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Abstract
Randomized clinical trials are considered the ideal source for generation of robust evidence for clinical and public health decision 
making. Estimation of treatment effect in observational studies is always subject to varying degrees of bias due to lack of random 
allocation, blindness, precise definition of intervention, as well as the existence of potential unknown and unmeasured confounding 
variables. Unlike other conventional methods, instrumental variable analysis (IVA), as a method for controlling confounding bias 
in non-randomized studies, attempts to estimate the treatment effect with the least bias even without knowing and measuring the 
potential confounders in the causal pathway. In this paper, after understanding the main concepts of this approach, it has been 
attempted to provide a method for analyzing and reporting the IVA for clinical researchers through a simplified example. The data 
used in this paper is derived from the clinical data of the follow-up of multiple sclerosis (MS) patients treated with two class of 
interferon.
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Introduction
Practitioners and patients are always looking for the 
most effective treatment among different alternatives.1 
Although the randomized clinical trials provide robust 
evidence for decision making, a head-to-head comparison 
of  treatments is not feasible due to resource constraints, 
timeliness, competitive considerations of  manufacturing 
companies, regulatory affairs, market forces, and patients’ 
preferences.2 Moreover, rare side effects of  medications 
and long-term effects of  treatments require a much 
longer follow-up than the duration of  clinical trials.3

In the real world, health systems are bound to use 
administrative data for timely decision-making, while the 
data are mostly collected with non-research objectives 
and exposed to different types of  bias.4 Comparative 
effectiveness research (CER) aimed at achieving a better 
clinical decision,4,5 performed through a variety of  ways 
such as restriction, matching,6 stratification, regression 
models, propensity score method including inverse 
probability of  treatment weighting,7–9 standardization,10 
and g-estimation11,12 try to control various confounding 

sources. In all the aforementioned, potential confounding 
factors should be well known and measured. However, 
with all these attempts, the residual bias and unmeasured 
or unknown confounders’ effects are not fully 
overcome.13,14 This happens when we know that lack of 
the unmeasured confounder effect on causal assessment 
is an essential assumption in conventional statistical 
methods.

To address the problem of  unknown and unmeasured 
confounders in non-randomized studies, instrumental 
variable (IV) analysis has been introduced as an unbiased 
estimation of  treatment effect (even in the presence 
of  unmeasured confounders).3 Given the increasing 
use of  this method in biomedical research, this paper 
attempts to provide the readers with the most important 
prerequisites to achieve this goal in a simple manner 
using a real example.

Instrumental Variable Analysis 
Instrumental variable analysis (IVA) is a method for 
controlling the effect of  unmeasured confounders in 
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non-randomized studies. This method begins by finding 
a variable that only influences the outcome through 
the treatment  pathway that is independent of  the 
confounding factors. Then, this variable is used to estimate 
the changes of  treatment effect, without being affected 
by the confounding effects. Finally, the causal effect of 
treatment is estimated with variances independent of  the 
confounding effect. In fact, this method tries to achieve 
a low bias estimation of  treatment effect on the clinical 
outcome by converting the observational data into a 
randomized clinical trial.13–15

An IV has 3 main attributes (Figure 1). The first is 
the relationship between the instrument (Z) and the 
treatment X (relevance) that determines which people 
receive the treatment. As in the clinical trial, the random 
allocation process assigns the participants to different 
treatment groups. The second feature, or the effective 
random assignment (ERA), states that the instrument 
is independent of  the known or unknown confounding 
variables (U). As in an ideal randomization, individuals are 
assigned to therapeutic groups, independently, without 
considering known or unknown confounders. The third 
feature, or exclusion restriction (ER), states that the 
instrument has no effect on the treatment outcome (Y) 
from any other pathway, except the allocated treatment 
one (X). Since it is not always possible to find such a 
variable, the conditional IV (Z*) (i.e., the variable that 
can play the role of  an IV through controlling the other 
known variables) is mostly used.14–16

