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ABSTRACT: In order to control the responses of a building, different
control systems may be employed. To recognize and select a proper
control system, a designer has to analyze many cases. This paper inves-
tigates the behavior of some control systems with respect to changes in
different parameters of an AMD, and various combinations of masses
and control forces of two or three AMDs, and also different locations
of an AMD along the height of a building. In this study we used a
recently proposed control algorithm, named discrete instantaneous
optimal control method. A new discrete stable weighting matrix
strengthens this method.
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1. Introduction

In order to control a building, different control systems
may be employed. In a building, there are many
parameters that may be controlled (e.g. responses of
the floors, maximum and average required control
force, and responses of Active Mass Drivers, AMDs).
Therefore, a designer has to recognize the main
features of an efficient control system and contemplate
the effect of any change in the main parameters of a
control system on its final performance.

When an AMD is used for controlling the excessive
responses of a building, the values of mass, damping,
frequency, and its installation location have to be
specified based on the specifications of the building
and the characteristics of a design earthquake ground
motion that may occur in the future. If the control
system consists of two or more AMDs, selection of
the main parameters will be more difficult, because
the mass ratio and the control force ratio of the two or
three AMDs will also be added to the parameters.

Many researchers have been working on the
subject of the active structural control and have
already presented many recommendations in this
field [1-6]. They investigated different control
systems and compared their performances. In
general, in their works, the total mass of a control
system and/or the total required control force was
not fixed. These parameters strongly affect the
behavior and efficiency of a control system and their
changes cause the primary control system and the
changed one to behave completely different.

In this paper in order to compare efficiencies of
different cases, the total mass and the average
required control force (as a criterion for the value of
the required external energy) are given prescribed
values. During this research, the frequencies of the
AMDs are assumed to be close to the fundamental
frequency of the model building, and they are not
changed. In this paper by using a recently proposed
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algorithm, named Discrete Instantaneous Optimal
Control (DIOC) method [7, 8], it is tried to investigate
the behavior of a controlled building equipped by
Active Mass Drivers (AMDs) during an earthquake
ground motion.

In the following sections, a brief description of
the Discrete Instantaneous Optimal Control and the
procedure based on which a designer can find a
stable weighting matrix, is presented. Using this
algorithm, the behavior of an AMD with different
mass and damping values and also its various
locations along the height of a model building are
investigated. The behavior of two or three AMDs
with different mass ratios and/or control force
ratios is also examined and discussed in detail.

2. Discrete Instantaneous Optimal Control
Method

By employing the digital state-space equation and a
new definition of the time-dependant performance
index, DIOC method presents a powerful closed-
open loop control rule similar to that of the classical
optimal control method. A new Discrete Stable
Weighting Matrix (DSWM ) warrants the stability
of the DIOC method. A brief description of this
method is presented hereafter [7, 8].

The matrix equations of motion of a structure
subjected to a ground acceleration (t)x0&&  that is
controlled by AMDs can be idealized by an n-degree
of freedom linear system as follows:

)()()()()( 0 txMetDutxKtxCtxM           &&&&& +=++                 (1)

in which M, C, and K are n x n mass, damping, and
stiffness matrices, respectively, )(),( tx tx   &  and )(tx &&
are n-dimensional displacement, velocity, and
acceleration vectors, respectively, D is an n x r matrix
that specifies the locations of active controllers,
u(t) is an r-dimensional control force vector, e =
[-1 -1 . . .  -1]T is an n-dimensional vector which
defines the ground acceleration influence on
masses of the whole building. The first order digital
state-space equation of motion of such structural
system is defined as follows:
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A new definition for quadratic time-dependent
performance index J(t) in discrete form is presented
by authors [7, 8] as follows:
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2
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T
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T
1k uRuzQztJ += ++                              (5)

in which 2 n x 2 n positive semi-definite Q matrix and
r x r positive definite R matrix are weighting matrices
related to the state variables and the control force,
respectively. Minimizing J(t) subject to the constraint
of Eq. (2) at each time instant, the closed-open loop
control force vector is obtained as follows:
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This equation is equivalent to the first two terms
of the control force vector in the closed-open loop
method of the classical optimal control [9]. The
only difference is the appearance of the weighting
matrix Q in Eq.  (6)  instead of the Riccati matrix in
closed-open loop classical optimal method. The third
term in classical method, which is related to the
external load and obtained from a backward solution
of a matrix differential equation in time, is not appeared
in Eq. (6).

