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ABSTRACT: Fhe Direct Boundury fnteoral Eguation Methed (DEIEM)
siudies the wo-dimensional “in-plede ™ steady-soate wave Pripgation
problem fn @ non-elastic multi-luyered region with aopn-paraliel
boundaries. Wove attenuarion and dispersion due fo the non-elastie sl
Befvior are investipated by the generalized Moxwell.Gurevich model
(GMUE model). The mimerical example solved curyiders roo real poodn i
cod yitwarions for o mudti-lapered soil media with cxisience of salt are
depragiin. Theye sifuations cancern ane and the some peologival region b
in gdifferens periods of it exploitation in J95) and §994, There iv g change
af tite suuaiion during the vears when the exploiration of the solt ore
ilepowity hay been done, The rogion i subiceted to incidin) me-harmonic
seismlc P-waves. Theoreroal amplitude-freqeency charaoteristics ar thae
frov-swrfuce poings for elaste and non-elastie cases are obiined and
CoMpared.
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I, Totrodwetion

Chn the bass of the review of the experimenial results one
can see Lhal there are roo different Kindy of seismic waves
tispersion. One kind of dispersion s due to the non
eluglic soil behavior and in this vase the damping
wostiicient I:l.'r."'] depends lingirly on the frequency,
[hen the waveclength & 2 10— 200 where s the
mhomogencicy size. The other kind of dispersion is dise 1o
e wave geomeinical sealermy and ttoccursat 3> 7 oand
@i} -, where o is the frequency. The experinental
dizpersive curve Giw] is a line-duc to the enerzy
damping &t microsiucture state change and non-lastic
deformation, with some flucteacions on 11 due to the
scallering from inhomogeneities in soul [1], Fipures (1a)
gnd (1b} show the experimental dispersive curves
te(ah, ubtained in [ 1] for soil materials. The basic disper-
s relations: velocioy Fim) and aitenuzstion cocfficient
i), otained from classical models of Foight, Maxwell
ind linear standard body modsl, do not agree with the
eAperiment ina vast zone of frequencics. Fxcep for the
classical models, many authors give their conirtbution to
the creation of physical models of soil. Well-kiown are the

models of Cicriagin [2], Lommitz [3 |, Futerman [4], Knopoff

[3]. lsacovich [6], Magmiski and Jarkev 7], Mot and

® Fort pwo o s papee will fe pubitsbed i the newe B of JTEE

Frankel [8, 9). None of them. however, shows satisfactory

agreemanl wilh the experimental sesuliz,

The main aims of this paper are;

& To prescut he essence of the (WG model for
deseriting the physical dispersion of the seismic
witves and its nscin rmodeling of reo-dimensinnal
“mn-plane™ wave propagation inoa ol lavered
ron-elastic geological region with complex geom-
atry. e motivation for this is that this model gives
theoretical results for attenuation and dispersion of
seismmic wirves in soll, which are m good agrecment
with the experirmental data [ 10].

¢ Toshow that the changes in the s region during
the years of the explotation process Tead to the
change in s dynamic response, e lo the change
i Lbe obtained theoretical amplitade-frequency
characteriatios.

The paper 15 organized as follows: The description of
the GMO mode] i presenled in section 2 and the two-
dimensional wave equation using the GMG model is
discussed i section 3. The formulation of the prohlem i=
given n section 4. Seclion § presents BIEM furmulation of
the considered problem. Some nemerical results are given
in section &, The conclhusion is made in seeton 7.
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Archivaesi D gz << and the weakest molecular bonds are destroyed,
. Molecules sirengly bonded swrround the sicro-particles,
il between which the bound bave been desmoyed, and

these molecules foom on elaste skeleton of the body,
There, phases of streszes aipd Strains comaide and Hook's
Taw Tinks siress and sttam. Due o the desmuction of the
) weak bonds in the skeleton from timee o fime, and o

corresponding reorganization of the skel=lon molecules,

there noours elasto-relaxational strain %y which does not

coincide with the stress phase, The irceversibie
fiFz| Jelvrmation does not exast. This made] is valid for waves
with small amplinede for wothenomsl process, macroscopo
hormogensous and isotropic mediunt. The first members nf
the Taylor's series of he funglion 7. =_.’"I:Ftl._,-_:1 are