1- Step One: Selection of  the Instrumental Variable
Before deciding to use an IVA, it is necessary to make 
sure whether the impact of  the set of  unmeasured 
confounders on the outcome is important enough to 
distort the estimation of  efficacy and clinical decision-
making. If  the unmeasured confounders are important, 
IVA can be a logical approach.15 Various IVs are used 
including randomized encouragement, calendar times, 
provider preferences, geographic distance, and insurance 
plan.17,18 Regardless of  the type of  IV, it is necessary to 
always check the appropriateness of  IV assumptions 
before the final analysis (Figure 1). The important 
assumptions of  an IVA are:

1.1. IV and Intervention Relationship (Relevance Assumption)
For IVA to control the effect of  potential confounders, 
a strong relationship is necessary between the IV and the 
intervention such that the IV can be a strong predictor 
of  intervention. The stronger the relationship, the 
more capability on the part of  the IVA to eliminate the 
confounding effect.3 To this end, the following methods 
are used simultaneously:

Figure 1. An Illustration of Instrumental Variable Analysis and Core 
Assumptions.

1.1.1. Calculation of  the complier proportion: This 
proportion is obtained by calculating the difference in 
the treatment assignment rate in different layers of  IV, 
and the larger complier proportion indicates the effective 
sample size in controlling the confounding effects in the 
IVA.
1.1.2. Calculation of  F-statistics (degree of  freedom=1) 
for the IV in a regression model in which the intervention 
variable is entered as the dependent and other covariates 
as independent variables (In fact, the inequality test of  α1 
with zero in Equation 1).
1.1.3. Partial R square in the regression model in which 
the intervention variable is entered as the dependent 
variable and the IV and other measured confounders as 
independent variables; this number actually represents 
the unexplained variance percentage by the covariance 
measured in the first step of  IVA that is expected to be 
explained by IV.14,15,18 

1.2. IV Independence of  Unmeasured Confounders (ERA 
Assumption)
Although this assumption cannot be tested statistically, 
the balanced distribution of  potential measured 
confounders in different layers of  the IV can greatly 
depict its correctness3,8; the same role is played by the 
table of  baseline characteristics among the comparison 
groups in a clinical trial. For this reason, a calculated 
standardized difference of  more than 0.2 in the 
comparative therapeutic groups and 0.2 multiplied by 
complier rate in the layers of  IV indicates the existence 
of  an imbalance.3 

1.3. Exclusion Restriction Assumption
This assumption implies the effect of  an IV on the 
outcome is only through the intervention. However, 
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during the treatment process, patients receive a variety of 
medicinal/non-medicinal recommendations from their 
physicians in addition to medication, which can directly 
or indirectly affect the patients’ outcomes (potential 
confounder). Investigating the relationship between an 
IV and such variables can somewhat help to ensure the 
ER assumption.3,15 

2. Step Two: Estimation of  the Treatment Effect
The IVA uses the linear structural equation modeling 
technique to examine the causal link, rather than the 
association. In this model, most of  the two-stage least 
square (2SLS) estimator measures the treatment efficacy 
in the form of  a risk difference. In the first stage, the 
intervention variable (X) is selected as the dependent 
variable of  the regression model, and the IV (Z or 
Z*) and the measured covariate sets are selected as 
independent variables (Figure 2). Simply put, the most 
important use of  this step is actually to calculate the 
predicted probability of  the allocation of  people into 
different treatment groups given by IV and the set of 
confounders.

In the second stage, the outcome variable (Y) is used as 
the dependent and the predicted value of  the treatment 
variable in terms of  the IV and selected covariates 
(obtained from the first stage) as independent variables. 
Therefore, the coefficient of  the treatment variable in the 
second model, IV estimator, is the estimate of  the causal 
effect of  the treatment.2,18

3. Step Three: Sensitivity Analysis
It is not always possible to find an ideal IV, and the extent 
of  the violation of  the mentioned assumptions should be 
obtained using a sensitivity analysis method.

