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Introduction

Meningiomas are the most common non-glial neoplasm of 
the central nervous system (CNS) and account for one 

1,2 They are extra-axial tu-
mors that originate from the arachnoid cap cells of the meninges. 
These tumors are more common in women and uncommon in 
patients before the age of 40; their incidence in younger patients 

3,4 cat-
egorizes them as WHO I: meningioma (about 88–95%), WHO 
II: atypical meningioma (atypical, clear cell, chordoid- about 
5–6%), WHO III: malignant meningioma (rhabdoid, anaplastic, 

-
comatous degeneration that is extremely rare.4 Malignant tumors 
are rare and about 90% all meningiomas are benign.5 The etiolo-
gies of meningiomas are not fully clear.6 Familial cases are much 
lower in frequency than sporadic ones. In the past, cases with ex-
posure to radiation suffered from brain injury7, especially those 
who had frequent dental X-rays as the X-ray dose used to be 
higher than now.8 Studies of cell phones have found no relation-
ship between cell phone use and incidence of meningiomas.5,9

Although the Magnetic Resonance (MR) spectroscopy generally 
is not required for perfect diagnosis, it can be helpful for recogniz-
ing meningiomas from mimics i.e. increased alanine, glutamine / 

-
tion in N-acetyl aspartate indicates non-neuronal origin. On MR 
perfusion, there is good correlation between volume transfer con-

stant (k-trans) and histological grade.10,11

Mutations in NF-2 gene have been detected in 60% of meningio-
mas.12 The NF2 gene, a tumor suppressor gene located at 22q12.2, 
is the main candidate for the genesis of meningiomas. Expres-
sion of other tumor suppressor genes, including THBS1, TIMP-3, 
p16 (INK4a), MGMT, p73, ER, GSTP1, RB1 and p14 (ARF), is 
inhibited in meningiomas.13,14 Other possible genes/loci include 
AKT1, MN1,15 PTEN,16 SMO and an unknown gene at 1p13.17,18 
Sadetzki et al. showed that variations in Ki-RAS and ERCC2 are 
associated with an approximately 2-fold increased risk of menin-
gioma.19

Apart from genetic aberrations, alterations in protein expression 
have been reported. Saydam et al. (2011) compared meningioma 
cells proteome to human primary arachnoidal cells to discover 
novel protein biomarkers for diagnostic and/or prognostic pur-

maintenances (MCM) family (MCM2, MCM3, MCM4, MCM5, 
MCM6, and MCM7) in meningiomas.20 The role of proteolytic 
enzymes, such as serine proteases and metalloproteinases, in tu-
mor invasion and metastasis are previously indicated in several 
types of cancer.21

Although most meningiomas are slow growing benign tumors, 
huge meningiomas are believed to entail surgical risks. However, 
if a meningioma is diagnosed in early stages, it can be treated 
non-surgically. Since homogenous genotype of meningiomas is 
the characteristic of benign rather than malignant brain tumors, 
it makes it relatively easy to discover candidate biomarkers for 

useful diagnostic biomarkers of meningiomas as well as their drug 
targets. In addition, tumor therapy is based on information about 
molecular alterations; therefore, we searched different genes ex-

-
teins with altered expression in meningiomas in comparison to 

changes in 23 studies20–43 based on genomic and proteomic studies 
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in meningioma patients published since 1993 were investigated 
and analyzed.

Materials and Methods

Data Collection
During the last decade, there has been an exponential increase 

in the number of studies analyzing brain cancer tissue; so in this 
study, data were extracted from a number of these investigations. 
84 papers were reviewed and the papers containing duplicated 

proteins and genes were eliminated. Finally, 384 non-redundant 
genes and/or proteins were extracted from 23 papers. All genes 

regulated, down-regulated) in meningioma tissues compared to 
normal tissues or cells (brain and arachnoid cap cells of the me-
ninges) were selected. A minimal fold change of 1.4 (most papers 
considered ±2 folds but a few used ±1.4) was considered for com-
parison of genes and proteins between the two groups. Proteins 

techniques; for instance, Saydam et al. isolated 281 proteins with 

Cluster Score (Density*#Nodes) Nodes Edges Seed Degree

1 6.419 44 139 P40938 7
2 6 7 19 J3KPM5 2
3 5.2 21 52 P61024 6
4 4.444 10 23 — —
5 4.308 27 59 B2RBZ4 2
6 4.159 89 184 P23193 73
7 4 4 6 — —
8 4 8 15 CHEBI:17283 22
9 4 6 10 Q9Z0E3 2
10 3.957 48 93 O94979 54
11 3.333 4 5 — —
12 3.333 4 5 Q5QNR8 2
13 3.333 4 5 Q6NW02 29
14 3.167 13 20 Q8TB30 4
15 3 3 3 — —
16 3 7 10 — —
17 3 3 4 A1L374 2
18 3 3 3 O76075 2
19 3 3 5 DIP-6092N 2
20 3 3 4 P30304 2
21 3 3 4 — —
22 2.857 8 11 — —
23 2.833 13 22 Q05397 7
24 2.833 13 18 — —
25 2.5 5 6 P09914 2
26 2 2 3 Q15667 2
27 2 2 3 — —

Table 1. The PPI subnetworks were clustered as highly connected regions in meningioma network by MCODE analysis.

Figure 1. PPI Network of meningioma based on cytoscape 3 software. Green ellipses represent hubs in which the left side is related 
to down-regulated proteins in meningioma compared to the normal and right side green ellipses indicating up-regulated proteins. Blue 
ellipses represent neighbor nodes. All edges represent physical interactions.
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altered expression levels from meningioma cell line and human 
primary arachnoidal cells by Gel-nanoLC-MS/MS.20 All genes 
and proteins were presented in supplementary Table 1.

UniProt accession numbers (http://www.uniprot.org), a public-
ly available web-based tool, was used to search for annotations 

proteins in order to carry out a retrospective meta-analysis of the 
functional annotations.

 Protein-Protein Interaction Analysis
Protein-Protein Interactions (PPIs) are the basic skeleton for 

self-organization and homeostasis of living organisms.44 In this 
study, information on human PPI networks from selected genes 
was obtained from databases, including the MPIDB, MolCon, 
MBInfo, I2D-IMEx, BIND, UniProt, Interoporc, STRING, DIP, 
IntAct, and MINT. The PPI network was visualized using the Cy-
toscape 3 software.45 We integrated the databases and networks 
and used Molecular COmplex DEtection (MCODE) to analyze 
the characteristics of the networks. The MCODE clusters a given 

46 
MCODE considers network as directed graphs and analysis is 
performed on directed network. Interactomes with a score greater 

-
tions. The second stage in MCOD algorithm recognizes seeds as a 
complex with the highest weighted vertex (forward and outward) 
the weight of which is above a given threshold.46

Gene ontology categories were analyzed to identify the func-
tion of each highly connected region that was generated by the 
MCODE. ClueGO v2.0.5, cytoscape plug-in tool, that visualizes 
the non-redundant biological terms for large clusters of genes in 
a functionally grouped network, was used to statistically evaluate 
groups of proteins with respect to the existing annotations of the 
Gene Ontology. The degree of functional enrichment for a given 
cluster was quantitatively assessed (P-value) using a hypergeo-
metric distribution implemented in the ClueGO tool.47

Result

Three hundred eighty four (384) genes with different gene ex-
pression in meningioma were distinguished via literature survey. 
Among these regulated genes, 176 were up-regulated or newly 
expressed and 208 were down-regulated or repressed. All data are 
presented in table S1 (supplementary). 

Results of PPI Analysis
-

pared between the meningioma pattern and the control) contain 
9860 nods and 11442 edges (Figure S1). Nods represent the 
proteins from our list and others that directly interact with them. 
Connections contain direct interaction partners and interconnec-
tions. It is necessary to mention that the edge represents physi-
cal or functional interaction between two proteins. In order to 
simplify the connection patterns, interactions for the nods with 
the greatest degrees (hubs) was selected. Cytoscape analysis re-
vealed a great number of close interconnections that can be seen 
in Figure 1. The hub nods included Fibronectin 1 (FN1), Cyclin-
dependent kinase 6 (CDK6), MmTRA1b, ubiquitin-conjugating 
enzyme E2E1 (UBE2E1), VCAM1, Poly[ADP-ribose] synthase 
1, c-Myc,  ISG60, CDK1,  RNF96, XRCC5, FER1L1, MCM3, 
MCM7, Spectrin, FWP007, FLC3A, GEC1, Cyclin, DBC1, 

ISG56, NEAS, MAP1LC3A, SNU114 homolog, BRR2 homo-
log, DNMT, ISG54, MCM2, CAD, DHC1, DXS423E, LRP130, 
BRG1-associated factor 170, LPC2D, MAP1ALC3 and MCM6. 

-
lated hubs and the right side corresponds to up-regulated hubs.

Further analysis of complex by MCODE revealed 27 subnet-
works for the network (see Table 1). The PPI subnetworks cor-
respond to the differently expressed genes made up of highly 
connected regions in meningioma pattern versus control samples. 
Four complexes were selected by comparing the complex with our 

The seed nodes of these complexes included Q5QNR8, Q9Z0E3, 
P30304, CHEBI:17283, Q15667, Q05397, P61024,  J3KPM5, 
DIP-6092N,  P09914, O76075, A1L374, B2RTS1, P23193, 
Q8TB30, O94979, P40938 and Q6NW02. The gene ontology 

and performed by ClueGO (results are depicted in Figure 3).