T
considered, 1o, the elasto-relaxational deformation fakes
| place

Figure 1a. Sxpermental dspersive ree @), - E:
[

wlm|
Cpy = '-'l:.:- 8y _EI'I':!-E;-‘{: @y = E_R,-.-.'.'l Li=ay (2
Here 3':,. anid {1 aresirucluce parametsrs, characterizing
ihe #lasio-relaxational properics which arc called Lame
relaxational coefficignis, The value of the relaxational
stress Doy iz determiined by oa raction Ty, such as
B~ 0 ie 1his traction steps the slasto-relaxational
defrmation ala given mosmenl of ims i when

-z B =0

i JJ-':I]
Lo

400 20 1 : : 2 ;
= [Tz the tolloadng celations can he writicn

Figure 1b. Exparimental dispersive curve alf), 57— 20

L - w, a.“:"'lr-l:.\I -. = &I.I.{E::ll- .
Ei =8 +20 "l['u'__x;|=|5:ltu: 3

2. Desceription of the (MG MVodel N i L
o the seventes. Gurevich [ 10] reached o the viewpoing o - o™ 4 ,_a_;;“ N

ot Maxnwell tor solid deformaton mechanism in the cascaf !
wave propagation far from the wave sourec {in the cage of o ';:a.

srmall deformation 0 107% — 107", The total deformatinn P
Ll

{4}

£

o 22 sum of the elastic deformation £, and tlie linssr ] 4K
p = . Mere K and & . are the elastic and relaxational valumes
slaste-relaxational deformation €, that develnps and s :

damips in time mindule; woand p, aee he elasis and relaxotionol shear
module; &, - the Kronecker delwa; 2,8 - the total

E ; T 1. .4 H L
foompYap ., i defosmation; £, ¢, @ -lbeelasticand relaxasonzl

struins at a moment of time ¢, when O =y anl B =0

Curevich | 10] adopts Moxwell s molecular ides abone o feed, the condition Oy = Gy 18 2 stability condition
the character of the elasto-relexitionul deformation. see The difference bemween naterials lies i the path they 1ake
Figure (23, Under acoustic Toad the iofal deformabion &5 b ameve gt the final stability steee. This depends o the
behavier of the concrete mictostructure, Le. on the
structural modute- &, £, . P T Ty Here T s the
tiehe For transitton from some squilibrium state dno
unother one forone molecole; T, 5 the time for transition
afa group of igleculies from some state of equilibrivm into
gnother ome: and P is density. The guantities
B R g @, hecome £, @75 @) by inssantaneous
trunsthion act to o smable struetore an the case when the
total deformation does oot change at this timee, 5o thal the
sitong bonds in the clastic skeleion are conserved. Ar
cach other moment ¢ # ¢, when the condition = py =015

Flgura 2, Guravich's yvisarsaind For salid deformation in sl
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By =Epy +2,, and & =5+ &, ()

Gurevich gives a detinition of elasto-relaxational sirain
rale ay

£ gy )= 2 ;.F— (6}

Using Egs. (4, 5 and §), it is obtained m [10]

E*:’:P{T"}I o a1 o
gl 'Fp M

e ByE (7)- 5,8, (17}
BT e 3 -
T “:T 1] J
S i
where = II'””, e L and T i @ relaxation
LTS K+K,

lime- it is the lime nocessary fl:lr a group of moiscules 1o
Pass from s prven equilibrem state to another one, Gurevich
genciaticed Maxwell's “time of relaxation™. Accordmg
o him, it depends on the material $iructere prroperties,
microstructure state, lemperature and waction applied m
the hody

]" = L Tyex g

dooaE )
J-:EE? Tx.' {5
Here ¢ is 2 structural constant, depending on the
IIETOSTUCTIre stite properies; 1, is the (ime for particle
Jump of some squilibrivm state to another; ky - Roltanan’s
constant; & - the absolute temperaturs; [ - the activa-
RO eneTEy, nocessary for overcoming of the potential
harrier at transition from some state ta anafher;
Ve[,V where ¥ is the volume of ane molscule
and V., 15 the maximum volume of molecule group that
Jurmpes from some state to another. The Grerevich™s povisd of
view iz that T, is a function of a; and Eq, (7) is
non-linear. However, Gurevich has not determined the
relation T.F.{cr..ll. which demiands zecounting for the
microstrucre stile change. As o result, his model af (his
stage 15 a linear physical equation. Gurevich assurnes that
nol only one relaxational ime eceurs m 2 solid, but that
there exists a spectrum of relaxations| times

