Since 𝑥𝑖𝑠 are independent, their joint probability density 

function is the product of the individual probability 

density functions. Consequently, the likelihood function 

for Weibull distribution is equal to Equation (2). 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛;  𝛼, 𝛽, 𝛿) =

∏
𝛽

𝛼
(

𝑥𝑖−𝛿

𝛼
)

𝛽−1
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𝛼
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  ;       𝛼, 𝛽 > 0, 𝑥 ≥ 𝛿𝑛
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(2) 

The aim is to determine a vector value for 𝛼, 𝛽, and 𝛿 

that maximizes the likelihood function. In practice, the 

maximization of the natural logarithm of the likelihood 

function, called the log-likelihood, is extremely more 

convenient. Hence, to maximize 𝐿, equivalently log-

likelihood function is utilized, which for the three-

Weibull distribution is as Equation (3).   

𝐿𝑛(𝐿(𝑥1, 𝑥2, … , 𝑥𝑛;  𝛼, 𝛽, 𝛿)) = 𝑛𝐿𝑛 (
𝛽

𝛼
) +

∑ [− (
𝑥𝑖−𝛿

𝛼
)

𝛽
+ (𝛽 − 1)𝐿𝑛 (

𝑥𝑖−𝛿

𝛼
)]𝑛

𝑖=1   
(3) 

Optimal estimate values can be obtained either by 

maximizing Equation (3) or through solving the 
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following system of differential equations. However, it 

is very hard to evaluate the gradient terms in this 

problem because of the large number of parameters and 

multi-modal nature the log-likelihood function for the 

three-Weibull distribution. Hence, solving system of 

Equations (4-6) and also applying classical gradient-

based methods cannot be interesting ways.  

𝜕𝐿𝑛(𝐿(𝑥1,𝑥2,…,𝑥𝑛; 𝛼,𝛽,𝛿))

𝜕𝛼
= 0  (4) 

𝜕𝐿𝑛(𝐿(𝑥1,𝑥2,…,𝑥𝑛; 𝛼,𝛽,𝛿))

𝜕𝛽
= 0  (5) 

𝜕𝐿𝑛(𝐿(𝑥1,𝑥2,…,𝑥𝑛; 𝛼,𝛽,𝛿))

𝜕𝛿
= 0  (6) 

To overcome these difficulties, this study develops a 

numerical search method based on greedy randomized 

adaptive search procedures to handle the parameter 

estimation of three-parameter Weibull distribution as an 

optimization problem with log-likelihood objective 

function.  
 
 

4. GREEDY RANDOMIZED ADAPTIVE SEARCH 
PROCEDURE 
 
The problem of optimization to select among a finite 

number of options appears in industry frequently. 

Considerable researches have been carried out over the 

last three decades to devise optimal seeking techniques 

so as to converge to optimal solution without requiring 

any explicit evaluation of each option. This work has 

been treated with an increasing rise to the context of 

combinatorial optimization, and gains invaluable 

capability to solve real world problems. However, some 

open problems remain regarding finding global 

optimum, local optimum trapping, premature 

convergence, etc. In addition, most real world problems 

existing in industry are computationally intractable, or 

very large scale which make the use of exact methods 

more costly. In such situations, the application of 

heuristic and metaheuristics are common strategies in 

finding appropriate near optimal solutions with less 

computation difficulty. The success of these techniques 

is highly related to their capability in preventing to trap 

at local area, and utilizing the structural property of 

problem. To this end, some common remedy strategies 

like restart mechanisms, randomization process, and 

preprocessing can be utilized. By exploiting these 

mechanisms, different heuristic and metaheuristic 

search methods have been established which improves 

our ability to achieve acceptable solutions for difficult 

real world problems.  

Among various heuristic and metaheuristic 

approaches which are available to the operations 

research audiences, the GRASP is a relatively new one. 

It is an iterative randomized sampling search method 

which gives a solution of the problem at each iteration. 

