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ON THE GROBNER BASIS OF A FAMILY OF
QUASI-CYCLIC LDPC CODES
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ABSTRACT. In [30] a class of quasi-cyclic LDPC codes has been
proposed, whose information rate is 1/2. We generalize that con-
struction to arbitrary rates I’Tl and we provide a Grobner basis for
their dual codes, in some generic cases.

1. Introduction

In R. Bresnan’s Master thesis [2];.a-¢lass of quasi-cyclic LDPC codes
has been proposed. The LDPC codes (see Section 2.2) are codes with an
excellent decoding performance and are usually constructed via proba-
bilistic algorithms, preventing.an accurate study of their properties (see
[4], [7], [18], [20].[21];[26], [27], [28], [34], [35], [36]). On the other hand,
quasi-cyclic codes ‘are algebraic codes and allow a rigorous study via
the Grobner basis approach introduced by K. Lally and P. Fitzpatrick
[16]. In [30] it has been shown that some simple algebraic conditions on
the Grobner basis elements guarantee good decoding performance for
the Bresnan codes. A Grobner basis for the dual code has also been
presented in some cases of interest. However, the codes in [30] are only
1/2-rate codes.
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In this paper we generalize Bresnan’s construction to l_Tl—rate codes
and provide a Grobner basis for their dual codes, in some cases of in-
terest. In particular, we can determine their dimension. Moreover,
suitable generator matrices from the parity-check matrices might then
be deduced.

This paper is organized as follows:

e an introductory section;

e Section 2, where we provide our notation and recall some relevant
well-known facts, particularly on quasi-cyclic and LDPC codes,

e Section 3, where we define our family of quasi-cyclic LDPC codes
and show the Grobner basis of their duals,

e Section 4, where we draw some conclusions and plan further
research.

2. Preliminaries and notation

In this section we recall some known facts and’'give some notation.
There are four sub-sections: one on circulant matrices and their poly-
nomial representation, one on LDPC codes, one on the Grobner basis
representation of quasi-cyclic codes and one on the Bresnan codes.

2.1. Circulant matrices. Binary circulant matrices are important for
our goals, as they form the “bricks” with which we “build” our parity-
check matrices.

Definition 2.1. Let m >:3. Let C be an m X m matrix over Z,. We
say that C' is circulant.if its rows are obtained by successive shifts (on
the right). We say that C is weight-2 if the weight of any row is 2.

The polynomial representation of the first row, p(x) € Zs[z], is called
the polynomial of C.

Consider for.example the following weight-2 circulant matrix

1 1.0 00
01 100
cC=]100110
00011
1 00 01
Its polynomial is p =z + 1 and m = 5.
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2.2. LDPC codes. The parity-check matrix H = (h; ;) of any binary
[n,k,d] linear code C' can be represented by a graph, known as the
Tanner graph ([33, 34]). The Tanner graph is formed by two types of
nodes: the “bit nodes” and the “check nodes”. Bit nodes correspond
to matrix columns and check nodes correspond to matrix rows, so that
there are » = n — k check nodes and n bit nodes. We connect the check
node 4 to the bit node j if and only if the entry h; ; = 1. There is no
edge connecting two check nodes or two bit nodes (this kind of graph is
called a bipartite graph).

Now we introduce LDPC codes (Low-Density Parity-Check) a class of
linear error correcting codes. Historically, these codesswere discovered
by Gallager in 1963 in his PhD thesis [5]. These codes were largely
ignored, because of some implementation issues. In the 1990’s they were
rediscovered by MacKay [18] and now the research continues vigorously,
with dozens of papers published every year.

Definition 2.2. An LDPC code is a linear block code for which the
parity-check matrix has a low density of non-zero'entries.

An (r,c)-regular LDPC code is a linear code whose parity-check ma-
trix H contains exactly ¢ ones per column and r ones per row.

We do not specify what we mean by low density because it depends on
the context. For example, for a typical (3,6)-regular binary code (rate
1/2) of block length n, there are only three ones in each column of H
and so the fraction of ones in this matrix is 6/n.

