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Abstract: This paper is concerned with somé approximate equa-
tions for the study of nonlinear water waves in a channel of vari-
able cross section. A system of shallow water equations for finite
amplitude waves is given and a Korteweg deVries (KdV) equa-
tion with variable coefficients for samll amplitude waves is also

presented.

1. Introduction

One of the interesting problems of water waves in a sloping channel con-
cerns the breaking of a wave moving toward a shoreline, the development
of a bore, and the movement of the shoreline after the bore reaches it.
For the two dimensional case corresponding to a rectangular channel of
variable depthythe bore run-up problem was studied by Keller et al [1]
on the basis of shallow water equations [2]. Later Gurtin [3] derived a

criterion for the breaking of an acceleration wave in a two dimensional
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channel and his result was extended by Jeffery and Mvungi [4] to the
case of a rectangular channel of variable width depth. We generalize
Gurtin’s result to predict the breaking point of an acceleration wave
in a channel of variable cross section and review some existent results
regarding the bore run-up problem for a rectangular channel with a uni-
formly sloping bottom. Up to date, the shallow water equation for a two
dimensional channel with analytical initial data have been justified by
Kano and Nashida [5] and for the three dimensional case with a priori
assumptions on the free surface by Berger [6]. At'present we may accept
shallow water equations as model equations.

Another application of our results deals with the development of a
solitary wave in a channel of variable cross section. Recently, there have
been discussions on the so called infinite mass dilemma, which arises
from the formation of a shelf behind the solitary wave. If the shelf were
extended to infinity, then infinite mass would be created or annulled by
a perturbation of the solitary wave. We shall establish a global existence
theorem for the solution of the KdV equation for a general channel as a
consequence of the existence results due to Kato [7]. It follows that the
shelf, if formed behind the solitary wave in a general channel, can only
be finite. A rigorous/justification of the validity of the KdV equation
here should be an important contribution to the theory of water waves.

2. Shallow Water Equations and the Breaking of a Wave

We consider theirrotational motion of an inviscid, incompressible fluid
of constant density under gravity in a channel with a boundary defined
by h*(a*,y*,2*) = 0, where z* is positive upward and z* is in the longi-

tudinal direction (figure). The governing equations are

VT =0 (2.1)

VAT =0 (2.2)

PG +T . V'¢)=-V'p +7 (2.3)
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subject of the boundary conditions

nye+g +VE =0 (2.4)
at
==+, 2" y), pr=0 (2.5)
7T+V'R"=0 at A" =0 (2.6)
Here

v (L2 2, e
is the velocity, t* is the time, § = (0,0, —g) is the constant gravitational
acceleration, p is the constant density, p# is the pressure, and z* = n* is
the equation of the free surface. To derive the shallow water equations,
we make the following assumptions. The channel boundary is convex,
sufficiently smooth, and varies slowly in the longitudinal direction; the
magnitude of the transverse velocities is much smaller than that of the
longitudinal velocity. As suggested by Friedrichs [8], we introduce non
dimensional variables:

Z*

t* *
7?)7

1
= 75y o

ml‘%

= {— h = (— =
1= G b A, i) = (i Yo V)
where VB = (£) and ‘L’cand ‘H’ are respectively the horizontal and

transverse length ‘scales.idn terms of them (2.1) to (2.6) become

ja

Uy + v, +w, =0 (2.7)

By = Uy Uy = Wy, V, = Wy (2.8)

Uy + uuy + vuy + wu, +p, =0 (2.9)
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v + uv, +vv, + wo, + Bp, =0 (2.10)

w; + vw, + vw, +vw, + B(p. + 1) =0 (2.11)
mtun, +og, —w=0, at z=19 (2.12)
p=0 (2.13)

wh, + vh, +wh, =0_at h =0 (2.14)

Assume that u, v, w and J possess an/asymptotic expansion of the form

b~ GG+ B0 (2.15)

Substiute (2.15) into (2.7) to (2:14). The equations for the zeroth order

approximation are

Uoz + Voy + wo, = 0 (2.16)

Ugy = Ug, = 0 (2.17)

Uop+ Uploe + Por + Voloy + Wottp, = 0 (2.18)
poy =0, poz=—1 (2.19)

Mot + oMoz + Voloy — wo =0 at z=0 (2.20)
po=0 (2.21)

uohy + vohy +woh, =0 at h =10 (2.22)
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Seen from (2.17), (2.19) and (2.21), ug is a function of (¢, z) only and

