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Abstract: We have presented a method, based on the ABS
class of algorithms, for solving the linear systems of Diophan-
tine equations. The method provides the general solution of the
system by computing an integer solution along with an integer
matrix (generally rank deficient), named as the Abaffian, the in-
teger row combinations of which generate the integer null space
of the coefficient matrix. Here we show that, in general, one can
not expect that any full set of linearly independent rows of the
Abaffian form an integer basis for the integer null space. We
determine the necessary and sufficient conditions under which a

full rank Abaffian would serve as an integer basis.
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1. Introduction

Suppose Z represents all integers. Consider the Diophantine linear sys-

tem of equations
Az =b, z€Z" (1)

where A € Z7*" b € Z™, and m < n. By solving the system (1), firstly
we mean the determination of the existence of the solution. Secondly, if
the system has a solution , then we mean the computation of an integer
solution z and an integer matrix H so that the rows of H, not necessarily

independent, generate the integer null space of A. That is,
Integer Null(A) = Integer Range(H™).
Having this, the integer solutions for (1) aredetermined by
r =2+ HTy,
for integer vectors y. If the dimension of null space of A is r, and
H=1hy,....,hs,...., 0",

with h;’s being linearly independent, then H” is said to be an integer
basis matrix for the.integer null space of A.

Several methoeds, based on computing the Hermite normal form, have
been introduced before ([3,5]). Recently, ABS methods have been used
extensively for solving general linear systems. In [7], we have presented
a method, based on the ABS class of algorithms, for solving the system
(1). Thesesmethods produce an integer solution z, if it exists, and an
integer matrix, named Abaflian, whose integer row combinations span
the integer null space of the coeflicient matrix A; hence the general
integer solution of the system is readily at hand.

Section 2 explains the class of ABS methods and provides some of
its properties. In section 3, we briefly discuss our algorithm for solving
the Diophantine equations (1). In this section, we then show that, in

general, one can not expect that any full set of linearly independent
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rows of the Abaffian matrix form a basis for the integer null space of
the coefficient matrix. In section 4, we present necessary and sufficient
conditions on the Abaffian for the existence and hence the determination

of an integer basis.

2. ABS Algorithms

ABS methods have been developed by Abaffy, Broyden and Spedicato

[1]. Consider the system of linear equations
Az = b, (2)

where A € R™", b € R™ and rank(A) = m. Let A = (a1,...,as)",
a; e R i=1,....,mand b = (by,...,b,)". Also let' 4; = (ay,...,a)
and b = (by,....b)7T.

Assume x; € R" arbitrary and H; € R"*", Spedicato’s/parameter,
arbitrary and nonsingular. Note that for any 2@ € R" we can write
=z, + HI'q for some ¢ € R™.

The ABS class of methods are of the direct iteration types of meth-
ods for computing the general solution of (2).. In the beginning of the
tth iteration, ¢ > 1, the general solution of the first ¢ — 1 equation is at
hand. We realize that if z; is a solution for the first ¢ — 1 equations and
if H; € R™", with rank(H;) = n —i4 1, 1s so that the columns of H]

span the null space of AT || then

with arbitrary ¢ € R”; forms the general solution of the first ¢ — 1

equations. That is, with

HiAi—l = 07
we have
AT g = bl
Now, since rank(H;) = n — i+ 1 and H! is a spanning matrix for

null(AT_}), by assumption (one that is trivially valid for ¢ = 1), then if
we let
Pi = HZ'TZiv
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with arbitrary z; € R™, Broyden’s parameter, then AT  p; = 0 and
z(a) =z, — ap;,

for any scalar a, solves the first ¢+ — 1 equations. We can set o = a; so
that 2,11 = 2(o;) solves the ith equation as well. If we let

T
a; T _bz

Q; =
T
a; pi

)
with assumption afp; # 0, then
Lit1 = Ty — OGP,
is a solution for the first ¢ equations./Now, te complete the ABS step,
H; must be updated to H;;; so that Hi 1 A; = 0. It will suffice to let
Hiy=H; —uv] (3)

K3

and select u;, v; so that H, ja; =0, 7= 1,...,:. The updating formula
(3) for H; is a rank-one correction to H;. The matrix H; is generally
known as the Abaffian.«The ABS methods usually use u; = H;a; and
v; = HI w; /w! H;a;, where wi, Abaffy’s parameter, is an arbitrary vector
satisfying

wi H;a; # 0.