ﬂ.ﬂv Mo {]‘"]Iﬂ-?"
it 'fﬂ E T (2

The GMG constilutive equation iz obtained in [10] Using
Egs. (T) and {9}

s P
£y = E +x N,t‘r_[.—u[?'—-"—+i_zuéﬂ B ]

o, awy )
= 1] — e — i §
L l'l[-e'-.!'.t l._ﬂ_l_:,'.# EA"‘_.. (1o
whers v is Poisson coctficient
F i Ky
N M = — =
B Lk i (11)
[P Bk
T H s
Brmm it e oydid £
P ?}RJ'I'.D_R £ 5
g
B g L. o
Tow = s f L
! ?T"'R |||u :I';”iil P'Iu
t . gt ogsly gt 5 ]
K= fu "% f# TP Grr En:; rf. + EL(E) In'
;.F:‘ a J

[E_ r‘;,;j.fr + DY E

DB = {F __ﬁ: _EuLﬁ[tFl'l'{T;':II_HP{?;J'II .'I']-!'

Iy f=tq

D= [@f-ﬁf} "o,

4 =1y

The above Eqs. (10) and (117 present the generalived
Misxwell-Gurevich model obtained by Gurevich infi10]as
2 result of his concept for the molecular nature of (he
deformation process, The main advantage of this madel
15 that it gives a passibility for connection betwesn the
s0il microstruciure characieristics and its stress-strain
macto-behavious, The procedure for the determination of
the GMG model materinl constanis is piven in [10].

3. Two-Dimensional Wave Equation Using the
GMG Model

After substitating of the constitutive Fgs. (10, 11) in the
equation of mation

Gy = Pl {12)

WWW.SID.ir
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At'il%@a\?e(e)qua [c?n for a solid described by the GMG model
is obtained. In case of two-dimensional plane-strain state
the next wave equation is valid

gf {Z’é {(l+p)——+p.Au ]}

i=xy (13)
where
0= ~ Ou, auy_A 82u 82ux
_E”-l-ﬁyy— - +F$, axz
)
u]:r?uy_kazuy; :ié_
YU oa 8yt nTp

se-{iealof s so=[eptelnd
so-{rrelo) s s el

The authors’ aim is to obtain the Helmholtz equation
analogue of the two-dimensional GMG wave Eq. (13) in
the case of time-harmonic seismic waves. We look for the
solution of Eq. (13) in the form

u;=ue (14)

Here o is the frequency, u(x, y) is the wave amplitude.
Through substituting Eq. (14) in Eq. (13) and after some
transformations, the Helmholtz equation, analogous in the
case of the GMG model for soil, is obtained

2
* 2 a2 2 2
k—i -if{ 2 u§°+a tg’a +(a u§°+a u’;"}:
k, Ox xoy ox oy
_(k:)zu&x
* 2 2
k, ay

2 2 2
+8 Uyo | o uyo+'a Uyo | _
axdoy || o oy
14 / JSEE: Summer 2000, Vol. 2, No. 3

- (k) ug, (15)

The complex wave vectors k: and k; depend on the
physical module of the GMG model

k k-Hu,,kI— ;i=sorp
l

(16)

Here O, is the wave-damping coefficient; ¥ ,- the
shear or the longitudinal wave velocity. The shear and
longitudinal wave vectors as well as the damping
coefficients depend on the GMG model parameters.

The GMG model shows the linear dependence
o.(o) and weak dispersion dependence Vg(m)as it is at
the experimental results, see Figure (3). It is shown by the
results in [10], that the GMG model gives a good agree-
ment with the experimental results for different types of
the soil material.

o) A *k(&ﬂ

0.0075
0.4
0.0025 |-
0.2
o [rad/s]
L I ’
25 50 75

Figure 3. Dispersion curves a(w) and k(o) obtained by the
GMG model.

4. Formulation of the Problem

The nature of the ground motion during earthquakes can
be significantly affected by the local site effects, such as
layers. These local conditions can generate large amplifi-
cations and important spatial variations of the ground
shaking. The generalized scattered motion determines the
seismic load of structures in the geological region. The
spatial variation of this ground motion is important for the
analysis of structures with large dimensions such as
bridges and dams, for assessing seismic risk, and for
seismic design of important facilities.