Po=(=2+m) (2.23)

This implies 7 is also a function of (¢,z) only. It follows from (2.17),
(2.18) and (2.23) that

Ugr + UgUpy + Moy = 0 (2.24)

Now we integrate (2.16) over a corss section D of the channel, apply the

divergence theorem and make use of (2.20) and (2.22) to obtain:

/ (voy+wo, )dydz = —uo, A(t, ) = —ug / hx(hz—l—hz)_1/2d5—|—(770t—|—u0770x)B(t,x)
D r

Rearranging the terms, we have

A(t,z) g 1
— ho(r/h2 + h2)=ds =
770t+u0770x+u0xB(t7x) [B(t,x)] /F ol y T 2)ds =0

(2.25)

where A(t,z) is the area, B(?,z) is the width and ‘I" is the wetted
boundary of the cross section D (figure). (2.24) and (2.25) form a system
of nonlinear equations, which may be used. to model bore formation and
its subsequent devlopment in a channelof variable corss seciton.

In the following we extend Gurtin’s method to the case of a general
channel. The assumptions made are the following:

1) ug, no are continuous.

2) The first and the second derivatives of uy and 7, possess at most
jump discontinuities.

3) ug = 1o = 0 ahead of the wave.

Denote the value of afunction * f’ immediately behind the wave front
by f. Thereafter we also drop the subscript ‘0°, from assumptions (1),
(2), we have

(2.26)

=
ll
=)
ll
=)

By total differentiation

Uy = —CUy, T, = —CT, (2.27)
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Where ‘¢’ is the speed of the wave front. From (2.24), (2.25) and (2..26)

it follows that:

U, A
B

overlinew, +7, =0, 7, + =0 (2.28)

Comparing (2.27) and (2.28), we have:

c=yf—A (2.29)
Bﬂt - C_lﬁx7

Now we differentiate (2.24) with respect to ‘¢t’and (2.25) with respect to

x, and evaluate the equations behind the wave front. Then we eliminate

7, and make use of the expression

d d

20 oo o2 W @

CUpy — Uy = C dx(ux) y A (ut)
to obtaing

~2e L) @R - B+ 2 = 0
dr'" ¢ c
where b
Py
r, /hi + h?

Hence

’ -1
7, = 9 l(ﬁao/ 6_5/26Xp/ 1,(2A) "da'dx + 1] xexp/ 1,(2A) 'dx
" " " (2.30)

where ‘ag.isthe initial value of 1, at « = ;. We call 2 = [ a shoreline of

A(l). = 0 but B(l) # 0, and let

3 xr I/'I _
I(z)= 3 exp(—5/2) exp/ I,(2A) " da'dx
Suppose aq < 0. If I(l) = oo, then 77, and the wave breaks before it
reaches the shoreline. If I(l) # oo, then either the wave breaks before
it reaches the shoreline or it breaks at the shoreline. Next suppose
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ag > 0,1(l) # oo, then the wave breaks at the shoreline. Otherwise if
I(l) = oo, evaluate the limit of 77, given by (2.30) as + — [ and obtain

L2 dy T,
1 = — —_— —— 2. 1
ool 3/ ( ;T QB) (2:31)

Here d = (A/B), hence the wave will never break if (d)’ is finite at
x = . However for the channels of variable cross section the equilibrium

for surface may converge to a point and this case is also of interest.
Assume again (ag > 0), if I({) = co. If B(l) = d(I) and (d)’ i finite at
x =1, we assume h(z,y,2) = —z + g(z,y)

b2

e [ [ o
r

—by

Here y = —by, b, are the end points of the width B(z). It follows from

(2.31) that B
o ()

then the wave will never break.