3.1. Sensitivity Analysis for Violation of  the Effective Random 
Assignment assumption
Contrary to this assumption, consider that there is a 
set of  unknown confounders, the effects of  which 
we have not been able to control. Assume, without 
loss of  generality, this unmeasured confounder has a 
distribution with a mean of  zero and standard deviation 
of  1 (standardized distribution), and 1 standard deviation 
increase in hypothetical confounder resulted in δ change 
on the outcome. Also, the effect of  IV on this assumed 
confounder is called τ.

So, the sensitivity analysis will be affected by δ and τ 
as two tuning parameters. Now, if  expected changes in 
these two hypothetical parameters resulted in no clinically 
important change in estimated effect by the IV model 
(especially in terms of  direction), the results of  the IVA 
can be largely trusted.

Figure 2. Effect of Interferon Class on EDSS Change.

3.2. Sensitivity Analysis for Violation of  the Exclusion Restriction 
Assumption
It has already been stated that the effect of  the IV on 
the outcome is assumed to transfer only through the 
intervention. Now, imagine that practitioners with high 
potency preference (IV = 1), may measure Expanded 
Disability Status Scale (EDSS) better than those with low 
potency preference (IV = 0). Thus, the selected IV affects 
the outcome in a way other than the treatment (violation 
of  the ER assumption). To ensure non-violation, the λ 
parameter is defined the treatment effect modification 
or the difference in the size of  the effect in the layers 
of  IV. This parameter actually is the coefficient of  the 
interaction term between the treatment and the IV in the 
outcome model.3,15 

Case Study
In order to provide a practical example of  IVA use, data 
from patients with multiple sclerosis (MS) are provided 
in this section. These data are about prescribing low/high 
potency interferon beta-1a in patients with relapsing-
remitting multiple sclerosis (RRMS) from October 2011 
to October 2016 by 18 neurologists in Tehran.

As a chronic inflammatory neurodegenerative disease, 
MD requires lifelong treatment with immunosuppressants, 
immunomodulators, and monoclonal antibodies.19 
RRMS initially manifests itself  with a neurological attack, 
and often the patient completely recovers from the initial 
symptoms within a short time interval after the attack 
even though subclinical lesions may remain or even 
progress. In effective immunomodulatory treatment, 
which begins immediately after the onset of  the first 
symptoms, it is expected not only to delay the second 
demyelinating event but also to prevent permanent 
disability.20,21 As of  2018, 15 drugs have been approved 
by the U.S. FDA for modifying the course of  MS 
including 5 interferon beta,15 which are recommended 
as first-line therapy in RRMS. Although some head-to-
head comparison between low-dose and low-frequency 
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interferon beta-1a and subcutaneous high-dose and high-
frequency interferon beta-1a and interferon beta1b have 
revealed that high-dose and high-frequency interferon 
beta regimens have short-term benefits on the relapse 
rate and MRI activity, there are limitations in the design 
of  these studies and the long-term differences in efficacy 
are not clearly concluded.22

In drug therapy studies of  MS patients, various 
outcomes are measured. For simplicity and applicability 
of  the example, in this study, changes in EDSS was 
selected as the outcome variable. EDSS is a common 
criterion for assessing the incapacity in MS patients and 
is calculated by the physician based on examination of  8 
functional systems. It is used to classify the severity of 
MS, the rate of  disease improvement or progression, the 
rate of  disability, and evaluation of  treatment outcomes. 
The range of  changes in EDSS is zero (no disability) to 
10 (death).

In this study, the compared interventions included 
injection of  high potency drugs such as subcutaneous 
injection of  250 µg betaferon (interferon beta-1b) per day 
versus the treatment efficacy of  low potency drugs such 
as intramuscular injection of  30 µg Avonex per week and 
its impact on the EDSS was measured over a year.

Results
The clinical records of  290 patients with RRMS were 
investigated during the period of  October 2011 to October 
2016. From the total of  290 patients, 141 (48.62%) were 
in the low potency group and 149 (51.38%) were in the 
high potency group. The mean (SD) age of  the low 
potency and the high potency groups was 31.99 (8.45) 
and 33.92 (8.69) years, respectively. 115 subjects (82.14%) 
in the high potency group and 109 subjects (73.15%) in 
the high potency group were females (Table 1).