The best solution obtained during all GRASP iterations 

is introduced as the final result. There are two phases 

during GRASP iterations: (i) construction phase in 

which an initial solution is constructed via an adaptive 

randomized greedy heuristic; and (ii) local search phase 

in which a heuristic is applied to current solution in 

hope of achieving a better solution. In current paper, we 

devise the various components in GRASP and to fit the 

parameters of Weibull distributions described in 

previous section. A general pseudo-code of GRASP is 

shown by Figure 1. The problem input is taken in Line 

1 of the pseudo-code. In lines 2– 6, the GRASP 

iterations are executed. The iterations are terminated 

when stopping criterion like maximum number of 

iterations is met. The construction phase take places in 

Line 3 and the local search phase occurres in line 4. If 

an improvement happens, the update process runs in 

line 5. In subsequent sections, we describe these two 

phases with more details. 

 

4. 1. GRASP Construction Phase       A feasible 

solution is iteratively generated in GRASP construction 

phase step by step by adding one element at a time. 

During one specific iteration of this phase, a greedy 

function is considered to order all of elements in a 

candidate solution list and recognize the next element to 

be added. The greedy function evaluates the 

appropriateness of each element to be selected. Since 

the appropriateness of each element is changed at each 

iteration of this phase, this method should be adaptive. 

This leads to reflecting the changes created by the last 

element selected in previous stage. The GRASP utilizes 

a list of top candidates which is entitled as restricted 

candidate list (RCL). To construct the RCL used in this 

phase, the incremental cost associated with the 

incorporation of element into the current partial solution 

is assessed by greedy function. At any GRASP iteration, 

the restricted candidate list RCL is made up of elements 

with the best incremental costs. This list can be limited 

by the number of elements in the list υ.  

To randomly select one of the best candidates in the 

RCL, the GRASP uses a probabilistic mechanism. The 

selected element should not be necessarily the best one 

in the list in order to allow the GRASP for obtaining 

different diverse solutions at each iteration. 
 

 

Procedure GRASP 

1. Input Instance; 

2. for Stopping criterion not satisfied 

3.  Construct greedy randomized solution; 

4.  Local search; 

5.  Update solution; 

6. end 

7. Return best solution found 

end GRASP 

Figure 1. GRASP procedure 
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Figure 2 gives the pseudo-code for the GRASP 

construction phase. Line 1 initializes the solution to be 

generated in construction phase. The solution is 

constructed within loop in line 2 to 7, and the RCL is 

constructed in line 3 of pseudo-code. In lines 4 and 5 a 

candidate S is randomly chosen from RCL, and is used 

to form the solution. In line 6 of code, the greedy 

function is called and the effect of the selected element 

S on the appropriateness associated with every element 

is evaluated and measured. 

 

4. 2. GRASP Local Search Phase       It is inevitable 

that the solutions found by construction phase be locally 

optimal solutions. As remedial technique, it is 

frequently common to design and employ a local search 

procedure. The local search procedures move from one 

solution to a different one in the feasible region by 

applying changes in solutions, until a criterion is 

satisfied. It is usually used on optimization problems to 

find a solution optimizing an objective measure among 

a list of candidate solutions. The local search gets the 

constructed solution as input and attempts to enhance it 

via an iterative process. It starts from the current 

solution and then iteratively moves to a neighbor region, 

which is feasible. At each iteration, the current solution 

is successively replaced with a new better solution 

founded in the neighborhood of the current solution. 

The neighborhood of the constructed solutions is 

explored by intensifying the search in vicinity of 

solution with the hope of improving the solution that we 

already have at hand. The local search terminates when 

there is no potential improvement in the neighborhood 

of current solution. Also, it has been proved that 

utilizing of two or more local search strategies helps the 

GRASP to prevent trapping in a local optimum. The 

important problem in designing a local search is the 

design of the neighborhood mechanisms. A 

neighborhood mechanism determines the way to gain a 

new solution by modifying the input solution. The local 

solution founded by a particular neighborhood 

mechanism is not necessarily same as the local solution 

established by another mechanism, and hence, the use of 

several neighborhood mechanism get us the flexibility 

to guide the search to more appropriate regions.  
 