Thus, the updating formula can be written as below:

H;a;w] H;
Hipy = H; — — 2L

T
w; HZ'LZZ'

We can now give the general steps of an ABS algorithm [1,2]. In
the algorithm below, r;,; denotes the rank of A; and hence the rank of
H; pequals n — 744,

ABS Algorithm for Solving General Linear Systems

(1) Choose z; € R”, arbitrary, and H,; € R**”, arbitrary and non-
singular. Let ¢ =1, 7 = 0.
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(2)
(3)

(6)
(7)

Compute ¢; = alx; — b; and s; = H;a;.

If (s;=0and t; =0) then let x4y = @;, Hiyy = Hyyripy = 14
and go to step (7) (the ith equation is redundant). If (s; = 0
and t; # 0) then Stop (the ith equation and hence the system

is incompatible).

{s; # 0} Compute the search direction p; = H}z;, where
z; € R™ is an arbitrary vector satisfying 2/ Hya; = z!'s; # 0.
Compute

a; = t;/al p;
and let

Lig1 = T3 — Q.
{Updating H;} Update H; to H;;, by

T
i+1 — Mg — T
w; HZ'LZZ'

where w; € R™ is an arbitrary vector satisfying w!s; # 0.

Let riyq =7 + 1.

If t = m then Stop (2,41 1s asolution) else let 7 = ¢ + 1 and
go to step (2).

We note that after the completion of the algorithm, the general solu-

tion of (2), if compatible; is\written as @ = 41 4+ H,\ |, ¢, where ¢ € R”

is arbitrary.

Below, we list certain properties of the ABS methods [2]. For sim-

plicity, we.assume rank(A;) = 1.

H;a; # 0 if and only if a; is linearly independent of ay,...,a;_;.

Every row of H, ; corresponding to a nonzero component of w;

is linearly dependent on other rows.

The direction searches p1,...,p; are linearly independent.
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o If L; = AT P;, where P; = (py,...,p;), then L; is a nonsingular
lower triangular matrix.

o The set of directions py, ..., p; together with independent columns

of H,, form a basis for R".

e The matrix W; = (wy, ..., w;) has full column rank and Null( H},

t+1

Range(W;), while Null(H,;,,) = Range(A;).

o If rows ji,...,J; of W; are linearly independent then the same
rows of H,,, are linearly dependent and vice versa. Specially,
each row of H;,, corresponding to a nonzero element of w; is
dependent.

o Ifs; #0, then rank(H;;1) = rank(H;) = 1.
e The updating formula H; can be written as:
HWw=H+~ H1Ai(VViTH1Ai)_1VViTH17

where W H, A; is strongly nonsingular (the determinants of all

of its main principal submatrices are nonzero).

3. Solving Linear Diophantine Equations

Consider the linear'Diophantine system of equations
Az =b, =z €Z" (4)

where Ave Z™*", b € Z™. The following results indicate how to choose
Hy, z; and w; within the ABS algorithms to obtain the integer solution
of (4); see:[7]. Assume §; to be the greatest common divisor (ged) of the

components of H;a;.

Theorem 1. Let A be full rank and suppose that the Diophantine
system (4) is solvable. Consider the sequence of Abaffians generated by
the basic ABS algorithm with the following parameter choices:

(a) H, is unimodular (an integer matriz whose inverse is also in-
teger with the modules of its determinant equal to 1).
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(b) Fori=1,...,m, the integer vector w; is such that w} H;a; =

62'7 62 = gcd(HZaZ)
Then the following properties are true:

(c) The sequence of Abaffians generated by the algorithm is well-

defined and consists of integer matrices.

(d) If x;y1 is a special integer solution of the first i equations, then
any integer solution x of the first v equations can be written in

the form « = ;41 + Hﬁ_lq for some integer vector q.

Theorem 2. Let A be full rank and consider the sequence of matri-
ces H; generated by the basic ABS algorithm with parameter.choices as in
Theorem 1. Let the initial point x, in the basic ABS algorithm be an ar-
bitrary integer vector and let z; be chosen such that zF Hya; = ged( H;a,;).
Then system (4) has integer solutions if and only if ged(Hia;) divides

T L
a; x; —b; fori=1,...,m.

Note: The computation of ¢; and solvingforan integer yin s? y = ¢;,

where s; = H;a;, can be achieved by Rosser’s algorithm [9,10].

It follows from the above theorems that if there exists a solution for
the system (4), then @ = x,,41 + HZ1¢, with arbitrary ¢ € Z", forms
the general solution of (4). We continue by an analysis showing that, in
general, any n—m independent columns of H,,TH_1 would not be an integer
basis for the integer null space of the matrix A. For simplicity, let 2, = 0,
T = Zmy1, H = H,y and assume rank(A) = m. Let H € Z(=m)xm he
a matrix composed of any set.of n — m linearly independent rows of H.

