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AMENABILITY AND WEAK AMENABILITY OF
TRIANGULAR BANACH ALGEBRAS

A. R. MEDGHALCHI, M. H. SATTARI AND T. YAZDANPANAH

ABSTRACT. Let A and B be Banach algebras and let. X’ be a Banach
A, B-module. Let 7 = A )é
Banach algebra. Forrest and Marcoux have studied the n-weak
amenability of triangular Banach algebras. We show that when
A has a bounded approximate identity and-&" is essential, then 7
is weakly amenable if and only if A and B are weakly amenable.
We also study the amenability of triangular Banach algebras and
show that 7 is amenable if and only if A and B are amenable and
X ={0}.

be the corresponding triangular

1./ Introduction

Let A and B be Banach algebras and X be a Banach A, B-module.
That is, X is a left Banach A-module, a right Banach B-module, (az)b =
a(zb) for a'€ A, b € B, r € X and there exists a constant k0 such that

Fazb |< & [l a (Il 2 [ & 1.

X is said to be essential provided that for every x € X' there are a € A,
b € B and y,z-€ X such that x = ay = zb. Let X* be the topological
dual of . Then X* is a Banach B, A-module via the following actions

(z,bx*) = (xb, x™*), (x,z*a) = (az, x*)
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forallae A, be B, z € X and z* € X™*.
For z € X and z* € X* we define zz* € A* and z*z € B* by

(a,zx*) = (azx,x*), (byz*z) = (xb,z*) (a € A, b€ B).

Similarly for z € X, F, € A* and G5 € B** we define Fox € X** and
zGo € X** via the actions (c.f.[6])

(z*, Fox) = (zx*, Fy), (z*,2Gs) = (z*x,Gs) (z* € X*).

We may continue this process to higher order dual spaces of X, and X' (27)
is a Banach A, B-module, X(>*~1 ig a Banach B, A-module, A" x C
X(Qn),XB(Qn) C X(Zn)’X‘)(@n—l) C A(?n—l) and X(2n_1)X C B(Zn—)
for all n > 0.

A Banach A, B-module X is called non-degenerate if Az = {0} implies
z =0 and zB = {0} implies z = 0 for all z € X When A and B have
bounded approximate identities and X is essential, then X is a non-
degenerate Banach A, B-module. Also when X is essential, then X' is a
non-degenerate Banach B, A-module.

Let X be a Banach A-bimodule. Al derivation'd: A — X is a linear
map such that d(ab) = 6(a)b + ad(b) for all a,b € A. The derivation o
is inner if it is of the form d(a) = dz(a) = ar — za for some z € X.
The linear space of all bounded derivations from A to X is denoted by
Z1(A, X) and the linear subspace of all inner derivations by N1 (A, X).
The first Hochschild cohomology. group of A with coefficients in X is
defined to be the linear space H'(A, X) = Z1(A, X)/N1(A4, X) [15]. A
Banach algebra A is said to be.amenable if H!(A, X*) = {0} for every
Banach A-bimodule Xu(see, [1], [2], [3], [9], [10], [11], [12], [13]). A
Banach algebra A i weakly amenable if H!(A, A*) = {0} ([1], [14],
[17], [18], [19]) and"A is called n-weakly amenable if H*(A, A™) = {0},
where A™ is the n-thrdual module of A when n > 1 and is A itself
when n = 0 ([4]).

Forrest and Marcoux in [7] have studied a class of Banach algebras,
which is(called triangular Banach algebras. They have studied the n-
weak amenability of triangular Banach algebras in [8]. They consider the
casesswhere A and B have units and X is unital Banach A, B-module.

Let A and B be Banach algebras and X’ be a Banach A, B-module. We
define the corresponding triangular Banach algebra T = ['A Z] with
the usual 2 X 2 matrix operations and obvious interval module actions,
and the norm
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a x
o sJi=tan ezl
In this paper A and B are Banach algebras, X is a Banach A,B- mod-
ule and T = ['A Z] is the corresponding triangular Banach algebra.

2. (2n — 1)-weak amenability

Forrest and Marcoux in [8] proved the following theorem.

Theorem 2.1. If for every continuous derivation D : 'T -y 7(n=1)
there exist continuous derivations §; : A — A2 - B — B2n-1)

and an element ¢g € X2~V such that for all [0 b] eT

il ip= [ ]

then HY(T, T 1) ~ HY(A, AP D) o HY(B, BE»—1),

Proof. See [8, Lemma 3.2, Theorem 3.4 and Theorem 3.7]. O

It is easy to see that module-actions on 7"V and 7" are as
follows:

a X Fop don _ alFy, aga, + Gy
0 b 0 ng o 0 bGQn ’

o, d)2n |le T _ Fyna F2n$+¢2nb
0. Gop 0 b] | O Gaonb ’

[a fﬂ] : [92n1 ¢2n1] [a92n 1+ Zdom—1 b¢2n1]
0 b 0 pon bpan—1]’

Om—1 Pon—1| |a =z 2n 1a bon—10a
0 pop—1 Pon—1b+ pop_1w

Om—1  Pon—1 (2n—1) Fon  ¢on (2n)
for all [0 b] €T, [ 0 ‘Pan] €T and 0 Gy e TEm,
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With simple calculations we can prove the following lemmas which
are left to reader.