 
Procedure Construct greedy randomized solution 

1. Solution = {}; 

2. for Solution construction not done 

3.  Make RCL; 

4.  𝑆 = Select element at random (RCL); 

5.  Solution=Solution ∪ 𝑆; 

6.  Adapt Greedy Function (𝑆) 

7. end 

end Construct greedy randomized solution 

Figure 2. Construction phase procedure 

In local search which is utilized within GRASP 

algorithm, four neighborhood mechanisms are 

considered in current paper: (i) insertion, (ii) swap, (iii) 

twist, and (iv) random. Given a schedule 𝑙, the insertion 

neighborhood is related to all the solutions that can be 

gained by getting a Weibull parameter value from its 

place in 𝑙 and re-inserting it into new position. Thus the 

insert mechanism removes the parameter in ith position 

from current solution and insert it into a new random 

position 𝑗. Given a solution 𝑙, the swap is related to all 

the neighbor solutions that can be attained by swapping 

the numbers of two parameters form three parameters in 

Weibull distribution. In other words, this neighborhood 

swaps the parameters at the 𝑖th position and the 𝑗th 

position in the current solution 𝑙. In twist neighborhood, 

a new candidate solution is created by taking a subset of 

the Weibull parameters in current solution and re-

inserting the selected subset in reverse order into their 

position. For random neighborhood, a parameter of 

Weibull distribution is selected randomly and a random 

value is replaced with its current value.  

 

 

5. NUMERICAL ILLUSTRATION 

 

In this section, we aim at demonstrating the procedure 

of proposed estimation based GRASP algorithms and 

evaluate performance of estimations achieved via 

illustrative examples. To this end, four examples are 

considered and discussed in sequel. The parameters for 

examples 1 − 4 are  

(𝛼, 𝛽, 𝛿) = (2, 3, 8), (4, 5, 6), (6, 7, 4), and (8, 9, 2) 

respectively. To generate the examples, a three 

parameter random number generator is implemented in 

MATLAB 2010a and the samples X = (X1, X2, … , Xn) 

are attained for each example separately. The sample 

size n is an important parameter in analyzing the 

GRASP algorithms which will be selected 

computationally. Moreover, the number of elements in 

the RCL list is another important parameter influencing 

the performance of algorithms. Tables 1-4 depict the 

experimental results for 4 examples in term of log-

likelihood objective function. The first columns indicate 

the number of elements in RCL, while second columns 

show sample size. The next columns show the results of 

a benchmark grid search algorithm. The grid search is a 

kind of full enumeration search method which is used to 

solve an optimization problem with discretized domain. 

It recognizes a discrete feasible region with an equally 

divided grid and finds the best solutions in that region 

by comparing the fitness of new solution to that of best 

obtained solution so far. The updating process is 

implemented when the improvement occurs. Since 

computational efforts incurred by any grid search are 

outstandingly high, we limit run time to maximum run 

time of all GRSAP algorithms.  
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TABLE 1. Log-likelihood values for example 1 (α, β, δ) = (2, 3, 8) 

Number of elements in the 

RCL list 𝜐 
Sample size 

Algorithms 

Grid Search GRASP-Swap GRASP-Insert GRASP- Twist GRASP- Rand 

𝜐 = 8 𝑛 = 20 -24.4817 -23.346 -24.971 -23.380 -21.878 

 𝑛 = 50 -45.9458 -61.761 -60.414 -80.761 -51.207 

 𝑛 = 100 -100.2260 -118.051 -126.634 -89.394 -103.588 

 𝑛 = 200 -196.6091 -286.542 -243.184 -228.283 -212.072 

𝜐 = 5 𝑛 = 20 -24.4817 -19.412 -22.093 -18.595 -23.874 

 𝑛 = 50 -45.9458 -50.671 -60.995 -57.665 -52.583 

 𝑛 = 100 -100.2260 -102.441 -116.783 -121.629 -104.103 

 𝑛 = 200 -196.6091 -241.226 -234.774 -220.718 -209.251 

𝜐 = 2 𝑛 = 20 -24.4817 -25.722 -21.210 -23.291 -21.639 

 𝑛 = 50 -45.9458 -52.590 -58.718 -57.523 -52.825 

 𝑛 = 100 -100.2260 -110.003 -113.118 -118.133 -111.449 

 𝑛 = 200 -196.6091 -223.596 -218.252 -219.872 -213.642 

Average  -91.815 -109.613 -108.429 -104.937 -98.175 

 