We show that, in general, it can not be expected that
r=x4+H"y, yezZ"™, (5)

provide all the integer solutions for (4).

Let P = (p1,...,pm) be the matrix of search directions obtained
from the application of an ABS algorithm in solving the system (4).
Let K = (P, H”). We know that the matrix K is nonsingular and

AK = A(P,H") = (AP, AH") = (L,0),
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where L is lower triangular and nonsingular. The next theorem states
conditions under which z = z + H"y, y € Z"~ ™, forms the general
solution of (4). We note that since ; = 0 then we can write £ = Pg
for some vector ¢. Hence we have b = Ax = APg = Lq. Since L is
nonsingular then ¢ = L7'0 and # = PL~'b.

Theorem 3. The expressionz = 2+ H"y is the general solution for
the Diophantine system (4) when the matriz K = (P, HT) is unimodular.

Proof: The vector = z + H"y for any integer vector y is integer.

For such z we have Az = b, since AH” =0. Now suppose z € Z"

Uy

satisfies Az = b. Let K~ 'a = u = ) Since K is unimodular then u

Uz
in an integer vector with u; € Z™ andiu, € Z%=™. Now, we can write

Uy

Uz

b=Ax = AKK 'v = AKu = (L,0) ( ) = Luy, u, =1L7"b.

Hence

Uy

z=Ku= (P, H") ( ) = Puy+H uy = PL7Y%+H uy = 2+ H  uy. O

Uz

Note: Using the geometry of numbers, the converse of the above
theorem is also established (see [4]).

Considerthe single Diophantine equation a’z = 0, 2 € Z". Assume
H, is unimodular. Let § = ged(s), where s = Hia, and assume z is so
that stz = 8. We know from Rosser’s algorithm that the first component
of s has the largest magnitude in s and is nonzero, since s # 0. Thus
I8 ||o= 15" €1] # 0, where € is the first column of the identity matrix.
Suppoese p = HTz is the search direction of the ABS method for solving
a’z'= 0, and w is an integer vector so that w'e; # 0 and s”w = 4.
Then, from the ABS properties, the first row of H, is dependent and

we can define H to represent the independent rows of H, by

_ HioawT H T
H:E(Hl—$):f;(1—%)ﬂl,
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where F is the identity matrix with its first row deleted. From Theorem
3, the vector « = HTy, where y is an arbitrary integer vector, is the
general solution for a”2 = 0, 2 € Z", when M = (p, H”) is unimodular.

Since H; is unimodular, then

T T
M=(p,HT) = (Hsz,HlT (I - %) ET) = H7 (Z, (I - %) ET)

is unimodular if and only if the matrix

is unimodular. Let

where

We note that K is nonsingular. We shall make use of the determinant

of K in subsequent discussions. Note the following lemma.

Lemma 1. If K = (z,B), where/B = (I — ws”/§)ET and E is
obtained from the identity matriz with its first row deleted, then det K =

wTle;.

Proof: The matrix K =(z, B)is a rank one correction to the matrix
K=1-ws"/6 = (Key,B),since

K=K+ (2—Ke)e.

Note that
wsT  eTs
K=1-¢el - 5 + 17106? + zel
=K, +(z- el)ef,
where

K, =1+ va,
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and
o = 2l(els)ed - o).
Hence
det Ky =14 0"w = @M "y

Thus K, is always properly defined and always nonsingular and we may

write K = K, K,, where
Ky =T+ K (2 —e1)els

Therefore
det Ky = 14+ el K7 (20— e)).

Now, expanding K;' by the Sherman-Merrison-Woodbury formula [8]
gives det Ky = 6/(eTs). Since det K = detK, det K, the result follows. O

Therefore, K and hence M are unimodular if and only if the integer

vector w satisfies wT

e; = 1 and.ws = §, conditions not expected to
hold in general. Egervary’s method [6] is a special ABS method with
the selections Hy = I, 21 = 0 and“w = 2. Since the Diophantine system
stz = 6, 2Te; = 1, lacks integer solutions in general, then Egervary’s
claim that any set of independent columns of H” provides an integer
basis for the general integer solutions is refuted. The next example

validates this statement.

Example 1. If we use Egervary’s method for solving the homoge-

neous Diophantine equation
atz=0 , o =(1,1,1), (6)

with 'z = (2,2, -3)", we obtain:

-1 -2 -2
H=HI=T-z2d"=|-2 -1 =2
3 3 4

There are three possible choices for H™.
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(a) HT = (HYe,, He,). The vector # = (=2, 1,1)7 satisfies (6).
The only solution for H't = z is t = (—4/3,5/3)".