Lemma 2.2. Let A(B) have a bounded approzimate identity and let
T: A— X5T : B — X*) be a bounded right A-module ( left B-
module ) homomorphism. Then there is xf € X* such that T(a) =
zja (T(b) = bxy) for all a € A (b € B).

Lemma 2.3. Let n be a positive integer and let D : T — T be a
derivation. Then

o1 A— AM 84 : B = B
i 0 and 0 0
D a@=mo(; o 510) =m(0([g,_g])
are bounded derivations,
T:A— XM StB— x(™
il 0 and 0 0
D\ @ =y o s0) =w(n([g )
are right (left) A-module and left (right) B-module homomorphisms, re-
spectively.

Proposition 2.5. Let A have a bounded approximate identity and
ACn=1) =1 gng X@n=1) benon-degenerate. Then H' (T, T(2»—1)
~ HI(A, A(?n—l)) D HI(B, B(Zn—l))'

Proof. Let D : T — T@=1 be a derivation. By Lemmas 2.1, 2.3 and

2.4 there exist derivations d; : A — ACn=1) and 04 : B — B2n—1)
and ¢y € X221 guch that

ol [ % -

reoe s aa o o= 0 ;%]

PRGB!

oy o=

then for all a € A,
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It follows that (¢ + bgo)a = 0 and fa = 0, (a € A). Since X2~ and
A1) are non-degenerate, we get ¢ = —bgg, # = 0 and D( [8 2]) =
0 —bepo
0 d4(b) |

LetaEA,xEX,bEBandD([g g]):[g z].Wehave

0 ¢|la O n 0 z| [01(a) ¢oa|l [0 O
0 ¢ (0 O 0 0 0 0| |0 o
Consequently ¢a = 0 and (0 + z¢g)a = 0. Since A" Dand X1

are non-degenerate, we obtain that ¢ = 0 and 0 = —z¢g. A similar
calculation shows that ¢ = ¢gz.

a x|, |di(a) —zdo Poa — by a T
Therefore D( [0 b]) = [ 0 54(b) + doz for all 0 bl € T
and the result follows from Lemma 2.2. O

Corollary 2.6. Let A have a bounded approximate identity, B be a
Banach algebra such that B> = B-and X be an essential Banach A, B-
module. Then

HYT, T*) =M (A AY) @ H (B, BY).

Dales, Ghahramani and Gronbaek [4, proposition, 1.3] have shown
that if A is a weakly amenable Banach algebra, then A2, the linear span
of products of elements in"A, is dense in A (c.f. [10], [11], [12]). Hence
A* is non-degenerate.

Corollary 2.7. Let A or B have a bounded approximate identity and
let X be essential.. Then T is weakly amenable if and only if A and B
are weakly amenable.

Proof. It is easy to see that A* , B* and X* are non-degenerate. [

Theorem 2.8. Let A and B have bounded approzimate identities. Let
n >0, X and X2 be essential Banach A, B-modules. Then

HI(T, T(Zn—l—l)) ~ 7‘[1(.4, A(Zn—l—l)) D HI(B, B(?n—l—l))'



62 Medghalchi, Sattari and Yazdanpanah

Proof. Without loss of generality, we can assume that {e,}, {fo} and

{[600‘ f(,)]} be bounded approximate identities of A, B and T, respec-
«

tively. By Lemmas 2.1, 2.3 and 2.4 there exist derivations d; : A —
A+ and 6, : B — BEH) gy € X2t and 4y € XD guch
that

D([g 8]) = [61(()a) ¢8a], D([g 2 = [8 6%2)] (a € A, be B).

By [3, Proposition, 2.9.7], we have ¢y = —¢( and therefore

oo 3=l o)

~—

Let x = ay = zb be an arbitrary element of X and let

0 z|, [0 bon, 0 yly [0, &b,
o P o e )
Then
D 0 z|, _ a0'2n+1 0| [—=¢o 0 ] _|=zdo O
Qo o =1 0" goa] = [ 0 “gpourib] ~| 0 gua]
Therefore D([g gg]) = [61(a) 0_ Zo 6(5(()5):—%020] and the proof is

completed by Lemma 2.2

3.:(2n)-weak amenability

In [8] Forrest and Marcoux defined the following sets. For each posi-

tive integer n, we denote the centralizer of A in A2 ag
ZAAC) = Fy, € AP | Fypa = aFy, for all a € A}.
For Fy, € A®Pand Gy, € B®™ we consider the map pr,, ¢y, : X —
X2 defined by £ +—— Fopx — xGoy,. The set
ZRA,B(Xa X(Zn)) = {IOF2n7G2n X — xCn) | Fon € ZA(A(Zn))a Gon €
Z5(BE)}

is called central Rosenblum operators on X’ with coefficient in X", We

also have Hom 4 5(X, X)) = {¢ : X — X | ¢ is left A-module
and right B-module homomorphism }.
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Forrest and Marcoux [8] proved the following theorem.

Theorem 3.1. Let n be a positive integer and let A and B be (2n)-
weakly amenable. Let for every continuous derivation D : T — T2,
there ezist derivations 6, : A — A" and 6, : B — B an element

bo € X and a continuous map p: X — X1 such that [8 ﬂ -
d1(a) agy — Pob + p(x)

0 d4(b)
xd4(b). Then

HY(T, T?) ~ Hom 4 5(X, X))/ ZR 45 (X, X M),

, plaz) = d1(a)z + ap(z) and p(xb) = p(z)b+

Now we have the following theorem.

Theorem 3.2. Let A or B have a bounded approzimate identity, and
AC B and X be non-degenerate. If A and B are (2n)-weakly
amenable, then

HY(T, T) ~ Hom 4 5(X; X)) ZR 4 p(X, X M),

Proof. Without loss of generality we may assume that A has a bounded
approximate identity. Let D : 7 — 7% be a derivation. It is easy to

see that w4 (D @ Ol _ 0 for all a € A. By Lemmas 2.1, 2.3 and 2.4
0 0

there exist derivations &; .4 — A2 and 64 : B — B2 and ¢ €
(2n) a Oy _ [0i(a) ado 0 0fy _

X such that D([0 0]) [ 0 0 and 74 (D( 0 b )) = 04(b)

for all a € A, b€ B.

For b € B-et D( [8 2]) = [FS” gfiz)] . Then for all a € A we have

51 (a) a¢0 0 0 + a 0 FQn ¢2n . 0 0
0 0110 b 0 0[| 0 d40)] |0 Of
Since A" and X" are non-degenerate, Fa, = 0, ¢ = —¢ob and

oo 3=l sio)

For z € X, let D([g g]) = [FS” 22”] Then for each a in A, bin B
2n
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0 ¢0b 0 =x + 0 0 an ¢2n . 0 0
0 0,®)[ 0 0] |0 Bl| 0 Gl [0 O]

o | A o S

Therefore Fo, = Go, = 0. We define p : X — X (2n) by

z — o (D( [8 ﬁ] ))- A simple calculation shows that p(az) = §1(a)z +
ap(z) and p(zb) = p(z)b + zd4(b) for all a € A, b € B. By Theorem 3.1
the proof is completed. O

Let A be a Banach algebra. We consider the triangular Banach alge-
bra

A

where 75 denotes the algebra of 2 X 2 upper triangular matrices.

Proposition 3.3. Let A be a Banach algebra with a bounded approzi-
mate identity. If A is (2n)-weakly amenable:and A?™ is non-degenerate,
then T = Ta ® A is (2n)-weakly amenable.

Proof. By Theorem 3.2 it isstufficient to show that Hom 4 4 (A, A?™)
~ Z4 (A, AC). et (eq) bé a bounded approximate identity of A
and let ¢ : A — A®™ be a Asmodule homomorphism. There exist
E € AP" and assubnet.{$(es)} of {¢(en)} such that ¢(es) — E
in the weak® topology. A simple calculation shows that for every a
in A; ¢(a) = aB'= Fa. Therefore E € Z4(AP) and ¢ = ppp €
Z4, A(A, AP, O

Theorem 3.4.. . Let A and B have bounded approximate identities. Let
n be a positive integer, X and X"~V be essential Banach modules. If
A and B are (2n)-weakly amenable, then

HY(T, T ~ Homg (X, XC™) | ZR 4 5 (X, X)),
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Lemma 3.5. Suppose that T is 2-weakly amenable. Then there exist
Fy € ZA(A™) and Gy € Zp(B**) such that for every x in X; & =
xGog — Fox where & is the canonical image of x in X**.

i o a T 0 z
Proof. Tt is easy to see that D : T — T** defind by o »l 1o o
is a continuous derivation. Therefore there are Fy € A**, Gy € B** and
z§* € A* such that D = 5{F0 xo} So that for every a € A,b € B and

0 Go
z € X we have

0 z| _ |a z||Fo z"| |[Fo zp"[|a =
0 0f |0 b||0 Gy 0 “Go| [0B
aFy — Fya azy* +xGo —Fox — z5*b
0 bGo — Gob '

Hence Fy € ZA(A*), Gy € Zg(B**) and for every z in X, & = G —
F()I. O

" A Al o
Proposition 3.6. Let T/= A for some nonnegative integer
m. Suppose that T is (2n)-weakly amenable for some positive integer n.
Then A has a bounded-approzimate identity.

Proof. T is 2-weakly amenable by [4, Proposition, 1.2]. So there exist
Fy,Go € Z4(A™) such that & = Gy — Fyz (z € AM™) by Lemma, 3.5.
If m is odd.then for all a* € A*;a* = a*(Gy — Fy) = (Gy — Fp)a*, and if
m is even then for all a € A;4 = a(Fy — Gy) = (Fy — Gp)a. So in both
cases it'is easy to see that Gy — Fj is a mixed unit for 4** and hence A
has a bounded approximate identity. O

It is well known that for a Banach algebra A its second dual A** is a
Banach algebra when equipped with the first or second Arens products
(for more details see [6]). Recall that a Banach algebra A is called a
dual Banach algebra if there is a closed submodule X of A*such that
A= X" (see [19, 4.4.1]).
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Proposition 3.7. Let A be a second dual of a Banach algebra or a
A A(2m)

A
Suppose that T is (2n)-weakly amenable for some positive integer n.
Then A has an identity.

dual Banach algebra and T = for some positive integer m.

Proof. Without loss of generality, we may assume that A is a dual
Banach algebra or the second dual of a Banach algebra with the first
Arens product. 7T is 2-weakly amenable by [4, Proposition, 1.2]. So
by Lemma 3.5 there exist F,Go € Z4(A®*) such that for all z €
AC™). & = £Go — Fyx. Therefore d = a(Gy — Fy) = (Go—Fp)a for all a
in A. Suppose that 7 : X — X(**) is the canonical embedding, where
X is the predual of A. Put e = 7*(Gy — Fp). For a €. A we have

(z,ea)

So e is a right identity for A. Now if A is a dual Banach algebra, similarly
e is a left identity for A, and if A is the second dual of Banach algebra
B, then for a € A there existsmet {b,} in B such that b, — a in the
weak™® topology.

(r,ae)y = (ex,a):lién(ba,e@

= lim(n(zb,), Go — Fo) = lim(n(zb,), Go — Fp)

= lim(#(x),b) = lim(z,b) = (z,a) (2 € X).

« «

Therefore e is a right identity for A and so A has an identity. (|

Corolollary 3.8. Let A be the second dual of a Banach algebra or a

dual Banach algebra and let T = [A j] Suppose that T is (2n)-

weakly amenable for some positive integer n. Then T is (2n)-weakly
amenable for all positive integer n.
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4. Amenability of the triangular Banach algebra T

In this section we give a necessary and sufficient condition for the
amenability of 7.

A X
0 B
then A and B have bounded approzimate identities and X is neo-unital.

Theorem 4.1. If T = has a bounded approximate identity,

Qg Tq
0 by
For any a € A, we have

Aq To a 0] | awa O a 0
R IR T S
and hence an,a — a. Similarly aa, — @ andthus {a,} is a bounded

approximate identity for 4. Similarly {b,} is a bounded approximate
identity for B. For any =z € X,

Aq To 0 z | |0 aupx 0 =z
R RN SR kR
so that a,z — x and thus by Cohn factorization theorem X = A.X
and similarly X = X.B. O

Proof. Let { [ ] } be a bounded approximate identity for 7.

Now we prove the main theorem of this section.

Theorem 4.2. T 4s. amenable if and only if both A, B are amenable and
X =0.

Proof. Let A and B be amenable and X = 0. Since 'Sl 8 ] ~

A, [6‘ g]/[“g 8] ~ B, theclosedideal[ﬁl 8] of T and

. A 0 A 0 _
the 'quotient algebra [ 0 B ] / [ 0 0 ] are amenable and thus 7 =

[ 'Sl g ] is amenable. For the converse, suppose that 7 is amenable.

Since [A A

0 0 ] is a closed ideal of 7T, the quotient algebra
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[ "Sl /l‘; ] / [ 'Sl /(‘; ] is amenable. On the other hand [ "Sl /l‘; ]
A X . . . 0 x|.
/ [ 0 0 ] ~ B, thus B is amenable. Similarly, since [ 0 B ] is

a closed ideal of 7 and [ A& /[0 *

0 B | 0 B ] ~ A, the Banach algebra

A is amenable. Since 7 is amenable and [ 8 ;(\; ] is a closed ideal of

T which is complemented in T, 8 0 ] is amenable and thus it has

a bounded approximate identity. However this is not“pessible unless

X =0. O
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