3. Stable Weighting Matrix

A procedure based on the Lyapunov direct method
[7-9] in discrete form is proposed. Consider a positive
semi-definite matrix Q, such that

0)(             zQzzV k
T

kk ≥=                                             (7)

which is a possible Lyapunov function. If the first
difference of Eq. (7) with respect to the state-space
vector results in a negative semi-definite matrix, the
Q matrix is a discrete stable weighting matrix
(DSWM). The above-mentioned first difference of
Eq. (7) is as follows:
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As a sufficient condition, it can be assumed
that the sum of the first three terms of the bracket
in Eq. (8)  is equal to a negative semi-definite matrix,
-I

0
 in which I

0
 is an arbitrary positive semi-definite

matrix. By this definition we get
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This is the discrete Riccati matrix equation. By
selecting a positive semi-definite matrix I

0
, Eq. (9) is

solved and the weighting matrix Q is obtained. Now,
if as a necessary condition, the considered values of
Eq.  (7) in all time steps are non-negative, and as a
sufficient condition, the bracket in  Eq.  (8) or its
simpler form (i.e. , [ -I0-(A d -Bd G)TQB d G] )  i s  a
negative semi-definite matrix, the computed
weighting matrix Q is a DSWM for the differential
equation of motion in Eq. (1).

4. Specifications of the Building and the Earth-
quake Record

4.1. Model Building

An eight-story planar shear-type building frame
with similar story properties is selected as the model
building. The structural properties of each story are
as follows: floor mass is 345.6tons, elastic stiffness is
3.404e5kN/m , and internal damping coefficient is
2937 tons/sec  that corresponds to a 2% viscous
damping of the first mode of the building without
control system [1].

4.2. Control System

Active Mass Drivers (AMDs) are used as an active
control system. The properties of AMDs are as follows:
the frequency of each driver mass is 98% of the
fundamental frequency of the building without
control [1, 7, 10], the damping of each driver mass
is 25tons/sec , such that their damping ratio are
approximately 7.3%. In order to compare per -
formances of different control systems, their
average required control forces and the total mass
of the AMDs are fixed to constant values, 72.68kN,
and 29.63tons, respectively. The average required
control force is determined as follows:

ττ d)(1
0
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f
     ∫=                                     (10)

where tf is the terminating time.

4.3. Discrete Stable Weighting Matrix

First, the designer has to assign a proper I
0
 matrix.

Then by solving Eq. (9) the Q matrix will be found.
If this matrix satisfies the necessary and sufficient
conditions of the Lyapunov stability method [7, 8],
presented in the previous section, the Q matrix
will be a DSWM. After extensive analysis, the following
matrix is selected for the I

0
 matrix:
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in which M is the mass matrix of the whole building
(building with control system), sub-matrix Ki,j in
matrix Kγ is a partition of the stiffness matrix of
the controlled building, and factors α , β, and γ are
three arbitrary scalar factors. These factors are
assigned such that the Lyapunov stability conditions
are satisfied and the average required control force
remains equal to the prescribed value.

4.4. Control Force Related Weighting Matrix

This matrix, R, is a diagonal matrix with a dimension
equal to the number of the AMDs, multiplied by a
constant factor equal to 0.001. For cases with one
driver mass this matrix is reduced to 1, and for more
AMDs with force ratios equal to 1, this matrix is a unit
matrix.

4.5. Earthquake Record

The N-S component of the 1940 El Centro earthquake
record is used as the input excitation. The time
increment is 0.02sec.

5. Behavior of the Building with Respect to
Changes in Different Parameters of One AMD

Achieving high efficiency of a control system is
mainly related to the employed control method,
selected weighting matrices and the parameters of
the applied control mechanism. The  considered
parameters of a control system with one AMD are
the frequency, damping, mass, and the installation
location of the driver mass. In this section, the
behavior of the sample building controlled by an
AMD  with respect to changes in its different
parameters is investigated. The investigated para-
meters include the value of mass and damping of
the driver mass, and its location along the height
of the building.
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5.1. Effects of Different Values of the Mass of One
AMD

In order to investigate the performance of the control
system with respect to the different values of the
mass of an AMD, seven cases are considered. The
values of the masses of these cases are as follows:
1% of the effective modal mass related to the
fundamental mode, (i.e., 85.63%), 0.5%, 1%, 1.5%,
2%, 12.5%, and finally 25% of the total mass of the
building. The last two cases refer to the weight of one
and two floors of the building, which are used as a
driver mass, respectively. After extensive analysis,
the proper values for the three factors in I

0
 matrix,

Eq. (11), are specified as follows. The values of α
for these cases are equal to 2.31, 7, 7, 7, 7, 8, and
4.19, respectively. The values of β are equal to 0.1,
0.21, 0.35, 0.54,  0.68, 1.0, and 0.5, respectively
and finally the values of γ are equal to 21, 21, 21, 41,
71, 5001, and 10001.  As mentioned earlier, these
factors are specified such that the conditions of
the Lyapunov stability method are satisfied as well as
the average required control forces are fixed to
72.68KN.

In Table (1), comparing the first row with the
other rows shows that, using AMD remarkably
decreases the responses of the building, but
increasing the mass value of the AMD does not
considerably make more decrease in the responses
of the floors. The heavier driver masses produce
more reduction in the responses of the AMD and
the maximum required control force. The decrease
in the acceleration responses of the floors in the
last two rows may be referred to the use of a larger
value for the factor γ [7].

Therefore in order to control tall buildings,
using heavy equipments of the building as AMDs
is strongly recommended. For instance for the
model building, using 12.5% of the total mass of

the building as a driver mass means that the 9th

floor acts as a driver mass for the eight floors
below. In such a case, the inter-story deformation of
the 8th floor with respect  to the 7th floor without
and with control system are 0.80 and 0.57cm,
respectively, while the relative displacement of the
driver mass (i.e., the 9th floor), with respect to the
8th floor is about 15cm.

The last row of Table (1) is only presented to
clarify the following point. Many researchers
believe that  when the mass value of a control system
increases to a value about 5% of the total mass of
the building, the control system may fail and the
controlled building may be unstable. In general, this
idea may be correct. But, the results of our
investigations show that this problem is only raised
from the selected weighting matrices. In other
words, a designer can always find a proper stable
weighting matrix for a heavy driver mass such that
it makes the control system very efficient without
inducing instability in the controlled building.

5.2. Effects of Different Values of the Damping of
One AMD

In order to investigate performance of the control
system with respect to the different values of the
damping ratio of an AMD, five cases are considered.
The selected values of the damping ratios include
zero and the values of the 1st to the 4th damping
ratios of the considered building without control, i.e.,
2.5%, 7.41%,  12.07%, and 16.32%. For these
analyses, other parameters are fixed to the before-
mentioned parameters of one AMD. The coefficients
of the I

0
 matrix in Eq. (11) are specified as follows:

the values of α  and γ for all cases are equal to 7, and
21, respectively, and the values of β for the considered
cases are equal to 0.478,  0.417, 0.429, 0.496, and
0.657.

The resulted responses of these considered cases
are summarized in Figures (1) and (2). The values
of the maximum required control forces of these
cases are 592.6, 608.8, 631.5, 661.8, and 669.9kN,
respectively. The results show that, by increasing
the value of the damping of an AMD, the efficiency
of the control system decreases, i.e., the responses of
the floors smoothly increase, and a larger maximum
control force is needed.

Therefore, choosing damping ratio of the AMD
between the 1st and the 2nd mode damping ratio of the
building causes the most significant reduction in the
responses of the building while the responses of the
driver mass are maximized. * Relative to the 8th floor responses.

Table 1. The resulting responses for different values of the
mass of  AMD.

Mass 
Value 8th floor   Driver Mass Responses  Max. 

Control 
Max. Base 

Shear 
(%) Displ. 

(cm) 
Accel. 
(m/sec2) 

Displ. * 
(m) 

Velocity* 
(m/sec) 

Accel. 
(m/sec2) 

Force 
(KN) 

Reduction 
(%) 

0.00 19.3 7.9 -- -- -- -- -- 
0.50 8.7 3.9 2.59 14.81 107.3 761.3 50.9 
0.85 8.4 4.0 1.71 9.77 62.6 646.0 52.9 
1.00 8.4 4.0 1.46 8.34 53.5 636.0 52.9 
1.50 8.3 4.0 0.98 5.61 36.1 624.2 53.5 
2.00 8.2 4.0 0.75 4.25 27.4 618.8 54.2 
12.5 8.2 3.5 0.15  0.83 4.7 579.6 56.1 
25.0 8.6 3.2 0.12  0.61 3.8 622.5 49.7 
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Figure 1. The displacements of the floors and driver mass for
different damping of the AMD.

Figure 2. The accelerations of the floors and driver mass for
different damping of the AMD.

Table 2. Comparison of the resulting responses due to varying
location of an AMD along the height of the controlled
building.

Figure 3. Comparison of the responses due to different
locations of one AMD.

5.3. Proper Location of One AMD

Analyses show that to achieve a better performance
for a control system, when there is not any limitation
for installation of AMD along the height of a building
the best location is the top of the building. Four cases
are presented such that in each case the AMD is
installed on one floor among 8th, 7th, 6th, and 5th floors
of the building, respectively. The coefficients of the
I

0
 matrix in Eq.  (11) are specified as follows. The

values of α  and γ for all these cases are equal to 7,
and 21, respectively, and the values of β are equal to
0.417, 0.389,  0.337, and 0.296, respectively. The
resulted responses of these cases are compared in
Table (2) and Figure (3).

Based on the results set forth in Table (2), by
moving the AMD to the lower floors, the responses
of the control system and the maximum required
control force remarkably increases, and maximum
reduction of the base shear of the building effectively
decreases. On the other hand, the results in
Figure (3)  show that, installing the AMD at the
lower floors may slightly affect the displacement

and acceleration responses of the floors. The
velocity responses of the floors are not changed.
Therefore, moving the location of an AMD system
toward the higher floors causes the control system to
be more efficient.

6. Behavior of the Building with respect to
Changes in Different Parameters of Few
AMDs

In this section, the behavior of the model building
controlled by two or three AMDs with respect to
changes in different parameters of AMDs is
investigated. The investigated parameters include;
various mass ratio and/or force ratio of two AMDs
installed at the top floor. It is noted that, the average
required control force is fixed to 72.68 KN, and the
total mass of the two or three AMDs are also fixed
to 29.63 ton.

By using two AMDs the dimensions of I
0
, Q and

R matrices are equal to 20,  20, and 2, respectively.
So, the factor γ  in Eq .  (11) and also, the force
related weighting matrix, i.e., R matrix, are changed
as follows:












γ→γ
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* Relative to the responses of the floor that is equipped by AMD.

Location of  
 

Driver Mass  Max.  
Control 

Max. Base 
Shear 

Driver Mass  Displ. * 
(m) 

Velocity* 
(m/sec) 

Accel. 
(m/sec2) 

Force  
(KN) 

Reduction 
(%) 

8 th floor 1.36 7.78 49.9 631.59 52.9 
7 th floor 1.40 8.00 50.0 643.45 51.5 
6 th floor 1.47 8.41 49.6 672.27 48.7 
5 th floor 1.59 9.00 52.1 705.04 44.2 
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where p and m are arbitrary values. For three AMDs
the matrices given in Eq.  (12) are defined as unit
matrices with a dimension equal to 3.

6.1. Different Combinations of Mass Values of the
AM Drivers

Sometimes, due to some practical limitations, the
designer is forced to use few AMDs instead of one
AMD. Here, some possible choices are investigated
that include two AMDs with three different mass
ratios equal to 1,  3 and 9, respectively, and three
AMDs with equal masses and three AMDs  with
masses equal to 1/2, 1/3 and 1/6 of the total mass. It
is noted that, the total mass values of all cases are
fixed to 29.63tons and the total average required
control forces are identical. In order to compare the
efficiency of the control systems computations were
done and the results of these cases and also one
AMD are summarized in Table (3). All AMDs are
installed on the top of the building considered.

Based on these results, dividing a total mass into
two or three parts does not significantly affect the
responses of the building. In some cases the maximum
responses of the control system may slightly increase.
But, it is clear that, more AMDs need a greater peak
in the total control force, and greater mass ratio
needs smaller maximum of the total control force.
This is because when more than one AMD is used the
control force for each AMD is smaller than the total
value. This certainly affects the performance of the
control system.

The frequency response of the acceleration of the
top floor of the building controlled by one AMD and
two AMDs with different mass ratios are shown in
Figure (4). One can observe that the frequency
responses for different mass ratios are completely
identical. By using only one AMD the first mode of
the building can be well controlled. But, this control
system has small effects on the other modes. Since,
the accelerations of the floors highly depend on the
higher modes, controlling them with one AMD is very
difficult. On the other hand, a control system with
two or more AMDs may affect more than one mode
of the building.

Therefore, in order to control the longitudinal
responses of buildings like the model building, by
using a control system with a specified total mass
and by tuning all frequencies of the AMDs to values
close to the fundamental frequency of the building,
some practical aspects are recommended which are
using a fewer number of Active Mass drivers if
possible, either using a greater mass ratio for two
AMDs, or using equal mass values for three AM
drivers.

Table 3. The responses of the entire building using few AMDs
installed on the top floor.

# Driver Mass
* Relative to the 8th floor responses
** Ratio of the largest value to the smallest value

Figure 4. The acceleration frequency response of the top floor using one AMD and two AMDs; (a) the 1st dominant frequency,
(b) the 2nd dominant frequency, and (c) the 3rd dominant frequency of the controlled building.

Case Mass  
 Displacement   Acceleration   Max. 

Total 
No. Ratio 8 th floor 

  (cm) 
2nd floor 

(cm) 
DM # 

(m) 
8th floor 
(m/sec2) 

2nd floor 
(m/sec2) 

DM # 

(m/sec2) 
Force 
(kN) 

1 0 8.4 3.0 1.36* 4.0 2.8 49.9 631 
         

2 1 8.7 3.1 1.31* 4.0 2.7 51.0 675 
3 3 8.7 3.1 1.40* 3.9 2.7 52.1 667 
4 9 8.7 3.1 1.40* 4.0 2.7 50.0 629 
         

5 1** 9.0 3.2 1.26* 3.8 2.5 52.6 761 
6 3** 9.0 3.2 1.40* 3.9 2.5 52.7 744 
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6.2. Different Combinations of the Control Force
Ratios of the Two AMDs

The values of the coefficients p and m defined in
Eq.  (12) were selected to be equal to 1 before.
But, selecting larger values for these coefficients
causes the required control force of the greater
mass to be larger than the required control force of
the smaller one. Extensive analysis shows that, the
behavior of a control system using two AMDs with
the same frequencies tuned to values close to the
fundamental frequency of the building follows
almost a regular trend with respect to changes in
control force ratio of the two mass drivers.

In order to confirm this regularity, three
combinations for the mass values of the two AMDs
are evaluated. The factors γ and β are fixed to 21 and
0.5, respectively. The two coefficients p and m that
will be noted hereafter by a coupled value (p, m) are
changed. The coefficient α  is selected such that the
total average required control forces of all cases be
equal to the specified value. Three coupled values,
which are (1,1) , (1,9)  and (9,9) , for each mass
ratio are examined. The results of analysis are
presented in Table (4).