(b) H' = (Hie,, Hes). The vector z = (—2,1,1)” satisfies (6).
The only solution for H't =z is t = (—3,5/2)".

(c) H' = (Hfey, H]e3). The vector z = (—3,2,1)7 satisfies (6).
The only solution for H't = z is t = (5, -7/2)~.

We see that in all the possible three cases there is at least one integer
solution z for (6) not being generated by an integer combinations of
columns of H™.

Note: For the homogeneous Diophantine system (case b =0in (4)),
Egervary [6] presented a method being now a special wersion of the ABS
algorithms with Hy = I, z; = 0, z; = w; for all i. We realize that the
general solution in this case is written as z = H£+1y, where y € Z"
is arbitrary. Egervary believed that with r _being the rank of A, any
set of n — r independent columns of H , would form an integer basis
for the integer solutions of the system. The results given above clearly
invalidates this belief (see also [7]).

In the next section, we introduce the necessary and sufficient condi-
tions for producing an integer basisifrom the Abaffian matrix. There,
we return to Example 1 again and show how to determine an integer

basis using these conditions.

4. The Necessary and Sufficient Conditions

Assume rank(A) = m. We now determine conditions under which one
can eliminate mcolumns of A7 | and obtain an integer basis, composed
of n — m linearly independent columns, for Null(A) N Z™. For conve-
nience, let H' = H,pq. Let W = (wy,...,w,) € Z"™ be the matrix
with Abaffian parameters as its columns. We know that rank(W) = m.
According to ABS properties, the rows of H corresponding to m linearly
independent rows of W are linearly dependent. Since rank(H)=n—m
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H
then, without loss of generality, we can write H = (UH)’ where

H € Z(»=7)%" corresponds to the n — m linearly independent rows of H
and U € R™*("=™)_ We can now let WT = (VT TT), where T € Z™*™

is nonsingular. Since
0=H"W=H"V+HU'T
then HTUT = —HTVT~! and whereof
Ul =-vr.

We emphasize that U is not necessarily-an integer matrix. Fix an arbi-
trary vector y € Null(A)NZ". The full column rank system

H't=y (7)

has a unique solution. The following lemma gives the correspondence
between ¢, the unique solution of (7), and the solutions of the system

H'z =y. (8)

Lemma 2. z is a solution of (8) if and only if we have

e -U”
with t being the unique solution of (7) and ¢ € R™.

xn—m

Proof: Let 2 = ( ) be a solution of (8). Then

T,
y=H'2=H "2, _,, + HU 2, = H (2y_py + Ul z,,).

Since (7) has a unique solution then ¢t = z,_,, + U”z,, and hence

(1)
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Conversely, let ¢ be the unique solution of (7) and ¢ € R™. Consider
e -U”
T = 0 + I, q.

H'z = H"t— H'U ¢+ H'U g = H"t = y.

We have

Therefor, z is a solution of (8). O

We saw before that for any y € Null(A) N Z", the integer vector
v = H"y solves (8). Let H{' = (HL,HY). H, being unimodular,
both Hi; and Hs; are integer matrices. Applying Lemma 2, for some

g € R™ and ¢, the unique solution of (7), we must have:

H t -Ur
== (i)o= (o) o0 )

Hence we have:

Hay=t-U"q
Hyy = q:

Now, for = H; Ty since y is an integer vector then both ¢ and t —UTq
must be integer vectors. Thereforepto have ¢ integer it would suffice
that H” be constructed from HT in such a way that the corresponding
matrix U be integer (or.can be reduced to an integer matrix). On the
other hand, we realize that no column of H” should have a common
divisor other than one (that is, the greatest common divisor for every
column should be one), since the system H”t = y will have noninteger
solutions, otherwise. Having this in mind, we consider reducing the
matrix HT = (HY,HTUT) accordingly. To make the columns of HT
be relatively prime, we multiply H? by D on the right, where D is a

DDO
I N Ay

diagonal matrix as below
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with D;; = 1/ged(H7e;). Therefore, we have
HY = H'D = (H*, HTU"),
where
H'=H"D, U" =D'U".
Now, let adj(T') be the classical adjoint of T' (that is, 7! = adj(T)/det T).
Since UT = —VT~1, we can write

U7 = —D~WT' = —D~Vadj(T)jdet T.
The following theorem states the necessary and sufficient conditions for
the solution of the system HTt=H™Dt = y to be integer.
Theorem 4. Let y € Null(A) N Z* be arbitrary. The solution t for

the full column rank system HTt = y is_an integer vector if and only if
detT| D=*Vadj(T). (alb means a divided byb is an integer.)