TABLE 2. Log-likelihood values for example 2 with (𝛼, 𝛽, 𝛿) = (4, 5, 6) 

Number of elements in the 

RCL list 𝜐 
Sample size 

Algorithms 

Grid Search GRASP-Swap GRASP-Insert GRASP- Twist GRASP- Rand 

𝜐 = 8 𝑛 = 20 -19.515 -27.877 -24.478 -26.326 -26.762 

 𝑛 = 50 -57.284 -76.700 -64.963 -65.902 -68.376 

 𝑛 = 100 -110.497 -118.043 -124.893 -132.393 -123.136 

 𝑛 = 200 -248.308 -275.076 -257.397 -253.228 -245.109 

𝜐 = 5 𝑛 = 20 -19.515 -24.635 -25.887 -26.021 -21.230 

 𝑛 = 50 -57.284 -68.773 -65.738 -63.243 -63.844 

 𝑛 = 100 -110.497 -136.545 -122.829 -120.752 -129.695 

 𝑛 = 200 -248.308 -258.450 -263.615 -259.211 -250.670 

𝜐 = 2 𝑛 = 20 -19.515 -22.148 -29.888 -22.570 -25.315 

 𝑛 = 50 -57.284 -58.978 -64.681 -56.314 -62.261 

 𝑛 = 100 -110.497 -119.242 -130.703 -131.008 -121.393 

 𝑛 = 200 -248.308 -238.692 -255.194 -262.913 -254.489 

Average  -108.901 -118.763 -119.189 -118.323 -116.023 

 
TABLE 3. Log-likelihood values for example 3 with (α, β, δ) = (6, 7, 4) 

Number of elements in 

the RCL list υ 
Sample size 

Algorithms 

Grid Search GRASP-Swap GRASP-Insert GRASP- Twist GRASP- Rand 

υ = 8 n = 20 -31.270 -25.767 -36.762 -29.686 -25.224 

 n = 50 -64.276 -60.012 -73.024 -71.128 -61.646 

 n = 100 -129.817 -141.742 -131.879 -137.811 -135.302 

 n = 200 -262.573 -294.119 -291.653 -269.693 -263.568 

υ = 5 n = 20 -31.270 -25.702 -31.347 -27.329 -22.396 

 n = 50 -64.276 -67.923 -69.312 -64.481 -63.935 

 n = 100 -129.817 -141.572 -132.707 -145.435 -139.725 

 n = 200 -262.573 -272.282 -278.882 -254.274 -251.230 

υ = 2 n = 20 -31.270 -26.925 -26.521 -31.587 -26.521 

 n = 50 -64.276 -72.337 -74.484 -65.392 -72.074 

 n = 100 -129.817 -261.257 -142.149 -128.010 -124.805 

 n = 200 -262.573 -126.637 -270.605 -256.578 -258.267 

Average  -121.984 -126.356 -129.944 -123.45 -120.391 
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TABLE 4. Log-likelihood values for example 4 with (𝛼, 𝛽, 𝛿) = (8, 9, 2) 

Number of elements in the 

RCL list 𝜐 
Sample size 

Algorithms 

Grid Search GRASP-Swap GRASP-Insert GRASP-Twist GRASP-Rand 

𝜐 = 8 𝑛 = 20 -27.627 -27.441 -37.592 -24.349 -27.232 

 𝑛 = 50 -65.907 -74.460 -71.767 -68.480 -72.765 

 𝑛 = 100 -134.917 -130.559 -127.852 -130.838 -132.656 

 𝑛 = 200 -263.583 -275.454 -295.777 -267.403 -290.788 

𝜐 = 5 𝑛 = 20 -27.627 -27.077 -30.059 -27.169 -28.063 

 𝑛 = 50 -65.907 -67.559 -63.864 -68.825 -69.236 

 𝑛 = 100 -134.917 -164.137 -138.502 -137.741 -142.329 

 𝑛 = 200 -263.583 -276.920 -278.594 -271.512 -307.777 

𝜐 = 2 𝑛 = 20 -27.627 -26.009 -24.681 -20.366 -27.488 

 𝑛 = 50 -65.907 -71.034 -64.910 -70.832 -65.971 

 𝑛 = 100 -134.917 -140.717 -132.444 -132.556 -130.897 

 𝑛 = 200 -263.583 -259.344 -288.095 -278.741 282.883 

Average  -123.009 -128.393 -129.511 -124.901 -84.3599 

 

 

When run time violated, the best obtained solution is 

recorded and its log-likelihood function are reported. 

