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Abstract. The notion of an action of a locally compact quantum
group on a von Neumann algebra is studied from the amenability
point of view. Various Reiter’s conditions for such an action are
discussed. Several applications to some specific actions related to
certain representations and corepresentaions are presented.

1. Introduction

In order to extend some theories of harmonic analysis from abelian
locally compact groups (especially, to restore the so-called Pontrjagin
duality theorem) to non-abelian ones, a more general object—Kac alge-
bra, which covers all locally compact groups— was constructed by some
authors in early 70’s, whose complete account can be found in [7]. The
notion of quantum group was introduced by Drinfeld and improved by
others using an operator algebraic approach. Their approach did not
satisfy some axioms of the Kac algebras and instigated more efforts to
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2 Ramezanpour and Vishki

introduce a more general theory. Some improvements in this direction
were made by Woronowicz, Baaj, Skandalis and Van Daele. Finally,
Kustermans and Vaes [9, 10] introduced the concept of locally compact
quantum group along a comprehensive set of axioms which covers the
notion of Kac algebras [7], and also quantum groups. Some of the most
famous locally compact quantum groups (which have been extensively
studied in abstract harmonic analysis) are L∞(G) and VN(G), in which
G is a locally compact group. In spite of the fact that these two algebras
have different feature in abstract harmonic analysis, they have mostly
a unified framework from the locally compact quantum group point of
view. Some aspects of abstract harmonic analysis on locally compact
groups are intensively extended by Runde [15, 16] to the framework of
locally compact quantum groups. The same discipline continued by the
authors in [14]. Daws and Runde [17] introduced the Reiter’s proper-
ties P1 and P2 for a general locally compact quantum group. Following
[17], here we present a slightly different approach to give various Reiter’s
properties for the action of a locally compact quantum group on a von
Neumann algebra. This method generalizes not only several results of
[2, 3, 11, 12, 18] but also allows us to give shorter proofs for the main
results of [17] .

We first fix some notations. If H is a Hilbert space, then B(H) and
K(H) denote the algebra of all bounded and compact operators on H,
respectively. For B, a ∗-algebra, M(B) denotes the multiplier algebra of
B. As usual, ⊗ denotes tensor product; depending on the context, it may
be the algebraic tensor product of linear spaces, the tensor product of
Hilbert spaces, the minimal tensor product of C∗-algebras or the tensor
product of von Neumann algebras. If E and F are operator spaces, as
in [5], we denote the completely bounded operators from E to F by
CB(E,F ) and use ⊗̌ and ⊗̂ to denote the injective and projective tensor
product of operator spaces, respectively; it should mentioned that in the
C∗-algebraic setting the injective and minimal tensor products coincide.
For n ∈ N, the n-th matrix level of E is denoted by Mn(E) and for
a linear map T : E → F , we write T (n) : Mn(E) → Mn(F ) for the
n-th amplification of T . If H is a Hilbert space, we denote the column
operator space over H by Hc.
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Reiter’s properties for the actions of quantum groups 3

2. Amenability of (N, α)

Here, we introduce the amenability of (N, α), where α is a left ac-
tion of a Hopf-von Neumann algebra (M,Γ) on a von Neumann algebra
N. Then, we investigate some of its equivalent formulations. First, we
formulate briefly the notions of Hopf-von Neumann algebras.

Definition 2.1. A Hopf-von Neumann algebra is a pair (M,Γ), where
M is a von Neumann algebra and Γ : M −→ M⊗M is a normal, unital
∗-homomorphism satisfying (ι⊗ Γ)Γ = (Γ⊗ ι)Γ.

Let (M,Γ) be a Hopf-von Neumann algebra. Then, the unique pre-
dual M∗ of M turns into a Banach algebra under the product ∗ given
by:

(ω ∗ ω′)(x) = (ω ⊗ ω′)(Γ(x)) (ω, ω′ ∈ M∗, x ∈ M).

Let G be a locally compact group. For the so-called Hopf-von Neu-
manna algebras (L∞(G),Γa) and (VN(G),Γs), we use the notations Ha

and Hs, respectively, where,

Γa(f)(s, t) = f(st) (f ∈ L∞(G), s, t ∈ G),
Γs : VN(G) −→ VN(G)⊗VN(G), λ(t) −→ λ(t)⊗ λ(t) (t ∈ G),

in which, λ is the left regular representation of G on L2(G). It is worth-
while mentioning that for Ha the product ∗ imposed on L1(G) is just the
usual convolution on L1(G), whereas for Hs it yields the usual pointwise
product on A(G).

For the rest of this section we fix a Hopf-von Neumann algebra H =
(M,Γ). A state M of M is called a left invariant mean for H if

M((ω ⊗ ι)(Γ(x))) = ω(1)M(x) (ω ∈ M∗, x ∈ M).