The results of  linear regression analysis without 
adjustment and following adjustment to baseline EDSS, 
duration of  disease, delay in diagnosis, relapse number 
showed that the difference in the treatment efficacy of 
the high potency group compared to the low potency 

group was 0.27 and 0.40, respectively (Table 2).

Step 1: Selection of  an Instrumental Variable
Various reasons, such as the physician’s clinical evaluation 
method, the patient’s financial condition, preferences, 
and insurance coverage are effective in prescribing a 
specific drug by physicians. These characteristics are 
often associated with clinical outcomes of  the patient and 
are often not measured or reported in clinical records. 
For this reason, the direct comparison of  the results 
of  different treatments leads to an incorrect estimation 
of  the efficacy because of  unmeasured confounders in 
the data. In such a situation, the IVA can help in correct 
estimation of  treatment efficacy.

In this study, physician’s preference was used as the 
IV. The preference-based variables class is often used 
in clinical settings.17,23,24 For this purpose, we ranked all 
patients according to date of  the first prescription. Then, 
the immediately previous prescription of  the physician 
was selected as the preferred physician’s variable at the 
next prescription. Therefore, the selected IV is a binary 
variable, and since the actual preference of  the physician 
(Z) is not directly measurable, the preferred variable has 
been chosen based on the previous prescription (Z *) 
(Figure 2).

By choosing this IV, there are actually 3 main 
assumptions; the prescription preference variable is 
associated with placing the patient in the low potency 
or high potency group (first assumption), no difference 
exists in the distribution of  patient characteristics in 
different layers of  the preferred prescription variable 
after adjusting to the measured confounding variables 
(second hypothesis), and the quality of  treatment among 
physicians with different preference is the same (third 
presumption).

Investigating the Relationship Between IV and Interference 
(Relevance Assumption)
To calculate the complier proportion, the difference in 
the percentage of  high potency recipients was calculated 

Table 1. Imbalance of Measured Potential Confounders Between Low Potency Versus High Potency Treatment

Measured Covariates
Treatment Group IV Preference

Low Potency High Potency P Value StD Low Potency High Potency P Value StD Bias

Female (%) 115 (82.14) 109 (73.15) 0.07 0.22 121 (80.67) 103 (74.10) 0.18 0.16 1.02

Age (SD) 31.99(8.45) 33.92(8.69) 0.06 0.22 32.51(8.52) 33.50 (8.70) 0.33 0.11 0.71

Cousin marriage (%) 19 (13.77) 33 (22.15) 0.07 0.22 28 (18.92) 24 (17.27) 0.72 0.04 0.27

Disease duration in month (SD) 61.70(57.53) 80.99(71.76) 0.01 0.30 69.64 (63.91) 73.97 (68.16) 0.58 0.07 0.31

Diagnosis delay in month (SD) 18.68(12.65) 19.15(39.16) 0.93 0.02 17.88(35.02) 20.75(40.45) 0.59 0.08 8.48

Relapse (median) 0.85 (1) 1.6 (1) 0.00 0.44 0.99 (1) 1.51 (1) 0.01 0.30 0.96

Baseline EDSS (SD) 1.59 (1.34) 2.43 (1.51) 0.00 0.58 1.89 (1.63) 2.17 (1.51) 0.12 0.19 0.46

Multifocal lesions (%) 46 (33.33) 62 (41.61) 0.15 0.18 56 (51.9) 52 (48.15) 0.94 0.01 0.63