Discussion

Since proteins act as complex or collaborate in overlapping 
pathways, their deregulation results in disorders and diseases 
such as cancer.  Cancer uses pre-existing pathways in different 
ways or combines some components of these pathways in a new 
fashion. Molecular mapping of brain cancer is a useful tool for 
evaluating the pathways.48,49 In addition, gene clustering based on 
functions illustrates correlated expression patterns.50,51 Because of 
the importance and value of networks in system biology, quantita-
tive tools have been developed in recent years for analyzing the 
networks. Analyzing the network properties of gene-expression 
data might reveal the organizational pattern of gene expression in 
cancer, which might in turn help us to identify new potential drug 
targets; so, in this study, network is utilized to extract meningioma 

-
markers is analyzed by the appropriate software. 

As represented in Figure 1, meningioma protein interaction net-
work is made up of numerous nodes with the most degrees as 
hubs. FN1 is the hub with the most degrees but its altered expres-

-
ous cell types such as squamous cell carcinomas, neuroblastomas, 
proliferating hematopoietic progenitor cells, and beta-cells of 
pancreatic islets of Langerhans.52

CDK6 is the next hub protein with its expression suppressed 
-

pressed in some leukemias and malignancies including sarcoma, 
glioma, breast tumors, lymphoma and melanoma,53 its expression 
pattern in meningioma might prove a good diagnosis biomarker 
in combination with other markers. 

Another over-expressed hub is UBE2E1. It plays a role in the 
Ubl conjugation pathway and different pathways of Reactome 
databases such as cell cycle, cellular responses to stress, mitotic 
M-M/G1 phases, Cdc20:Phospho-APC/C mediated degradation 
of Cyclin A, immune System and APC-Cdc20 mediated degrada-
tion of Nek2A.54 Tracing this protein in the peripheral blood cells 
could indicate disrupted homeostasis. 

DNA repair protein XRCC5 is the next hub that is up-regulated 
in meningioma cells.  It has a role in chromosome translocation. 
The XRCC5/6 dimerization apparently leads to stabilizing broken 
DNA ends and bringing them together. The complex of XRCC5/6 
dimer and APEX1 constitutes a negative regulator of transcrip-
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Figure 2. The PPI subnetworks based on the differently expressed genes made up of highly connected regions in meningioma pattern versus control 
sample. Clusters 6, 10, 20 and 25, whose seed genes are included in our list, are selected and represented as a, b, c and d, respectively. Yellow ellipses 
represent seed nodes. Pink ellipses represent neighbor nodes. All edges represent directed interactions that MCODE has not considered in result of 
complexes.
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Figure 3. The functional groups of gene ontology analysis from selected PPI subnetworks of the meningioma network performed by ClueGO. Clusters 
6, 10, 20 and 25 are represented as a, b, c and d, respectively. 
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tion.55 Its expression increases during promyelocyte differentia-
tion56; so in meningioma, it may promote repair mechanisms in 
brain.

From the minichromosome maintenance complex family, 
MCM2 and MCM7 are two hubs over-expressed in meningioma. 
They are replicative helicases essential for DNA replication initia-
tion and elongation in eukaryotic cells.20,57

Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-
3 or ISG60) is highly up-regulated in meningioma. IFN-induced 
antiviral protein acts as an inhibitor of cellular and viral processes, 
proliferation, signaling, cell migration and viral replication.58 In 
patients with systemic lupus erythematosus, IFIT-3 is expressed 

monocytes (at protein level).59

Protein complexes were determined by powerful network ana-
lyzers. One of the original methods for subnetwork detection in 
biological data is the MCODE algorithm.46 MCODE weights all 

-

or removing nodes based on a connectivity criterion. MCODE 
has been widely applied for detection of complexes in protein 
interaction networks, and is available as a default plugin for the 
cytoscape network visualization and analytical tool.60 Many of 
densely connected regions contribute to known molecular com-
plexes and imply that large amounts of available knowledge are 
buried in large protein interaction networks. Further study of the 
complex through analyzing network with MCODE revealed 27 
sub-networks described in Table 1. By comparing the complex 

2 and analyzed them based on GO represented in Figure 3. Of 
seed genes participating in the pathogenesis pathways of menin-
gioma, previously P61024, O76075, Q05397, O94979, Q8TB30, 
Q6NW02, P23193 were determined as brain tissue proteins,61 
but only four of these seed genes, P30304, P09914, P23193, and 
O94979 are included in our gene list. P0991420 and P2319320 were 
up-regulated while the expression of P3030437 and O9497920 play 
a down-regulatory role in meningioma.