If there is a left invariant mean on H, then we call H left amenable. We
shall require the notion of left amenability for a more general case, as
presented in the next definition.

Definition 2.2. Let H be a Hopf-von Neumann algebra, and let N be
a von Neumann algebra. A left action of H on N is a normal, injective
∗-homomorphism α : N −→ M ⊗ N such that (ι ⊗ α)α = (Γ ⊗ ι)α. A
state N of N is called an α-left invariant mean if

N((ω ⊗ ι)(α(y))) = ω(1)N(y) (ω ∈ M∗, y ∈ N).
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4 Ramezanpour and Vishki

If there is an α-left invariant mean on N, then we call (N, α) left
amenable.

Definition 2.3. Let H = (M,Γ) be a Hopf-von Neumann algebra. We
say that U is a unitary left corepresentation of H and write U ∈ CR(H)
if there is a Hilbert space HU such that U is a unitary element of M⊗
B(HU ) with (Γ⊗ ι)(U) = U13U23.

Example 2.4. (i) The comultiplication Γ is a left action of H on M
and H is amenable if and only if the pair (M,Γ) is left amenable.

(ii) If U ∈ CR(H),then αU : B(HU ) −→ M⊗B(HU ), where αU (x) =
U∗(1 ⊗ x)U (x ∈ B(HU )) is a left action of H on B(HU ) and
(B(HU ), αU ) is left amenable if and only if U is left amenable in
the sense of [2, Definition 4.1]. Moreover, (Γ⊗ ι)(U∗) = U∗23U

∗
13

and αU∗ is also a left action of H on B(HU ). (B(HU ), αU∗) is
left amenable if and only if U is right amenable in the sense of
[2, Definition 4.1].

(iii) If G is a locally compact group and π is a unitary representation
of G on a Hilbert space Hπ, then απ : B(Hπ) −→ L∞(G) ⊗
B(Hπ) ' L∞(G,B(Hπ)), where απ(T )(s) = π(s−1)Tπ(s) (T ∈
B(Hπ), s ∈ G) is a left action of Ha on the von Neumann algebra
B(Hπ). (B(Hπ), απ) is left amenable if and only if π is amenable
in the sense of [3, Definition 1.1].

(iv) If G is a locally compact group and s −→ βs is an action of G
on the von Neumann algebra N, then αG : N −→ L∞(G)⊗N '
L∞(G,N), where αG(y)(s) = βs−1(y) (y ∈ N, s ∈ G) is a left
action of Ha on N. Moreover, by [6, Proposition I.3] there is a
bijective correspondence between actions of G and left action of
Ha on the von Neumann algebra N. (N, αG) is left amenable if
and only if N is G-amenable in the sense of [11, Definition 3.1]
or G acts amenably on N∗ in the sense of [18, Definition 1.4].

We commence with the following proposition.

Proposition 2.5. For a Hopf-von Neumann algebra H, the following
assertions are equivalent:

(i) H is left amenable.
(ii) For every von Neumann algebra N and every left action α of H

on it, (N, α) is left amenable.
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Reiter’s properties for the actions of quantum groups 5

Proof. (ii)⇒(i) is clear. For the converse, let M be a left invariant
mean for H, and fix any state ν ∈ N∗ and define N ∈ N∗, by N(y) =
M((ι⊗ ν)(α(y))) (y ∈ N). For ω ∈ M∗ and y ∈ N, we have

N((ω ⊗ ι)α(y)) = M((ω ⊗ ι⊗ ν)(ι⊗ α)α(y))
= M((ω ⊗ ι⊗ ν)(Γ⊗ ι)α(y))
= M((ω ⊗ ι)Γ((ι⊗ ν)α(y)))
= ω(1)N(y),

that is, N is an α-left invariant mean. �

For the left action α of H on N, let α∗ denote the restriction of the
adjoint of α to (M ⊗ N)∗. Thus, we have, α∗ : M∗⊗̂N∗ −→ N∗ [5,
Corollary 4.1.9]. The following result needs a standard argument which
is skipped here.

Proposition 2.6. Let α be a left action of H on a von Neumann algebra
N Then, the following assertions are equivalent:

(i) For any ε > 0 and any finite subset {ω1, ω2, ..., ωn} of M∗, there
exists a state ν ∈ N∗ such that ‖α∗(ωk ⊗ ν) − ωk(1)ν‖ < ε, for
k = 1, 2, ..., n.

(ii) There is a net {νi} of states in N∗ such that limi ‖α∗(ω ⊗ νi)−
ω(1)νi‖ = 0, for all ω ∈ M∗.