Abbreviations: StD, standardized difference; SD, standard deviation; EDSS, Expanded Disability Status Scale.
Bias Ratio= ((AGE/IV=1)-(AGE/IV=0) / (GROUP=1/IV=1)-(GROUP=1/IV=0)) / ((AGE/GROUP=1)-(AGE/GROUP=0)).
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in layers of  IV groups (high potency preference group 
versus low potency preference group) and resulted in a 
proportion of  71.82%. The results of  the Durbin and 
Wu-Hausman tests (tests of  endogeneity, which examines 
the assumption of  variable exogeneity), indicated that 
the intervention variable actually has the conditions of 
an endogenous variable (P = 0.0432). Moreover, the 
F-statistic index calculated as 186.05 in the regression 
model (including the intervention variable as the 
dependent variable and other covariates as independent 
variables) showed a proper correlation (F > 10). The 
partial R square calculated in the model (percentage of 
unexplained variance by the measured confounders in 
the first stage of  IVA which is expected to be explained 
by IV) was 52%, which is expected to be controlled by 
the IV in the second stage.

Evaluation of  IV Independence From Unmeasured 
Confounders (Effective Random Assignment)
The distribution of  confounding variables in the layers 
of  IV greatly showed that the distribution of  these 

Table 2. Estimating the Effect of CD Versus AB on EDSS Change in RRMS

β SE 95% CI

Regression 1 0.27 0.10 0.07–0.47

Regression 2 0.28 0.11 0.07–0.49

Regression 3 0.39 0.11 0.18–0.60

Regression 4 0.26 0.10 0.05–0.46

Regression 5 0.42 0.11 0.20–0.63

Regression 6 0.40 0.12 0.18–0.62

IV regression 1 0.02 0.13 -0.24–0.29

IV regression 2 0.01 0.14 -0.26–0.29

IV regression 3 0.17 0.14 -0.11–0.46

IV regression 4 0.01 0.13 -0.25–0.28

IV regression 5 0.01 0.14 -0.26–0.28

IV regression 6 0.19 0.14 -0.10 - 0.48

Abbreviations: CI, confidence interval, SE, dtandard error.
Regression 1: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change
Regression 2: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change including relapse Number into a regression model 
Regression 3: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change including diagnosis delay into a regression model 
Regression 4: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change including duration of disease into a regression 
model 
Regression 5: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change including relapse Number and diagnosis delay 
into a regression model 
Regression 6: Standard regression approach which estimates the effect of CD 
versus AB on EDSS change including relapse Number, diagnosis delay, and 
duration of disease into a regression model 
IV Regression 1: 2SLS IV analysis not includes any covariates.
IV Regression 2: 2SLS IV analysis not including relapse Number as covariate.
IV Regression 3: 2SLS IV analysis not including diagnosis delay as covariate.
IV Regression 4: 2SLS IV analysis not including duration of disease as 
covariate.
IV Regression 5: 2SLS IV analysis not including relapse Number and diagnosis 
delay as covariates.
IV Regression 6: 2SLS IV analysis not including relapse Number, diagnosis 
delay, and duration of disease as covariates.

variables in the IV layers was homogeneous compared 
to the treatment group layers (endogenous variable) 
(Table 1) although this imbalance is still observed, for 
example, in the recurrence variable. Moreover, as shown 
in Table 1, the calculated bias ratio (bias value from the 
non-controlling effect of  X-factor in IVA compared to 
OLS approach) showed that in values less than one, the 
IV method is more optimal than the usual OLS method 
in the control of  bias.14 

Evaluation of  Exclusion Restriction Assumption
When an IV is associated with concomitant therapy, 
which affects the outcome, the ER assumption is violated. 
For this purpose, we explored patient treatment profiles 
completely and did not find any co-treatment among 
them. Based on our judgment, we are convinced the IV 
only influence the EDSS through its association with the 
treatment in this study and it satisfies the ER assumption.

Step 2: Analysis of  Instrumental Variable and Estimation 
of  Treatment Effect Difference
It is revealed that the EDSS change between the high 
potency treatment group compared to the low potency 
recipients was reduced from 0.40 (95% CI: 0.18-0.62) in 
OLS estimation to 0.19 (95% CI: -0.10-0.48) in the IVA.