Proof: We saw that © = H{ "y € Z", for any y € Null(A)N Z",
satisfies HT2 = y. Thus, ford= D 'H Ty € Z" we have HTi = y.
Let & = (&X_, ,#T)T and suppose that det T|D~*Vadj(T). Then U is

n—m? m

an integer matrix and

Trem D' 0\ (H D~'H
P n _ D_1H1_Ty: 1y _ 1y ‘
T 0 I,/ \Hxy Hoy
Thus, the vector
= G AL E M= D 'Hyyy+ DU Hyy = D_l(Hny + UTH21y)
is integer and
AT _GT -1 T T 7 [y
Hi{=H"DD (H11y+U Hzly):H (In—va )
=(H', H'U"H Ty = H 'z = y.

Conversely, suppose that for any y € Null(A) N Z", the solution t for
HTt = y be integer. Applying Lemma 2, the integer solutions for HTz =

()

y can be written as
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where ¢ € Z™. Since HT# = y, then

t=Fpm + U = D Hyyy+ DU T Hypy

_ _ H _ _
= (D7, D7) [ ) = (0 DTy,
21Y

Note that, for any y € Null(A)NZ", H Ty, and D~ are integers.
Therefore, D='U" must also be an integer matrix because the rows
of H, are relatively prime. From D~'UT = —D~'Vadj()/det T, it
follows that det T| D™'Vadj(T). O

We now return to case (b) in Example 1. We have,

-1 -2 2
H' = |-2 2|, w=|2/|, T=(2),
3 4 -3

We see that

. |
HT = | =2 =1,
3.2
and
= (-1,3),

an integer vector now. The solution for HTt =y, with y = (=2,1,1)7,is
the integer vectord = (—3,5)7. On the other hand, any y € Null(a”)N
Z? can be writtén as y = (—a — 3,, 3)", where a and 3 are arbitrary
integers. Forrany such y, the solution for HTt = y is given by { =
(—2a — §8,3a +23)T. Therefore, in this case, we have

{zez?|ad"s=0}={H"q| qe Z%.

Similar developments for case (¢) will also result in an integer basis for
Null(a®) N Z>. At the same time, we note that no integer basis can be
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obtained from the matrix in case (a). Therefore, we observe that an
integer basis can not necessarily be obtained from any set of linearly
independent columns of H”.

Determining an Integer Basis

Considering the ABS properties, instead of deleting the m dependent
columns of HT all at the same time, deletions can be made in steps.
From the ABS properties, at the end of the :-th iteration, an inde-
pendent column of Hﬁ_l can be identified and subsequently deleted. We
know that any column of Hf,, corresponding fo a nonzero component of
w; is linearly dependent on the other columns. Let w; = (wy;,.. .,wm)T
and suppose wy; # 0, for some k, L.<"k < n. Then T = wy,,
Vo= (Wi e ooy W1 iy Whtt s+ - -, Wyi) - and UL = —V/wy,;. We can now
state the following rule for the deletion“of a dependent column of H},
at the end of the ¢-th iteration:

Deletion Rule For a Dependent Column
Let &; = ged(H,  e;) for all j. Delete the k-th column of H,,, where
wler, £ 0 and w] ex|é;wle; forall .

We note that one can not expect the satisfaction of the above con-
ditions in all cases. Thus, the ABS approach may signal the failure by
recognizing that an integer basis may not be obtained. Nevertheless,
the columns'of H% span Null(A)NZ" and, as such, the general integer
solutions may be obtained using H. The following example illustrates
the point.

Example 2. Consider the Diophantine system below:
alr=0 , o =(1,3,-2). (9)
With the choice z = (2,3,5)", we have:

-1 -6 4
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We see that every column of H7T is relatively prime. Consider the system
HTt =y, where y = (—1,1,1)7 is a solution of (9).

(a) By selecting HT = (H%e,, H e,), we have t = (—=7/5,2/5)7.
(b) By selecting H” = (H"e;, H e3), we have t = (=5/3,—2/3)".
¢) By selecting H” = (H"e,, H"e3), we have t = (5/2,7/2)".
g

We see that in all the possible three cases there is at least one integer so-

lution for (9) not being generated by an integer combinations of columns
of HT.

5. Conclusions

We saw how an integer Abaffian (not necessarily full rank) matrix is
obtained by use of the ABS methods for solving.a linear Diophantine
system of equations. The integer combinations of the rows of the Abaf-
fian span the integer null space of the coeflicient matrix. We proved that,
in general, it can not be expected that the resulting Abaffian would con-
tain an integer basis for this integer null space. Finally, we specified
the necessary and sufficient conditions under which the Abaffian would
present an integer basis.
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