(iii) There is a net {νi} of states in N∗ such that α∗(ω ⊗ νi) −
ω(1)νi

w−→ 0 in N∗, for all ω ∈ M∗.

We say that a pair (N, α) has the Reiter’s property FP1 if it satisfies
one of the equivalent conditions of Proposition 2.6. In the cases pre-
sented in parts (i), (iii) and (iv) of Example 2.4, we respectively have:
(M,Γ) has Reiter’s property FP1 if and only if the condition (xi) of
[8, Theorem 2.4] holds. (B(Hπ), απ) has Reiter’s property FP1 if and
only if the representation π satisfies condition (iii) of [3, Theorem 3.6],
and (N, αG) has Reiter’s property FP1 if and only if s → βs satisfies
condition (3) of [18, Corollary 1.12].

For an action α of H on a von Neumann algebra N, we define the
closed linear subspace LUC(N, α) of N by

LUC(N, α) = span{(ω ⊗ ι)α(y); y ∈ N, ω ∈ M∗}.
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6 Ramezanpour and Vishki

Since (ω ⊗ ι)α(1) = ω(1)1 and ((ω ⊗ ι)α(y))∗ = (ω̄ ⊗ ι)α(y∗), where
ω̄(x) = ω(x∗), LUC(N, α) contains the identity and is also self adjoint.

In the cases (i), (iii) and (iv) of Example 2.4, we respectively have:
LUC(M,Γ) = LUC(G) as defined in [16, Definition 2.2], LUC(B(Hπ), απ)
= X(Hπ) as defined in [3, Definition 3.1] and LUC(N, αG) = UC(N) as
defined in [18, Definition 1.5].

The next result contains some fairly familiar characterizations of
amenability of an action which covers [8, Theorem 2.4], [1, Proposi-
tion 6.4], [3, Theorem 3.5, 3.6] and [18, Proposition 1.10, Corollary 1.12]
for the special cases presented in Example 2.4, respectively. See also [16,
Theorem 3.4].

Lemma 2.7. Let α be a left action of H on a von Neumann algebra N.
Consider the following assertions:

(i) (N, α) has Reiter’s property FP1.
(ii) (N, α) is left amenable.
(iii) There is a left invariant mean on LUC(N, α).

Then, (i) ⇔ (ii) ⇒ (iii) and these are equivalent in the case where
M∗ has a bounded approximate identity consisting of states.

Proof. (i)⇒(ii): A direct verification reveals that any w*-cluster point
of the net {νi}, presented in Proposition 2.6, is an α-left invariant mean.
(ii)⇒ (i): Let N ∈ N∗ be an α-left invariant mean. There exists a net
{νi} of states in N∗ such that νi

w∗−→ N in N∗, and thus α∗(ω ⊗ νi) −
ω(1)νi

w−→ 0 in N∗, for all ω ∈ M∗.
(ii)⇒(iii) is trivial. Just restrict the α-left invariant mean to LUC(N, α).
(iii)⇒(ii): Let {ωi} be a bounded approximate identity for M∗ consisting
of states and let M0 be a left invariant mean on LUC(N, α). Define
N : N −→ C by

N(y) = lim
i∈I

M0((ωi ⊗ ι)α(y)) (y ∈ N).

It is immediate that N is a state on N. Since for each ω ∈ M∗,
limi(ω ⊗ ωi)Γ = limi(ωi ⊗ ω)Γ, we have
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Reiter’s properties for the actions of quantum groups 7

N((ω ⊗ ι)α(y)) = lim
i∈I

M0((ω ⊗ ωi ⊗ ι)(ι⊗ α)α(y))

= lim
i∈I

M0((ω ⊗ ωi ⊗ ι)(Γ⊗ ι)α(y))

= lim
i∈I

M0((ωi ⊗ ω ⊗ ι)(Γ⊗ ι)α(y))

= lim
i∈I

M0((ω ⊗ ι)α((ωi ⊗ ι)α(y)))

= ω(1)N(y).

Therefore, N is an α-left invariant mean on N. �

3. Reiter’s property P1 for (N, α)

We start this section with recalling some basic definitions and prop-
erties of the von Neumann algebraic locally compact quantum groups
developed by Kustermans and Vaes in [9, 10]. We begin with recalling
some notions about normal semi-finite faithful (n.s.f.) weights on von
Neumann algebras [19].

Let M be a von Neumann algebra and let M+ denote its positive
elements. For a weight ϕ on M, let

M+
ϕ := {x ∈ M+ : ϕ(x) <∞} and Nϕ := {x ∈ M : x∗x ∈M+

ϕ}.

Definition 3.1. A locally compact quantum group is a Hopf-von Neu-
mann algebra H = (M,Γ) if

• there is an n.s.f. weight ϕ on M which is left invariant; i.e.,

ϕ((ω ