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ABSTRACT 

Oxidative damage to membrane lipid is one of the prime events occurring in aging and other undesirable 
physiological processes. In this study experiments were performed on liposomes (prepared either from crude 
erythrocyte phospholipids or purified egg yolk phosphatidylcholine) as models of lipid bilayer portion of 
biomembranes. The effects of β-carotene, and phospholipid composition on peroxidation process, initiated 
by Fe2+, were studied. It was found that β-carotene does not show any noticeable antioxidant effect on the 
peroxidation  process initiated by Fe2+ in liposomes prepared from erythrocyte phosphatides, whereas it 
effectively suppressed the same process in egg yolk phosphatidylcholine (EYPC). It is concluded that the 
anti-/pro-oxidant activity of β–carotene is also dependent on the membrane lipid composition and this 
may provide an explanation about the conflicting reports on its role in ordinary or promoted oxidation 
experiments.  
Keywords: β-carotene, Liposomes, Lipid peroxidation, Erythrocyte phospholipids, Iron-induced 
peroxidation, Egg yolk phospholipids, Antioxidant. 
 

INTRODUCTION 
Carotenoids are not just “another group of natural 
pigments”. They are substances with very special 
and remarkable properties that no other groups of 
substances possess and these form the basis of 
their many varied functions in all kinds of living 
cells. Traditionally often thought of as plant 
pigments, carotenoids have a much wider 
distribution and occur extensively in animals and 
microorganisms (1-3). Without carotenoids, 
photosynthesis and life in an oxygen atmosphere 
would be impossible (1). 
The natural functions and actions of carotenoids 
obviously are determined by the physical and 
chemical properties arising from their molecular 
structures. First of all their overall molecular 
geometry (size, shape, and presence of functional 
groups) is vital for ensuring their fitness into 
cellular and subcellular structures (correct location 
and orientation) allowing them to function 
efficiently. Secondly, their conjugated double 
bond system determines the photochemical and 
chemical properties underlying their physiological 
functions. In addition, their specific interactions 
with other molecules in their immediate vicinity 
are crucial for their appropriate functioning (1). 
More than 600 naturally occurring carotenoids 
have been identified and beta-carotene is one of 
them (2, 3). Foot and colleagues first 
demonstrated the exceptional singlet oxygen 
quenching action of beta-carotene in 1968 (4, 5). 
 

Krinsky, Burton and Ingold later documented the 
peroxyl radical scavenging properties of β-
carotene and indicated that β-carotene acts as a 
previously unknown type of chain-breaking 
antioxidant especially effective at low partial 
oxygen pressures (4, 6, and 7). The antioxidant 
action of β-carotene has also been observed in the 
case of lipids in solution (8-12), phospholipids in 
liposomes (9, 11, 12), and microsomes (15-17). 
Inhibition of oxidative modification of low-
density lipoproteins by β-carotene has also been 
reported (18). Unlike vitamin E and vitamin C that 
reveal their antioxidant activity through hydrogen 
donation, β-carotene acts via addition reaction to 
its  double  bonds yielding a resonance stabilized, 
carbon-centered, conjugated radical (8). Dietary β-
carotene has been postulated, through 
epidemiologic evidence and laboratory studies, as 
an effective agent for prevention of lung cancer 
and perhaps other cancers (19, 20). However, a 
recent randomized trial found no benefit in long-
term β-carotene supplementation in normal, 
healthy subjects (21). Moreover, three intervention 
trials with heavy smokers suggested that β-
carotene may actually increase the risk of cigarette 
smoke-induced lung cancer (22-24). 
β-carotene is insoluble in water and has limited 
solubility in organic solvents. In addition, β-
carotene is easily oxidized both by light and by 
some components of the physiological milieu, e.g. 
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 metals and reactive oxygen species. These factors 
plus differential solubility of β-carotene 
complicate the study of β-carotene metabolism, 
and may provide an explanation for the disparate 
results obtained by different laboratories (25). 
In this paper, we report the results of our 
investigations on: a) the role of β-carotene and 
lipid composition of membranes on lipid 
peroxidation in liposomes and, b) the catalyzed 
reactions of Fe2+ in promoting the spontaneous 
lipid peroxidation. 
 

MATERIALS AND METHODS 
 

Materials  
Trichloroacetic acid, 2-thiobarbituric acid, ferric 
sulfate II (FeSO4.7H2O), EDTA (Titriplex III), L-
ascorbic acid, α-tocopherol and all organic 
solvents were analytical reagent grade purchased 
from Merck (Darmstadt, Germany). β-carotene 
was purchased from Fluka (Buchs, Switzerland). 
Human red blood cells (RBC) were provided by 
the Blood Transfusion Organization of Iran, 
Tehran. 
 

Instruments  
These include: UV-vis spectrophotometer, 
Shimadzu model 160A (Tokyo, Japan), vortex 
mixer (Heidolph, Germany), bench top pH meter 
(Wilhelm, Germany), probe type sonicator (model 
MK2-3.75, MSF, France), rotovap (model NAJ, 
Eyela, Japan), and refrigerated ultracentrifuge 
(model 6-5, Imaco, Iran). 
 