The aim of this item is to formulate the steady state
seismic wave propagation problem in a non-elastic soil
multi-layered region using both the generalized GMG model
to describe the non-elastic soil behavior and BIEM as
a tool for solution of such a complex boundary-value
problem.

The propagation of elastic waves through layered
half-space is of considerable interest to engineers,
geologists and seismologists. Lacking any analytical
method to treat such problems, resort has been made to
the numerical techniques-FEM and BIEM. The first

systematic approach to multi-layered media maqugfiD e
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Ar Chb\.{&% ﬁanson [13]- Haskell [14] methods, Gilbert and

Baskus [15] introduced the propagator matrix method,
Fuchs [16] introduced the reflectivity method, Pao and
Gajewski [17] proposed the generalized ray method, Small
and Booker [18] solved a multi-layered system by the
flexibility matrix method.

Recently the BIEM has been applied to many seismic
wave propagation problems [19-21]. This is because the
radiation condition due to energy dissipation is automati-
cally satisfied and the discretization is performed only on
the boundary of the body. Extensive information on the
BIEM for dynamic problems can be found in review type
works such as the paper of Beskos [22], Dominguez and
Alarkon [23], Kobayashi [24] and the book by Manolis
and Beskos [25].

Most of the works are devoted to the multi-layered
regions with simple geometry of the boundary between
layers (usually parallel boundaries) and concern pure
elastic mechanical soil properties. To the authors opinion
there is a lack of studies involving both multi-layered
regions with complex geometry of the boundaries between
layers and with accounting for the non-elastic soil
behavior.

In this paper, the two-dimensional “in-plane” wave
propagation problem in the multi-layered geological
region, shown in Figure (4) is considered. The stress-
strain state is a plane strain state. The GMG model,
discussed above, describes the non-elastic soil media. The
equations governing the two-dimensional motion of the
non-elastic media are Eq. (15), where the wave vectors are
different for the different layers.

different periods of its exploitation - in 1951, see Figure (5)
and 1994, see Figure (6). There is a change of the situation
during the years when the exploitation of the salt ore
deposits has been done. The main goal is to show that the
changes in the soil region during all these years lead to the
change in its dynamic response, i.e. to the change in the
obtained theoretical seismograms.
The boundary conditions are, see Figures (5) and (6)

o, n; =0for (x,y) € FJ - free surface (17)

u®(x, y) = u®**V (x, y); cg‘)nﬁ.")z oéf‘*')n(ik"'l) for (x, ¥) on
the boundaries between the layers; k is the number of the

layer 2,

3000m

1000m 1000m

500m Q, 500m
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500m
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1000m
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3000m
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Figure 5. A half of the geometry of the geological region in 1951.
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Figure 4. The geometry (2D) of the multi-layered geological
region in 1951.

Due to the reason that the problem is axial-symmetric,
it will be taken the half of the geometry. Two real geologi-
cal situations for the multi-layered soil media with
existence of salt ore deposits (see the half of the geometry
in Figures (5) and (6)) are considered. These situations
concern one and the same geological region but in

,400m 3000m
ks F X
500m
QG
Q
: % ’ 1000m
500m 0
L N E
350m [q] Qs p
150mis| 0, _\R Q
200miwl @, RN ]
2000m
Q,
2500m LA
1000m
A B
Y
. 3400m

Figure 6. A half of the geometry of the geological regignini 998D ir
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ArahiveQh &) n=0 and u,(x,) =0 for (x))eJd,
uf(x,y)=ul; opn; = cu n; for (xy)e AB,BC,CE,EF,
where e = §2,, 2, and 2, forFigure(5)and e = 2,2,
and 2, for Figure (6).
Here u c,f are the displacement and the traction,
beyond the finite multi-layered region ABFJ, obtained by
the sum of both: a) the waves scattered by the boundary
ABFI; b) the waves as a result of the interference between
incident and reflected waves of the free boundary, see
[11]; u/,o;; are the displacement and the traction in
€2, 62, and €24 for Figure (5) and correspondingly in
£2,, 2, and (2, for Figure (6).

So, the governing Eq. (15) and the boundary condi-
tions Eq. (17) formulate the boundary-value problem for
the amplitude of the scattered wave field.