Step 3: Sensitivity Analysis
Sensitivity analysis for ERA assumption
It is assumed there is an unknown confounder, such 
as “delay in the diagnosis; a significant measured 
confounder in the study”, that is not related to the 
measured confounders but is related to the IV (violation 
of  the ERA assumption). The standardized residual has 
been calculated in the regression model with “delay in 
the diagnosis” as the outcome and other confounders 
as the predictors. Then, the relationship between this 
hypothetical confounder with the outcome (δ) and with 
the IV (τ) was estimated -0.001 and 0.10, respectively 
(Table 3). 

The same process, assuming that there is a confounding 
variable such as the baseline EDSS, was repeated and the 
sensitivity parameters δ and τ were determined to be 
0.25 and 0.03, respectively. By changing the size of  the 
sensitivity parameters, changes in the estimated effect 
size were examined in the instrumental model.

Sensitivity Analysis for Assumption Exclusion Restriction
If  the IV (prescription preference) has a direct effect 
on EDSS change, then this assumption is violated. 
For example, a doctor who prefers the high potency 
drugs (IV = 1) simultaneously provides better accuracy 
and performance in treatment and therapeutic 
recommendations than physicians who prefer the low 
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potency drugs (IV=0). The sensitivity parameter that 
investigates this violation from the ER assumption is 
called λ, and in fact, quantifies the effect modification of 
treatment efficacy in different layers of  the IV.

For this purpose, if  the outcome variable is defined as 
Yi-λ (1-Zi), Xi is considered as the treatment variable, 
Ci as the measured confounder, and Zi as the IV in the 
model, 

Yi
z,x = α + βXi + ϒCi + λ(1-Zi) + εi 	 E(εi | Ci, Zi = 0)

Indeed, λ is the interaction coefficient between different 
treatment options and IV in the model. The sensitivity 
analysis showed the treatment effect estimation is robust 
in the instrumental model when λ value is changing from 
-0.20 to 0.10.

Discussion
IVA is recommended as a method for controlling the 
effect of  unmeasured confounding in observational 
studies. Although the most important advantage of 
this approach is its lack of  need for the “unmeasured 
confounders’ assumption” to accurately estimate the 
treatment effect or adverse effects, using this advantage 
requires a thorough basic evaluation of  the assumption 
and at the same time adopting a reasonable variance-bias 
tradeoff.3,15,18 

For practicality, an example of  a simple analytical 
framework was used in this study, and the IV was simply 
defined as a binary variable. Obviously, non-linear 
models, treatment effect heterogeneity or multiple IV 
methods need to consider more statistical and clinical 
concerns and the results of  this study cannot simply be 
generalized to the community of  patients.

The results of  the primary analysis indicated that 
the improvement in disability in the high potency drug 
recipients was significantly higher than the low potency 
group by 0.27, and this difference increased to 0.4 after 

adjusting for the known confounders. This finding 
revealed the success of  the high potency treatment 
group in controlling the disability symptoms of  patients 
after one year in comparison to low potency recipients. 
However, in addition to the various known risk factors, 
the decision to prescribe can be affected by many factors 
such as inherent and unknown prognostic features of 
patients or physician’s character.

As previously stated, the first step in IVA is to ensure 
its proper use according to the study conditions. It 
seems that in this example, the role of  unmeasured and 
unknown factors in the clinical outcomes of  patients (the 
disability level) is completely clear, and the use of  IVA 
can help to more accurately estimate the two treatment 
alternatives.17,23,24 The evaluation of  the first assumption 
(relevance assumption), that actually checks the strength 
of  association between IV and intervention, indicated 
that this relationship was sufficient (using complier 
proportion, endogeneity test, and F statistics). This means 
that the chosen IV, like a randomization process, was able 
to allocate the patients to the IV groups. It should be 
noted that the confounding variables can be controlled 
for the sake of  sufficient relationship of  the IV with the 
treatment variable. Table 2 depicts the distribution of  the 
measured confounding variables in various layers of  the 
IV. Although an imbalance in the distribution is still seen 
in a variable such as recurrence, by looking at the general 
distribution of  the confounders and at the homogeneity 
of  this distribution, one can be sure of  the other required 
assumption, i.e. the “effective random assignment.”