Figure 3 shows a simple pseudo-code of grid search 

algorithm. 

The next remaining columns present the value of 

achieved log-likelihood objective functions by 

algorithms GRASP-Swap, GRASP-Insert, GRASP-

Twist and GRASP-Rand respectively. As we expected, 

the objective function gets negative values which is due 

to nature of log function for input probabilities between 

0 and 1. The aim is to find the value of parameters 

(𝛼, 𝛽, 𝛿) with highest value of log-likelihood function.   

Since the proposed GRASP algorithms are random 

based search methods, the way they approaches their 

final statuses is of interest. In order to further assess the 

performance of GRASP algorithms, the quality of 

solutions obtained by algorithms are depicted in sequel. 

Figure 4 shows the log-likelihood objective functions 

for average values of log-likelihood objective functions. 

The grid search is a relatively full enumeration method 

which is expected to reach better solutions. After that, 

as can be seen from results, the rank of algorithms in 

terms of quality of solutions is GRASP- Rand, GRASP-

Twist, GRASP-Swap and GRASP-Insert. 

 

 
Procedure Grid search 

1. Construct grid network; 

2. for maximum parameter values (𝛼, 𝛽, 𝛿) are not 

violated 

3.  evaluate the current solution point on 

network; 

4.  updating process; 

7. end 

end Grid search 

Figure 3. Grid search procedure 

 
Figure 4. The result of comparisons 

 

 

6. CONCLUSION 
 

The Weibull distribution plays an important role in 

several real world applications such as reliability and 

lifetime studies. This issue has attracted many attentions 

to precise estimation of the Weibull parameters. The 

estimation of parameters of three-parameter Weibull 

distribution is intractable analytically. In this research, 

the GRASP algorithm with four different local search 

schemes was developed to maximize the log-likelihood 

function of a three-parameter Weibull distribution. The 

performance of the suggested algorithms was assessed 

and compared with the benchmark grid search method. 

The obtained results supported the appropriate 

performance of estimations attained in terms of both 

accuracy and efficiency. As a direction for future 

research, it is interesting to devise other numerical 

search methods like other recent metaheuristics and 

compare the results. 
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 هچكيد
 

 
یرد، چراکه یک توزیع بسیار گ ای در موضوعات مختلف مهندسی مورد استفاده قرار می توزیع وایبول به طور گسترده

گیرد. ولیکن  های تعداد دیگری از توابع توزیع را نیز در بر می منعطف با اشکال متنوع است. به علاوه این توزیع ویژگی

ی موفقیت آمیز از این توزیع مستلزم تخمین دقیق سه پارامتر آن یعنی پارامتر مقیاس، پارامتر شکل و پارامتر مکان  استفاده

هایی جهت برآورد دقیق پارامترهای این توزیع سوق داده است. سختی  توسعه روش ها را به سمت است. این مساله تلاش

تخمین پارامترهای توزیع وایبول مخصوصاً زمانیکه هر سه مجهول هستند به عنوان یک فرآیند کاملاً پیچیده معروف است. 

با تعدادی جستجوی محلی   نهصایحر یتصادف یانطباق یجستجواز اینرو، این مطالعه یک رویکرد محاسباتی یعنی روش 

نماید.  همچنین تعدادی آزمایش محاسباتی جهت ارزیابی کیفیت  همسایگی به منظور ارتقای کیفیت برآوردها را پیشنهاد می

 ای اجرا شدند. برآوردها در مقایسه با الگوریتم جستجوی شبکه
doi: 10.5829/idosi.ije.2017.30.03c.12 
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