5. BIE Formulation of the Boundary-Value
Problem

We apply the direct BIEM for the considered boundary-
value problem and the next system of BIE is obtained

cyu; (ro)= jU,,(r 1y ®) p; (. 0)d

!?m

- P; (r.rp, ©)u; (ry, 0)d I
r (18)
Fo
where /7, is the boundary of the m-th soil layer (m =1,
2,3.4,5forFigure (5)andm=1,2,3,4, 5, 6,7 for Figure
(6)); r and 7, denote the position vectors of the field and
running point respectively; U, y and B; represent the
displacement and the traction fundamental solutions of
the system, see Appendix at the end of Part IT in the next
issue of JSEE; ¢; are constants and depend only on the
shape of the boundary at the position vector r; u and p
are unknown displacement and traction vectors.

The boundary integral Eq. (18) together with the
boundary conditions describe the boundary-value
problem to be solved by the direct BIEM.

The boundary discretization is made according to the
following rules: the length of the elements is ¢ <k /10,
where A, is the length of the SV-wave. The displacement
and traction at arbitrary points between the nodes are
expressed in terms of the nodal values u, pf; using finite
element shape functions

3 3
u(€) =X N €5, p€)= X NE)p;
/ ]
The following parabolic elements are used
N :g%‘)‘aNz :l_gza stﬁ;ll

An intrinsic co-ordinate & is designed for each triplet
of nodal points, taking values -1, 0, +1 at the first, middle

16 / JSEE: Summer 2000, Vol. 2, No. 3

and third nodes respectively. Let (x”,y”) be the field
point; (xf,y!) and (xf, ) are the first and third points

of the corresponding BE and r, Foa = = x{- ’"yl = yi-y?,

ra=x{—x",r,3=y{-y". The requu‘ed coordinates of
the Gaussian quadrature are used for quadratic BE-7 (&) =

i1+—§;—1(53— :'1) with Jacobean J=%.

next types of integrals in the BIEs - _f (é) N(E)JdE and

There are the

J- (ﬁ)Nk(ﬁ)Jd E. When the dlstance between the field

pcmt and the running point 7 is not zero, the integrals are
solved by the Gauss 32- point quadrature scheme.
According to the asymptotic behavior of the functions

£, U,j (see Appendix), near r = O the integrals of the
second type have no singularities but the integrals of the
first type have singularities leading to CPV integrals. The
kernels of the integrals of the first type have singularities
like OH—“&' for & -1, thatleads to the CPV integrals,
the kernels of the integrals of the second type have
singularities like O(In(/+E) for & — =1, which leads to
non-singular integrals. The analytical treatment of the
singular integrals concerns the next two cases with
respect to the position of the field point

1) The field point coincides with the middle point of
the BE.

Then the next integrals are used for the solution of the
integrals of the first and second type

1 . =
(f1.1) [R(E)dE, where R(E) is a rational function of &,

which denominator has no roots in [-1, 1]

1

(f1.2) [Ln|%-d|R(E)dE, where ae[-1,1]and B() isa
51
polynomial of degree /

(f1.3) Ig"(g dE,

where pe[-1,1]and B(£) isapolyno-

mial of degree /

The integrals of the type (f1.1) are regular and they are
calculated as integrals of rational functions. The integrals
of the type (f1.2) are with a weak singularity and thgy are
represented as a sum of the integrals of the type J' Ln&

0,(E)dE, where Q, =g E"+..+q, isa polyngmial.
Then it is clear that

j+1

I Ln€Q, (£)dE = leILnﬁQm(i)di Z

=l
[Lna _]+J

The integrals of the type (f1.3) are singular and lead to the
sum of integrals of the type

j-i-l

wwWw.SID.ir


www.SID.ir

Seismic Wave Propagation in a Multi-Layered Geological Region

Arclivg Qin@bPintegrals of the CPV type

b-g
—Lam_[——é— J'—é- Lnl b
540_]

i dE
JE=b
The solution of the integrals of the first type leads to the
solution of the integrals of the types (f1.1) and (f1.3), while
the integrals of the second type lead to the solution of the
integrals of the types (f1.1) and (f1.2).

i)  The field point coincides with an odd nodal point.