The bias ratio is calculated to ensure that the IV affects 
the outcome only through its effect on the intervention 
pathway. This ratio shows lack of  controlling the X 
confounder in the instrumental analysis in comparison 
to the OLS approach. The values of  less than one 
indicate the optimality of  the IV method compared to 
the usual OLS method.8 As shown in Table 1, except 
for the treatment delay, this fraction is in favor of  using 

Table 3. Estimating the Risk Differences Between High Potency and Low Potency for Different Values of The Sensitivity Parameters

Sensitivity Parameter Vector δ η β 95%CI for Risk Difference

I 0 0 0.19 -0.10 -0.48

II -0.001 0.10 0.01 -0.26 – 0.28

III -0.010 0.10 0.01 -0.26 – 0.29

IV -0.100 0.10 0.03 -0.24 – 0.30

V 0.001 0.10 0.01 -0.26 – 0.29

VI 0.100 0.10 0.00 -0.27 – 0.27

VII 0.300 0.20 0.09 -0.18 – 0.36

VIII 0.300 0.30 0.13 -0.14 – 0.40

IX 0.25 0.03 0.00 -0.27 – 0.27

X 0.50 0.03 -0.00 -0.27 – 0.26

XI 0.60 0.03 -0.01 -0.29 - 0.27

XII 0.70 0.10 -0.08 -0.36 – 0.20

XIII 0.80 0.20 -0.20 -0.48 – 0.09

δ: Effect of one SD increase in unmeasured confounder on mean of the EDSS change; η: Effect of the IV on unmeasured confounder; β: Risk difference estimate.
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the IVA in the causal estimation. Therefore, one can be 
sure of  achieving the IV independent of  the unmeasured 
confounder (ERA) assumption in this analysis.

The main objective of  this study was to compare the 
effectiveness of  high potency interferon versus low 
potency interferon injection on patients’ EDSS using 
IVA approach. Although in the estimation obtained from 
OLS in the linear regression model, the mean disability 
score decreased significantly by 0.4 in the high potency 
treatment group compared to the low potency group. The 
IVA showed that this improvement was 0.19 which was 
statistically non-significant (95% CI: -0.10-0.48). It seems 
that this reduction in the effect size can be attributed 
to the selection of  specific patients for prescription of 
highly potent medication (bias by indication). In fact, 
unmeasured confounding due to lack of  recognition of  all 
confounders by researchers and residual confounding due 
to lack of  complete control of  unmeasured confounding 
variables can justify this variation in estimation Thus, 
this study did not finally conclude the superiority of  the 
effect of  the high potency treatment group against the 
low potency group (Table 3).

Obviously, the IVA can never control all the changes 
caused by the confounding variables due to lack of 
finding an ideal IV. For this reason, in addition to 
the basic assumption tests, it is always necessary to 
consider the results of  the sensitivity analysis. The 
sensitivity analysis showed that in the case of  a possible 
unmeasured confounder in the final model (assuming 
the largest confounding effect in the known variables 
like delay in diagnosis) over a wide range of  changes 
in the confounding effect and also the presence of 
relationship between this variable and IV, the final effect 
size estimation is not statistically superior (Table 3). It 
was also found that in the case of  different effect sizes 
in the layers of  IV (heterogeneity in the range of  -0.2 to 
0.1), the IV model is still robust and the final conclusion 
is the lack of  superiority of  the high potency group.

Although the proposed example may have some 
shortcomings due to the study sample size, being limited 
to a certain number of  neurologists, or choosing the 
EDSS variable in assessing the treatment efficacy, it has 
largely been able to provide the readers, in particular, 
the clinical researchers, with instrumental analysis 
application, reasons for use, necessary prerequisites, 
the effect size estimation, and sensitivity analysis.15,25 
Considering such a stepwise approach, it is suggested 
that the IVA can be used as the primary analysis when 
there are obvious impacts of  unmeasured confounding 
on outcome. Otherwise, it can be used by researchers 
as an auxiliary analysis along with other methods of 
controlling confounding.
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