Methods 
Preparation of human RBC 
Packed cells of male human with A+

 blood group 
were used. Red blood cells (RBC) were washed 
three times with normal saline (9 g/l NaCl) and 
separated from the buffy coat. During the last 
wash, the cells were centrifuged at 1000 RPM for 
10 min. 
 

Extraction of lipids 
Erythrocyte phosphatides were extracted by a 
simple and low toxicity method (26). Purified egg 
yolk phosphatidylcholine (EYPC) was obtained by 
column chromatography on alumina following the 
method by Singleton (27) and purity assayed by 
TLC in comparison with commercial standard 
samples. Purity of phospholipids thus obtained 
was much higher than those of the commercial 
standard samples. 
 

Vesicle preparation 
Liposomes were prepared by the method described 
by Janson (28). β-carotene was dissolved in 
chloroform and added to phospholipid solutions 
and the solvent removed by evaporation under 

nitrogen in a rotary vacuum evaporator. Aliquots 
of 7.8 mM PBS (Phosphate Buffered Saline), pH 
7.4, were added to the dried lipid to give a 
phospholipid concentration 7 mM and an 
antioxidant concentration of 0.2-2 mol % with 
respect to phospholipids. The suspensions were 
sonicated via the probe sonicator for 5 min at 4oC 
under a nitrogen atmosphere to yield unilamellar 
liposomes (29). The vesicle dispersions were then 
centrifuged for 15 min at 3500 RPM to remove 
any undesired particle (lipid aggregates, metal 
debris, etc.). 
 

Peroxidation of lipid vesicles 
Vesicles obtained from freshly prepared lipids 
were subjected to stimulated peroxidation by iron 
salt (Fe2+) at a concentration of 150µM. Lipid 
peroxidation was monitored through the formation 
of thiobarbituric acid (TBA) reactive material as 
malondialdehyde (MDA) at 535 nm (30). 
Susceptibility of different lipid samples to 
peroxidation was determined by monitoring the 
appearance of the conjugated dienes by UV 
differential spectroscopy (at 234 nm). In this set 
up the formation of conjugated dienes in the 
sample phospholipids was measured against the 
pristine phospholipids as the reference (31). 
 

β-Carotene bleaching 
The change in β-carotene concentration in 
liposomes was monitored by following the 
decrease in the absorbance at 466 nm and 497 nm 
(λmax of β -carotene) by UV-vis spectrophoto-
metry (32). 
 

RESULTS 
The ability of beta-carotene to protect 
phospholipids against iron induced lipid 
peroxidation in liposomal solutions is revealed in 
Figs. 1-3 where the time course of lipid 
peroxidation in liposomes prepared from 
erythrocyte phospholipids, carrying various levels 
of β-carotene, in solutions containing either Fe2+, 
Fe2+ + EDTA or Fe2+ + ascorbic acid has been 
studied. It is seen that lipid peroxidation is 
initiated after about 200 minutes and beta-carotene 
has no profound effect on the extent and the time 
course of the process (30). 
Fig. 4 shows the enhancing effect of Fe2+ on the 
lipid peroxidation in liposomes prepared from egg 
yolk phosphatidylcholine containing different 
amounts of beta-carotene. It is clearly seen that 
lipid peroxidation is initiated right from the start 
and beta-carotene has a pronounced effect on 
inhibiting the process (30). 
Fig. 5 shows the appearance of conjugated dienes 
(absorbance at 234 nm) as a function of time in 
liposomes prepared from erythrocyte 
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Figure 1. Peroxidation of liposomes made of 
erythrocyte phospholipids (containing different levels 
of beta-carotene) induced by 150 µM FeSO4 in 7.8 
mM PBS buffer. 

Figure 2. Peroxidation of liposomes made of erythrocyte 
phospholipids (containing different levels of beta-
carotene) induced by 150 µM FeSO4 and EDTA in 7.8 
mM PBS buffer. 
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Figure 3. Peroxidation of liposomes made of 
erythrocyte phospholipids (containing different 
levels of beta-carotene) induced by 150 µM FeSO4 
and 600 µM Ascorbic acid in 7.8 mM  PBS buffer . 

Figure 4. Peroxidation of liposomes made of egg yolk 
phosphatidylcholine (containing different levels of 
beta-carotene) bathed in 7.8 mM PBS buffer 
containing 150 µM FeSO4. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Sarbolouki et al 

  

151

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a

0

0.05

0.1

0.15

0 100 200 300

Time(min)

A
(2

34
 n

m
)

b

0

0.05

0.1

0.15

0 100 200 300

Time(min)

A
(2

34
 n

m
)

a b 

 
 