Then the next integrals are used for the solution of the
integrals of both types

1
(2.1) JREME, where R(E) is a rational function of £,
-
which denominator has no roots in [-1, 1]
I 1
(22) [Ln@E+1)RE)E, [La(l-E)BE)IE, where B(x)
-1 -1

is a polynomial of degree /

These two types integrals are solved as the integrals of
the types (f1.1) and (f1.2)

i
(f2.3) Ilt(é)da’ I?I_(?dé, where B(£),Q,(€) are poly-

nomials of degree /

s—I
41"23

is an odd nodal point used as a field point,
s, s-1 are the numbers of the both neighboring BE. The
odd points are used as allocation points for continuous
shape function, so it is fulfilled Q,(1)= A (1). We change
the variables and add the integrals over /' and I,
and the result is a CPV integral. Then the integral of the
type (£2.3) can be expressed by the integrals of the type
(f1.3)

fed

where

2 2
dn+IP1(n
0

St} = {Qz(n) nef-20]
F() nel0,2]

Note that the condition Q,(I)=F(-1)provides that S(n)
is continuous at the point 0.

(2.4) Ilﬁ)xa(é) & f?’(?x dg

where
© 0 Ee[-1qa]

Xal& H{I fe@l] for -1<a<1
() 1 £Ee[-14]

XolE _{O Eelb,1] for —1<b<l

The integrals of the type (f2.4) are regular and they are
sum of integrals of the type (f2.1). The solution of the
integrals of the first type leads to the solution of integrals
of the types (f2.1) and (f2.3), while the solution of the
integrals of the second type leads to the solution of
integrals of the types (f2.1) and (£2.2).

After the boundary discretization the system of
integral equations is written at the discrete points, which
are the nodal points of BE. An algebraic system according
to the unknowns of the mixed boundary-value preblem is
obtained after the boundary condition satisfaction and
solution of the singular and non-singular integrals.

6. Numerical Results

The physical properties of the geological region are given
in Tables (1) and (2). The damping coefficients are
o, =0.05 for £2,,02,,02, and a,=0.001 for the rest
layers; @, = 0.03 for £2,,£2,, 42, and @, =0.005 for the
rest layers. The relaxation times for all layers are taken
from [10]: T, = 0.2.10% and T}, = 100s. The incidence
wave angle accordiﬁg to axis Oy is 0", The geometrical
parameters of the regions are given in Table (3). The
theoretical seismograms of the horizontal %i and vertical
~2 displacements for soil column N1 at point (1000, 0.0)
are shown in Figures (7) and (8) in both elastic and
non-elastic cases. The theoretical seismograms of the

horizontal B and vertlcal
D

column N2 at point (1000, 0.0) ar(;: shown correspondingly
in Figures (9) and (10) in both elastic and non-elastic cases.
Here u, is the amplitude of the incident wave. It is seen
that the pure elastic case gives an unrealistic picture of the
physical processes since when the frequency increases,
the amplitude of the corresponding harmonics does not
decrease. In the case of the Gurevich model the results are
more realistic, since when the frequency increases the
amplitudes of the corresponding harmonics damp, i.e. the
real dynamic soil system acts as a low-frequency filter.
One can see that in the case of the geological situation,
shown in Figure (6), the amplitude-frequency characteris-
tics are rather different from those for the geological
situation, shown in Figure (5).

Y displacements for soil

7. Conclusion

In this paper the theoretical seismograms obtained for a

region with complex geometry and physics involve both

kinds of seismic waves dispersion:

< Dispersion, due to the non-elastic soil behavior that
is accounted for by the GMG model

% Dispersion, due to the wave geometrical scattering
that is accounted for by the solution of the bound-
ary-value problem by the direct boundary integral
equation method.

The experimental results for the Seis%mFD.il’
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Ardippersipn a5 well as the numerical results obtained for the
seismic wave propagation on the base of the boundary
integral equation method together with the GMG model
prove the validity and advisability for the use of this model
in seismic wave propagation problems. This model has

in itself a possibility for connection and transition
between the macro stress-strain processes and the
microstructure state of the soil material. One can see
that the change of the geological situation during the
years when the exploitation of the salt ore deposits leads

Table 1. Physical constants of the geological column N1.