The results given in Table (4) show that:
(a) using different control force ratios does not

considerably affect the responses of the floors,
(b) using smaller control force ratios for a fixed mass

ratio causes the maximum responses of the
control system to decrease, but maximum of the
total required control force to increase, and

(c) using greater mass ratios for an almost fixed
control force ratio causes the maximum res-
ponses of the control system and the maximum
of the required total control force to decrease
(e.g., the 3rd, 5th, and 7th rows in Table (4)).

* Relative to the 8th floor responses                   # Driver Mass

Table 4. The responses of the building using two AMDs with the frequencies tuned close to the fundamental frequency of the
building.

7. Conclusions

Behavior of different Active Mass Driver Systems
(AMDs) with respect to various changes in their
parameters was investigated and their efficiencies
were compared, in detail. All of analyses are carried
out by using a recently proposed control algorithm
named “DIOC”. A new discrete stable weighting
matrix formed based on the Lyapunov direct method,
strengthens this method. Different parameters of one
AMD including mass and damping values and its
location along the height of a sample building are
investigated. It is shown that, although an AMD
with mass value more than 0.85% of the total mass
of the building, cannot make more reduction in the
responses of the floors, but a heavy AMD, even
25% of the total mass of the building, can effectively
reduce the responses of the control system. It can
also lessen the maximum required control force
without inducing instability in the controlled building.
This is because of using a proper stable weighting
matrix. Installing an AMD above the mid height of
the building can properly reduce the responses of
the floors. But, installation in the higher floors
produces smaller responses of the AMD and the
maximum required control force.

An extensive analysis shows that, dividing a total
mass into two or three portions does not produce
considerable effects on the responses of the building.
But, more AMDs need greater maximum of the total
control force, and greater mass ratio needs smaller
maximum of the total control force. The results of the
frequency response of the acceleration of the top
floor show that, by using only one AMD the first
mode of the building can be well controlled. But, this
control system has small effects on the other

Coupled Mass  Displacement   Acceleration  Control Max. Total 
Value Ratio 8th floor 

(cm) 
2nd floor 

(cm) 
DM # 

(m) 
8 th floor 
(m/sec2) 

2nd floor 
(m/sec2) 

DM # 

(m/sec2) 
Force 
Ratio 

Control 
Force (kN) 

(1,1) 1 8.7 3.1 1.31* 4.0 2.7 51.0 1.0 675 
(1,9) 1 8.7 3.1 1.66* 3.9 2.6 73.9 2.5 670 
(9,9) 1 8.9 3.2 2.20* 3.9 2.5 93.5 7.7 762 

          
(1,1) 3 8.7 3.1 1.40* 3.9 2.7 52.1 3.0 667 
(1,9) 3 8.5 3.0 1.53* 4.0 2.7 58.6 6.9 633 
(9,9) 3 8.7 3.1 1.71* 4.0 2.7 64.2 20.9 646 

          
(1,1) 9 8.7 3.1 1.40* 4.0 2.7 50.0 8.5 629 
(1,9) 9 8.5 3.0 1.44* 4.0 2.8 53.1 21.0 628 
(9,9) 9 8.6 3.1 1.48* 4.0 2.8 54.4 43.2 624 
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modes, while a control system with two or more AMDs
can affect more than one mode of the building.
Therefore, controlling the longitudinal responses of
buildings like the model building using a control
system with a specified total mass can be undertaken
by: 1)  using Smaller number of AMDs if possible,
2) tunning their frequencies close to the fundamental
frequency of the building, 3) using a greater mass
ratio for two AMDs, 4) using equal mass values for
three AM drivers.

Finally,  various control force ratios for two
AMDs are investigated. The results show that, using
different control force ratios does not considerably
affect the responses of the floors, and using greater
mass ratio for an almost fixed control force ratio
causes the maximum responses of the control system
and the maximum of the total required control force
to decrease.
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