Figure 5.  Formation of conjugated dienes in liposomes made from erythrocyte phospholipids bathed in PBS containing 
                  150 µM FeSO4    a) lacking beta-carotene, and    b) containing 0.4 mol % β-carotene 
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Figure 6.  Formation of conjugated dienes in liposomes made from egg yolk phosphatidylcholine bathed in 7.8 mM PBS 
containing 150 µM FeSO4     a) without β-carotene     b) with 0.4 mol % β-carotene. 
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phospholipids, lacking or containing beta-
carotene, in 150µM FeSO4 solution. Although the 
curves differ to some extent, the overall variation 
seem to be similar in both cases, at least up to 220 
min, and a clear difference in behavior seems to 
arise after this long period (31). 
Fig. 6 shows the appearance of conjugated dienes 
as a function of time in liposomes prepared from 
egg yolk phosphatidylcholine lacking or 
containing beta-carotene bathed in 150 µM FeSO4 
solution (31). It is seen that in the absence of beta-
carotene the amount of conjugated dienes rise 
sharply in a pattern similar to those previously 
seen. While liposomes containing beta-carotene 
show an entirely different behavior, i.e. there is a 
clear lag time of about 10 minutes before the onset 
of peroxidation. 
Fig. 7 shows the consumption of beta-carotene 
(absorbance in λmax of beta-carotene: 466 and 
497 nm) in liposomes prepared either from egg 
yolk phosphatidylcholines or erythrocyte 
phospholipids in the presence of Fe2+ (32). It is 
seen that in both cases there is an exponential 
trend in beta-carotene consumption, being 
somewhat more intense in the case of liposomes 
made of egg yolk phosphatidylcholine, a 
difference which may be attributed to their 
different lipid compositions. 
 

DISCUSSION 
The antioxidant potency is determined by several 
factors such as intrinsic chemical reactivity of the 
antioxidant towards the specified radical, site of 
generation and reactivity of the radicals, 

antioxidant-radical microenvironment, stability 
and fate of antioxidant-derived radicals, and the 
interaction with other possible reactants. The 
precise location of β-carotene in the membrane is 
not yet fully known. Some propose that it is 
aligned parallel to the hydrocarbon tails such that 
the central 15, 15í -double bond is located in the 
central hydrophobic region of the bilayer (33), 
while others present evidence that it is mainly 
located in the tail-end region at the center of the 
bilayer. Regarding the carotenoids action, it is 
proposed that the mechanism may involve peroxyl 
radical addition to and electron capture by the 
carotenoid polyene chain. It is also suggested that 
hydrogen abstraction from the allylic positions 
may occur (34). Thus, the operating mechanism 
depends on the oxygen tension (34). Upon 
comparing Figs. 1-3 with Fig. 4 it becomes 
evident that perhaps the reason for such a dispute 
lies in the difference between the membrane 
compositions studied by different groups. It has 
been found that the antioxidant potency is 
determined not only by the chemical reactivity of 
the antioxidant towards radicals but also by other 
physical factors (33). 
Borg and Schaich (35, 36), suggested that at high 
concentrations Fe2+ can be expected to inhibit 
peroxidation by the following radical scavenging 
reactions: 

Fe2+ + LOOº + H+ 
fast⎯ →⎯ Fe3+ + LOOH     [1] 

Fe2+ + LOº+ H+ very fast⎯ →⎯⎯  Fe3+ + LOH    [2] 
 

Yoshida (37), Vile and Winterbourn (38), have 
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Figure 7. Consumption of β-carotene present in a) liposomes made from erythrocyte phospholipids, and b) 
liposomes made from egg yolk phosphatidylcholine, in the presence of 150 µM FeSO4. 
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shown that iron ions binds to liposomal membrane 
and causes a lag period to appear.  
Driomina, et al. (39), have suggested that there 
may be a massive lipid peroxidation after a time 
lag at a critical concentration of Fe2+ at the 
membrane surface. However, as can be seen, Figs. 
(1-3) clearly show that when Fe2+ is chelated by 
EDTA or ascorbic acid, the lag period is not 
affected. On the other hand the data regarding the 
formation of conjugated dienes in liposomes made 
of erythrocyte phospholipids exposed to Fe2+ ions 
in  the presence or absence of β-carotene do not 
differ significantly (i.e. neither an antioxidant nor 
a pro-oxidant role), Fig. (5). Whereas, in the case 
of liposomes made of egg yolk phospha-
tidylcholine the antioxidant behavior of β-carotene 
in the presence of Fe2+ ions can be clearly 
discerned by the 10 min time lag observed, Fig. 
(6). This is confirmed by spectroscopic studies 

that show β-carotene present in liposomes made of 
egg yolk phosphatidylcholine is consumed faster 
(in presence of Fe2+) than that present in liposomes 
made from erythrocyte phospholipids under the 
same conditions. 
 

CONCLUSIONS 
 Although some contend that the antioxidant 
activity depends on partial pressure of the 
oxygen (pro-oxidant at high oxygen pressures 
and anti-oxidant at low oxygen pressures) our 
data show that antioxidant activity of β–carotene 
is also dependent on the membrane lipid 
composition and even in atmospheric oxygen 
pressures it can act as an anti-oxidant. This may 
provide an explanation about the conflicting 
reports on the anti-/pro-oxidant functioning of β–
carotene in ordinary or promoted oxidation 
experiments. 
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