Number of Material Density Lame Poisson Shear Wave Shear | Wave Long.
Range Lkg / maJ Constant Constant Module Velocity Velocity
]_N," sz LN / sz [m /5] [m /5]
2, Salt 22310° 0,783.10™ 0,33 0,4026.10' 1343,6 2668,7
f Salt 2,23.10° 0,8611.10" 0,33 0,4425.10! 1408,6 2798
Q, Salt 2,2.10° 0,9246.10'° 0,35 0,3974.10 1344 2798
O gt e 22.10° 0,75.10% 0,3 0,5.101 1507,55 2820,4
4 rock
Q. S”:;‘(’:E“d 26.100 | 0,2607.10" 03 0,175.10" | 2594,37 4847
Table 2. Physical constants of the geological column N2.
Number of Material Density Lame Poisson Shear Wave Shear | Wave Long.
Range |_kg / m3J Constant Constant Module Velocity Velocity
I_N/mﬂ I_N/m2J [m/s] [m/s]
£, Salt 2,23.10° 0,7808.10% 0,33 0,4026.10'° 1343,64 2668,85
0, Salt 2,21.10° 0,76625.10'" 0,33 0,3945.10'"° 1336,06 2652,79
25 Salt 223,50} 0,86112.10'" 0,33 0,4425.10'° 1408,65 2798,24
2, Salt 2,20.10° 0,8246.10' 0,33 0,4248.10" 1389,57 2758,62
£, Salt 1,68.10° 0,4232.10% 0,33 0,2186.10' 1140,69 2263,06
2, Salt 2:2.10? 0,9247.10'° 0,33 0,3974.10'" 1344 2795,69
£2 AU 2,2.10° 0,75.101 0,3 0,5.10 1507,55 2820,4
Rock
£ Surround 2,6.10° 0,2607.10" 03 0,175.101 259437 4847
Rock
LA u
g g
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Figure 7. Amplitude-frequency characteristic of the horizontal
component of the displacement X for the region in
Figure 5. %o
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Figure 8. Amplitude-frequency characteristic of the vertical
component of the displacement %L for the region in
Figure 6 in the elastic case. 4
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Figure 9a. Amplitude-frequency characteristic of the horizontal
component of the displacement %5- for the region in
Figure 6 in the elastic case. ’
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Figure 9b. Amplitude-frequency characteristic of the horizontal
component of the displacement %-Lfor the region in
Figure 6 in the non-elastic case. 3

“

500 >

M IR IS A
200 300 400

0
0 100

Figure 10. Amplitude-frequency characteriustic of the vertical
component of the displacement ;‘1— for the region in
Figure 6 in the elastic and non-elgstic cases.

to the change of the time-harmonic wave picture. The
amplitude-frequency characteristics of the surface
responses are computed for real geological situations and
different wave fields are obtained. These results show that
the changes in the soil region lead to the change in its
dynamic response, i.e. to the change in the obtained
theoretical amplitude-frequency characteristics. All this
assures us that the exploitation process leads to the
changes in the geological situation of the region, and
respectively to the changes of the soil response during
eventual earthquake. Part of these results is reported on
the Post-SMIRT 14 International Seminar, Pisa, Italy [12].
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Appendix

The function U,;(x,y,xﬂ,yo,m) is the fundamental
solution of the system (15) in Part I and the function
P Zj(x ¥, %0,Y,®) is the corresponding traction

Uy (x” - 57,37 - y7,0) = sy - xrer]

2np.

P::j(xp -2, yP —yq,m)=

{(_5’1{ %}(6"’8 +rkn) 2%’(’:_jnkﬁ21:kt.f%)}

U D) S, L o [é‘_lu_a_x_x
Zn{zar-r’fﬁn (Vs . or or r)hi™

where (x?,)?) and (+#,y7) are the field point and the
running point respectively

o N

ar .
a—nr:anx0+r,yqny0,s =-10

_ sr sr

()5 )
w=l[1< (ﬁj_l’i;( (ELJ o K(ﬁ}rlﬁ;{(ﬁ]
7] R VA - U | R e M- 2

The function K,,(z) =~ in()"HiP(éz) for z =32 ot
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* \as B K; or
(Py)" ~ T V2{|:SU+2{1+V‘3 rery |- BB

where

2 2
A==L |1 KL g 430 1+K52-
4mp VP 2 va

Archive of(§| D

z——— is represented with the modified Bessel

functlons of second type.

The asymptotic representations of the functions U, ;; and

*
Py forr —0 are

(Uf:f)m ~

1 %
—m 1+I/:g lnr+ln-2—~l-/;+——

2

.

v,
=—ﬁ;§|ﬂkm‘"ﬂfd.
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