The LDPC codes have excellent decoding performance, near to the
channel capacity ([5, 18,26]), but their performance is heavily hindered
by the presence of small cycles in the Tanner graph ([36]). In fact, the
parameter that mostly affects the behaviour of their decoding algorithm
is the girth of its Tanner graph.

Definition 2.3. In a graph, a cycle is a path that starts from a vertex
v and.ends inw. The girth of a graph is the smallest of its cycles.

Some:structured LDPC codes have appeared (see [8], [9], [10], [13],
[14]; [15], [23], [24], [29], [33]).

2.3. Quasi-cyclic codes and Grobner bases. In this subsection we
summarize some algebraic properties of quasi-cyclic codes, which have
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been investigated in [16, 17]. Since a quasi-cyclic code may be repre-
sented as a sub-module of a module over a polynomial ring, the main
tools will be (module) Grobner bases . We expect the reader to be famil-
iar with Grobner bases for modules and so we will use them without any
further comment. In particular, we will use the standard abbreviation
POT for the Position Over Term monomial ordering.

Quasi-cyclic codes of index £ over a (finite) field F' are defined by
the property that a cyclic shift of a codeword by £ places is another
codeword and [ is the smallest such natural number ([19], [3], [11],
[12], [37]). Let C be a quasi-cyclic code of length ¢m and index /.
We may assume that each element of C can be represented as a vec-
tor ¢ = (c1(z),...,ce(z)) of polynomials of degreedess than m. Let
R = F[z]/(z™ — 1), where F is a finite field. It is possible to show that
C is an R-submodule of R’ and that the preimage C of G.in/F[z]’ is an
F[z]-submodule containing K = ((z™ — 1)ez4°= 1,...,/), where e; is
the standard basis vector with 1 in position : and-0relsewhere.

The following theorem describes the structure of a Grobner basis of

C.

Theorem 2.1. ([16]) Each submodule €. of Fz]¢ containing K has a
POT reduced Grobner basis of the form

(21) g:{gi:(gilagiQa"'agil)ai:17"'a€}a
where
(i) gij =0 for all j <1,
(ii) deg(gri) <.deglgii) for k <, )
(iii) if the left-most non-zero component of an element of C lies in
the i-th place then it is divisible by g;;; in particular, g; divides
™ —1,
(iv) if gii =a™— 1 then g; = (z™ — 1)e;,
(v) the E-dimension of F[z]/C is Ele deg(gii)-

The ¢ode C is the image of C under the natural homomorphism
puFz]" = R (cr, ... c) = (er + (@™ = 1), e+ (@™ —1)).

Dropping the coset notation we see immediately that C has an
R-generating set G comprising the elements of a Grobner basis G not
mapped to zero under . We refer to this set of generators as a GB
generating set of C. This can be used to determine the dimension of C.
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Theorem 2.2. ([16]) The dimension of the code C with GB generating
set {p(gi),i =1,...,4} is given by
l l

m =" deg(gii) = > _(m — deg(gii))

i=1 i=1

Remark 2.1. In [16] it has been shown that from G other results can
be obtained, e.g. Grobner bases for the dual code, classification and
counting codes with given parameters and efficient search for optimal
codes.

Although some code properties can always be deduced by ”ad hoc”
arguments on the generator matrix (as for example the dimension) and
hence the introduction of Grobner bases is not strictly necessary in un-
derstanding quasi-cyclic codes, the Grobner basis approach gives straight-
forward techniques to compute the desired properties in a methodical,
consistent way and, as such, it is highly preferable. Moreover:

e the notation of RGB generating set (the‘image of the Grébner
basis in to F,[z]/(z™ + 1)) isanore meaningful that of ”genera-
tors” in classical sense, since for example there is no obvious way
to get the dimension of ”1-generator” codes from the classical
generator (instead it is straightforward with an RGB generating
set). It is also easy to classify and count quasi-cyclic codes with
some given parameters using RGB generating sets.

e Decades of research on cyclic codes have shown the huge impor-
tance of their generator polynomials, that allow for example very
good bounds on the distance (starting from polynomial roots,
[1], [19], [25]); although similar results are still lacking for quasi-
cyclic codes; we think that Grobner bases for a quasi-cyclic code
may play the same role as generator polynomials for cyclic codes
(and thereare partial results providing an extension of the BCH
bound to quasi-cyclic codes), and that it will become clear as re-
searchers in the field will become familiar with this (still recent)
point of view.