gene, P23193 (TCEA1), transcription elongation factor A1 is 
newly expressed in meningioma. It is also expressed in brain and 

transcription elongation. It is composed of a transcription regula-
tory complex formation of UBR5, CDK9, RNAP II, and TFIIS/
TCEA1 that can stimulate transcription of genes such as gamma 

62 The TCEA1-related family is involved in many 
essential cellular functions, especially positive regulation of the 
immune system process,   nucleotide and nucleic acid metabolic 
process, regulation of transcription, nitrogen compound meta-
bolic process, multicellular organismal development, metabolic 
process, biosynthetic process, regulation of gene expression, reg-
ulation of macromolecule biosynthetic process, hematopoi-
esis, myeloid cell differentiation, cell differentiation, erythrocyte 
differentiation, multicellular organismal process, developmental 
process, RNA biosynthetic process, erythrocyte homeostasis, and 
cellular nitrogen compound metabolic process. Up-regulated 
TCEA1 in meningioma has positive regulation in RBC homeo-
stasis to eliminate erythrocytes in tissue because meningiomas 
are highly vascularized (before demonstrated increased expres-
sion of vascular endothelial growth factor (VEGF) in meningioma 
tumor).63 Increased VEGF expression and increased expression 

of vascular permeability factor are correlated with increased mi-
crovessel density and microcystic morphology of meningiomas.64 

O94979 (SEC31A), which was down-regulated in meningioma, 
is expressed in a number of tissues such as blood, brain, epithe-
lium, pancreas, placenta, PNS, spleen, testis and uterine endothe-
lium.61 This protein is a component of the coat protein complex 
II (COPII) which promotes the formation of transport vesicles of 
ER. The physical deformation of the ER membrane into vesicles 
and selection of cargo molecules are the main functions of coat.65 
The PPI analysis (Figures 2, 3) explained SEC31A in the sub-
network b (cluster 10) as the SEC31A related family is involved 
in many functional classes such as antigen processing and pre-
sentation of exogenous peptide antigen via MHC class I, TAP-
independent, COPII vesicle coat, ER to Golgi transport vesicle 
membrane. Therefore, in meningioma, these processes are down-
regulated. 

The next subnetwork with P30304 (CDC25A) as seed gene op-
erates as a dosage-dependent inducer of mitotic progression. It 
is a tyrosine protein phosphatase that directly dephosphorylates 
CDK1 and stimulates its kinase activity. It also dephosphorylates 
in vitro the complex of CDK2 and cyclin E.66 Victor Martinez-

-
ma when compared to normal.20 Decreasing CDC25A expression 
might exert an up-regulation effect on production of other cell 
cycle proteins to promote meningioma. The PPI analysis (Figures 
2 and 3) showed that in the subnetwork c (cluster 20), the P30304 
related family (P51965 and O00762) is involved only in mitotic 
spindle checkpoint. Therefore, in meningioma, the regulation of 
mitotic spindle checkpoint protein in the cell cycle is down-reg-
ulated. 

The last seed gene is P09914 (IFIT1 or ISG56), interferon-in-
duced protein with tetratricopeptide repeats 1 that was up-regu-
lated in meningioma pathogenesis. The PPI analysis (Figures 2 
and 3) revealed as the subnetwork d (cluster 25), the IFIT1 related 
family is only involved in cellular response to exogenous dsRNA, 
thereby acting as a sensor of viral single-stranded RNAs and pre-
venting expression of viral messenger RNAs. It exhibits antiviral 
activity against several viruses including human papilloma and 
hepatitis C viruses.67,68

of the hub proteins; so, this protein might be a putative biomarker. 
-

ways within meningioma, examples of which include the RAF-
1-MEK-1-MAPK/ERK pathway,69–71 and the P13K-Akt/protein 
kinase BP7056 pathway, loss of alkaline phosphatase activity,70–72 
and expression of minichromosome maintenance-2 protein.20 
Recently, Okay Saydam et al. investigated novel potential tumor 
markers for meningiomas and found that meningioma pathogen-
esis is associated with various biological functions such as DNA 
replication, recombination, cell cycle, and apoptosis.20 Our major 

-
tween the meningioma pattern and normal one, are composed of 
positive regulation in RBC homeostasis to eliminate erythrocytes 
in brain, dysregulation of transport from ER to Golgi and anti-
gen processing and presentation of exogenous peptide antigen via 
MHC class I, disrupted regulation of mitotic spindle checkpoint 

-
nation of over-expression of TCEA1, UBE2E1, XRCC5, IFIT1, 
IFIT-3, MCM2 and MCM7 and under-expression of CDC25A, 
SEC31A and CDK6 can serve as a diagnostic biomarker panel 
for meningiomas. To unravel the possible role(s) of these proteins 
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in meningioma tumorigenesis, further investigations are needed. 
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