3. Run-up Problem

We consider a bore propagating towards a shoreline in a rectangular
channel with a uniformly slopping bottom. On the basis of the shallow
water equations, we can find a fairly complete solution of the bore run
up problem. The bore path at the point of breaking to the shoreline
may be approximately determined by Whitham’s rule [10]. Here we
shall consider the movement of shoreline after the bore reaches to shore.
The shallow. water wave equations for a rectangular channel of variable
depth are obtained from (2.24) and (2.25) as

Uy + Uy + 7, = 0 (3.1)

1w+ [u(n + do)le = 0 (3.2)
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Here we also drop the superscripts of w and 1 and dy = —ya,v > 0. We

assume ¢t = 0 when the bore reaches the shoreline z = 0. Let

d=n+dy (3.3)

a=24u+yt=u’, B=2c—u—yt+u° (3.4)

In terms of ‘@’ and ‘B’, (3.1) and (3.2) can be expressed as

To=(u—c)lty, 5= (u+c)lg (3.5)
By cross differentiation of equation (3.5) and making use of (3.4), we
have
3(la + 1g)
tos + =0 3.6
" Bl ) 0
If we introduce the canonical variables
a=(a+ )y, b= (a+B)*, (3.7)
(3.6) yields as system of equations
3b 3a
(O[ + ﬁ)a@ = —E, (O[ + ﬁ)ba = —? (38)
Let
Y=a+4b, Z=a-b (3.9)
If follows from (3.8) that
15Y 3
~ (3.10)

Yo = e T Wt )
In the af-plane we prescribe sufficiently smooth data. However, the
precise nature of the data is immaterial. We require only ¢, (o, 3*) > 0,
t5(0y3) < 0 and that as § — 07 along o = 0.

lima =a® >0, limy=u" >0 (3.11)

limz = lim¢ =0, b(0,3)=0(3*?) (3.12)

where the existence of the positive limit «° and the behavior of b(0, 3)
for small 3 were established by Ho and Mayer [9].
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4. KdV Equation and the Development of a Solitary Wave

We only sketch the derivation of KdV equation for a channel of variable
corss section; the details may be found in Shen and Zhong [10]. We
introduce the non dimensional variables

* *

L= B )= P )
(n,h,p) and (u,v,w) are the same as before. The method used here
is the specialization of the procedure developed by Shen [2] and Keller
[1]. We assume that u, v, w, p,n depend explicitly upon a new variable,
& = p5S5(t,z), where S is a function of ¢ and « only, will be called a phase
function. Then we assume that they possess an asymptotic expansion

of the form:
P&t u,y,2,8) ~ do+ B + B o + -4
and we assume that the zeroth order approximation.is given by
(Uoﬂfoawo) =0, po=—%2g 0

The equation for the first approximation determines a Hamilton-Jacobi
equation for S. Let k£ = 5,,w = —5;. Then

w = KG(MG(a) = 4, L) (4.1)

where a(z) is the area'of the corss section Dy, and b() is the width of
Dy of water wave at test (figure). (4.1) may be solved by the method of
characteristics and the corresponding characteristic equation are

dt dx dk dy dS

— =, = = uG — = —kpG’ —=—=0 4.2
where ‘p’ is the proportionality factor. We choose p = 1, so that o = ¢.
The equation of (4.2) determine a one parameter family of bicharacter-
istics, called rays.

x = x(t, o)
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where o, is constant along a ray. The equations for the second approx-

imation determine a KdV equation with variable coeflicients:

Mo + MiNie + Moy + MaNiie + Maieee = 0 (4.3)
where
mo = 2b(x) (4.4)
2a(x)
= 4,

ds — G (2)G' (v)a(z) (4.6)

my = —

[G($)]_1/FD \/hzhj—ihz

m3 = 3k[G($)]_1b($) [(by(tvxvy?vo) - (by(tvxvylvo)] (4'7)

1
w

My = w_l//DD(qu)zdydz (4.8)

‘I'y’ is the wetted houndary of Dy; vy = 4, 3. are the endpoints of the

width of Dy; and ¢y is a solution of the Neumann problem.

V2¢:k2 inDo
¢, =w? at 2=0

dyhy + ¢.h, =0 at Ty

Since from equation (4.2)

dz

(45) = 00+ Gl (52) = Go)

along a ray, we may express (4.3) in terms of ¢ and €.

Moo + Mo + MaiNie + Manigee = 0
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or in terms of z and &

G(z) = + ZEQ S:—t—l—/ox G(lx)dz

which is a solution of equation (4.2) and it follows that
w=1, k=G ()

For rectangular and triangular channels, the coefficients given in (4.4)
to (4.8) can be explicitly evaluated, Shen and Zhong [10]. It is also
remarked in passing that (4.3) has been used to study the fission of
solutions in channel of variable cross section [10] and a justification of

the asymptotic method used should also be of interest.

Figure: A cross section of the channel
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