2.4. Bresnan codes. In this subsection we recall the Bresnan codes
and their properties, that have been introduced and investigated in [30].

Definition 2.4. ([30]) Let «,m be positive integers such that a >
4,m > 3. We denote by H,, o the class of the (ma x 2ma) matrices of
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the form
"HY 0 ... 0 I |H} I 0 ... 0
I H 0 ... 0|0 H: I
H=| 90 1 S 0 |-
: . .0 0 .. S
0 ... 0 I HY T o ... 0 H?]

where every H:, with i € {1,2} and h € {1,2,..,a}, is an m x m binary
weight-2 circulant matrix. We denote by pj, the polynomial of Hj}.

A code with a parity-check matrix H € H,, o will be called from now
on a “Bresnan code”. Given a Bresnan code, the following condition is
important in our context:

(2.2) ged(@™ + 1,1+ ] p}) =
1<h<4

In [30] three main results for the Bresnan codes have been found:

e Theorem 7.35 [30] provides necessary and sufficient conditions
on a Bresnan code to have girth g > 8;

e Theorem 7.2 [30] shows the Grdbner basis of dual codes for Bres-
nan codes under condition (2.2);this result is generalized in the
present paper (Theorem 3.1);

e Corollary 7.3 [30] gives the dimension of the Bresnan codes, un-
der the hypotheses of Theorem 7.2 [30]; this will be generalized
in the present paper (Corollary 3.1).

For comparison, we recall:

Corollary 2.1. (Corollary 7.3 [30]) Let m be a positive integer such that
m > 3. LetH be inHpma. Let C be the Bresnan code admitting H as
a parity-check matriz. If condition (2.2) holds, then the dimension of C
is k = 4m (andhence it is a code with rate 1/2).

3. A class of quasi-cyclic LDPC codes

In this section we propose a new family of quasi-cyclic LDPC codes.

Definition 3.1. Let «, m be positive integers such that a > 4, m > 3.
Let 2 < i < a. We denote by H»®™ the family of all binary matrices of
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type
Hi 0 .0 T 0 0
0 H} 0o ... R N ) B 0
0
0 I H(ifi+1 I(ifi+1
Ii—i+2 Hi—i+2 0
0 I;—i+3
0 ort o ... ... o0 H
where

e H!, with h € {1,...a}, is an m x m binary weight-2 circulant
maftrix,

e I}, with h € {1,...a}, is'the m x m identity matrix,

e sub-matrix I? is in position’(1;7) and the others shift consecu-
tively on the right.

We denote by pﬁl the polynomial of H,ZL

Remark 3.1. In previous definition we adopted notation ” I,Z;” to denote
the (same) m x'm identity matrix, but in different positions. It would
be more usual to denote it simply by ”I”, but we choose this notation
because the location of those matrices is of utmost importance in our
context.

Definition 3.2. Let «, m, [ be positive integers such that o > 4, m > 3
and 2 <. < a—1. Let S = {s1,...,s;} be any l-element sub-set of
{2,...a}st. s; = a. We denote by By, o s the set of all matrices of
kind

(3.1) [ Asi | A ]

with A, € 5o,
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Observe that any matrix in By, 4,5 can be a parity-check matrix for
a quasi-cyclic LDPC code. These codes are the object of our present
study. The Bresnan codes form a sub-class of our codes, since clearly

7'Lm,oz = Bm,a,{a,2} .

The next definition is essential to describe the Grobner basis of the
dual codes of our codes.

Definition 3.3. Let a, m be positive integers such that a > 4, m > 3.
Let S = {s1,s2,...,8} C{2,...,a}, with s; = a. Let B be in By, 4,5
of type B = [Ay,|...|Ay]. Let pflj be the polynomial‘of H,slj in A, for
sj € Sand h = 1,...,a. For any 0 < k < «, we ‘define the following
polynomials:

_ S Thhopf it R#0
(3:2) P’“(B)_{ 1 if k=0,

0 . if k=0
(3.3) SY(B) =% Piogj4a + PpPer if 1<k<s;

]P’kfsj %G ij P, 1 if k> S;j-

When B is understood we will'shorten Py (B) and S;’(B) to Py and
Szj , respectively. Given B in By, o5, the following condition is important
in our context:

(3.4) ged(1 4+ Py, 2™ +1) = 1.

The next theorem is our main result and describes completely the
Grobner basis of dual codes of our codes (under condition (3.4)).

Theorem 3.1. Let o, m be positive integers such that a > 4, m > 3.
Let S ={s1,52,...,81} C{2,...,a}, with s; = a. Let B be in By, a,s,
B =[A; |. u|As]. Let C be the code with parity-check matriz B. Let
D be the dual code of C. Let p}slj be as in Definition 3.1. Suppose that
(8.4) holds and let

(3.5) p, M€ Zo[z]  sit. p(l+Py)+Az™+1)=1.
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Then the reduced Grobner basis G of D w.r.t. POT ordering is:

Ey Es ... ... ... E
0 M 0 0
: 0
(3.6) )
0
| 0 0 M g
where

o I = Ea 18 an axXa matriz that has the main diagonal composed
of 1’s, the second main superior.diagonal composed of pj, h =

2,...,a and any other entry is zero, as follows:
(1 p§ 0. ... ... 0
0 1wpy 0 ° :
0 1
0 )
0
I %
L 0 0 1 |

. Es]., for 5 =2,...,1, is the following a X o matriz:
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0
o
L uS,’

pa—s]-+1

Poa—s;+2

e
;U«SQ]
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sj+1
1

o 1 0 ... 0 W

0

1

0

0.

1 o ... ... 0 pJ
uSZ]J

o M is the diagonal a X o matrig with polynomial ™ + 1 on the

(main) diagonal:
fz™+1 0
0

0

0
™+ 1

Proof. We start from a basis (3.7) for the Zs[z] sub-module D in
(Zso[z])'*, obtained from matrix B plus the generators of K (see 2.3)

(3.7)

[ Es, E,
M 0
0 M 0

E, T
0
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Clearly, E; is (we recall 51 = a) as follows

@
<.

i
Py’ 0 0 1 0 W
0 Py’ 0 0 1 0 0
0
.. .. '. 84 '. - . . - . -
0 . . . paﬂ_sﬁl . . . . . . . 1
..
1 pa]73j+2 0
0 1 )
o
5.
0 0 1 0 0 pd J

where in the first row polynomial 1 is in position (1, s;) and in the last
row (the a-th) polynomial 1 is in position («,s; — 1).

We will denote by ry the first row vector of (3.7), by ry the second
and.so on. Note that the length of any vector rj is la. We will perform
some operations on (3.7), but we will rename the rows accordingly. For
example, if we swap row r; and row rj, after the operation we will refer
to the old row rj as to “row r;”.

We insert the first row between the a-th and the («+ 1)-th row. The
matrix Eg; becomes Ey :
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o p 0O 0o 1 0 0}
0
oL . T 5]‘
0 ' ' . pa—s]-+1 1
1 pij73j+2 0
0o 1
0 0 1 0 ... ... 0 pJd
Loy o ... ... o0 L0 OJ
and, in particular, By, = E, is now By:
_ o -
1 p§ 0 0
(0%
0 1 p§ .0 0
0
0o - -0 1 pg
Lpf O ... ... 0 1 |

The Buchberger algorithm w.r.t. POT in this case reduces to row
reductions. It-dsnot difficult to see that performing the first a reductions
is equivalent to the following operation:

a—1

(3:8) rq — o+ Z P;r;,
=1

where P; is as in Definition 3.3.

To show what happens, for the moment we consider only the first «
columns of our matrix. We will use a prime to denote the matrix rows
truncated to the first o columns.
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We have:
!"l]P’l —)( Py pgpl 0 0 )+
I"Z]P’z 4}( 0 Pa 0 )+
ri_ P —( 0 . . o pRPrRoa 0 0 )+
ri,Pr —( o0 i 0 Py pryiPe O 0 )+
: : . . . . . . . 0 :
I‘CI 1]1)& 1 —)( 0 0 0 Pa—1 pzpa—l )+
rl = ( p} 0 ... 0 0 0 1 ) =
rl —( O 0 ... 0 0 0 1+Ps ),

where we have used the obvious facts that
pgpk—l = ]P)ka 1 < k < «, and IP)I =

At this stage, row vector r,’' has all componentsequal to 0, except for
the a-th which is equal to 1 + Py,.
Using hypothesis (3.5) we can perform the following substitutions

(3.9) Ty = Ul + Aroq,

(3.10) rog — (1 +Py)rag + (2 + 1)rq,.

The effects on the first a columns of operations (3.9) and (3.10) are
respectively:

pre — (.0 0 up(1 +IF’ ) )+
Arz,. = (0 0 Az™+1) ) =
ro/) — (0 0 1 )
(1+Pa)rh, = 0 ... ... 0 (1+Py)(z™+1) ) +
(zm+Drl, —( 0 ... ... 0 z™ 41 ) =
th, - (0 ... ... 0 (™ + 1)P, ).

These substitutions leave the module invariant, because the determi-

nant of matrix
W A
™ +1 14P,

is'equal to 1 by (3.5).

In this way the top left & X a minor has the main diagonal composed by
I’s and the second superior diagonal composed by pi with h =2,...,a,
i.e. the top left a X a minor is actually Esl = E,.
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We now want to eliminate rows ro4;, 7 = 1,...,a. We first perform

Totj = Tayj+ (@™ +1)r;, for 1<j<a,

so that, for any j = 1,...,a, we have
Tatj = (0,...,0, (2™ + 1)(x),..., (2™ +1)()),
i+ .

where * stands for any polynomial in Zs[z]. But it is obvious that, for
any 1 < j < a, royj may be reduced to the zero vector, via reduction
w.r.t. the remaining basis vectors

{rayjti |l a+j+i<la,1 <i}.
We come back to operations (3.8) and (3.9) to see their effect on all

columns. They transform E  in E,; as follows: /"

ro pd o0 ... . ... 0 1 0 ... 0}
0
0 pa]75j+1 1
1 - i 0
Po—sj+2
0 1
. . . . 0
0 1 0 ... ... 0 pJ

where * means; as usual, a generic polynomial in Zsg[z].

Since clearly any further row reduction will not affect the first a rows,
we may safely deduce (Theorem 2.1) that the reduced Grobner basis will
be

T B,
0

Es;

S

[VIRY]

#

0 Ms
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where # stands for any o x a matrix over Zs[z] and M, stands for any

a X « upper-triangular matrix of type

9G—1)a+1 * *
0 9(i-1)a+2 *
0 9(i—1)a+3
0
L 0 A - - 0 Jja |

for some gy € Zo[x], with a + 1 < k < la, s.t. either deg(gr) < m —1 or

gr = x™ + 1. In the latter case the k-th row is
0,...,0,z™ +1,0,...,0)
where £ + 1 is in position k.

The dimension of D is then (Theorem 2.2)

al
(3.11) dim(D) = {am+ Y (m — deg(gr))| > am
k=a+1

but its generator matrix B has am rows, so that
(3.12) dim(D) < am.
From (3.11) and (3.12) we see that
dim(D) =am.._and  deg(gr) =m, k=a+1,...,al,
and hence
gp=2"+1, k=a+1,...,al.

As a consequence, our basis must have the following shape:

_El 7., -
M
0

S|

w

. .
0

M

(3.13)

co o oo
o
2o o oo

for some F,, ..., Ey,.
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We now consider the remaining «(l — 1) columns of the first « rows,
i.e. matrices {F,,...,Es}. We want to determine what happens per-
forming reduction operations (3.8) and (3.9) on Egj (2 <j <1I). Matrix
E;j has « columns and in any column (say the k-th) there are only two
row positions that have a non zero-value, one containing 1 (position hzj )
and another containing pzj (position lzj ). By circularity, we have

RS — k—sj+a if k<s; 15— k—1 if k#1
k k—s; if k> sy, k a if k=1.

Performing operation (3.8) we obtain in position («, k) the polynomial
given by the sum of just two addenda:

S5
Plzj = ]P)k—lpk] and Phij .

The sum of these two polynomials is <exactly polynomial Szj
(Definition 3.3),

: . Pr_1py +Pos.ip if 1<k<s,
S =P p AP s = kg T T omsitE ="M =27
k k=1Pp + hy! { Pk,lpzj +Prs, if 85 <k <o
Performing operation (3.9) we multiply each Szj by p and we add it to a
vector that has only a non-zero component, i.e. the a-th. All the other
reduction operations do not touch the a-th row so that it is:

(3.14) (0,0,...,0,1,uS3% . .., uS22, -+, uST, ..., uSY).
Then the a-th row of any Esj isrgiven by

(3.15) (uST, 1Sy, ..., uSE)

In other words, our basis (3.13) has become exactly (3.6). From Theorem
3.1 it is immediate to determine the dimension of our codes.

Corollary 3.1. Let o, m be positive integers such that « > 4, m > 3.
Let S = {s1,..57s;} C {2,...,a} with s; = a. Let B be in Bpa,s,
B = [Ag |u. . |Ag,]. Let C be the code with parity-check matriz B. Let

ph bevas.in Definition 3.1. If (3.4) holds then the dimension of C is

am(l.= 1) and its rate is lle

Proof. The dimension £’ of the dual code D of C follows directly from
Theorem 3.1 and Theorem 2.2: k' = am. The length n of both codes is
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n = lam. Then the dimension of C' is k =n — k' = (I — 1)am and the

rate is
k_(—-Dam _1-1

lam l

Remark 3.2. Condition (3.4) deserves some considerations.

First of all, observe that 1 + z is always a factor of 2 + 1. But P,
is the product of « 2-weight polynomials and hence it is always 0 in 1.
As a consequence, 1+ P, is always 1 in 1 and hence 1 4+ z never divides
1 4+ P,. In particular, if m = 2" for some r, then z™ + 1 = (z + 1)™ and
condition (3.4) is always satisfied. These values of m _arewery important
for implementation issues and rarely other values are used.

It is well-known that the probability that two random polynomials
over Zso have a common factor is slightly more than 1/2 [22]. If, as
a first approximation, we assume 1 + P, and z™ + 1 as two random
polynomials, condition (3.4) is satisfied for (slightly) more than 50%
of cases. Even if there is no apparent limitation on the factorization
of 1 + P, (apart from what discussed previously), the factorization of
2™ 4 1 is special and deeply studied.<The worst case for us is when m
is of the form m = 2" — 1 for some r, the best case for us is when m
is a prime, since in the former there are many factors of small degree
(more likely to divide a generic polynomial), and in the latter there are
only a few factors, mostly with high degree (unlikely to divide a generic
polynomial).

In conclusion, there are many values of m that can be chosen in
order to maximize the probability that condition (3.4) holds and so in
previous papers we. have referred to this condition as a ”non-restrictive”
hypothesis (since we are free to construct our codes as we like).

4. Conclusions and further research

The codes introduced by R. Bresnan are interesting, both from a
mathematical point of view and from an engineering point of view. In
this paper we have generalized his construction to l_Tl—rate codes, im-
proving on previous results ([6], [31]). With the Bresnan codes, the
codes so obtained share similar dimension properties and the same ease
of implementation ([32]). Although we believe they share also similar
girth conditions, this issue is still under active investigation.
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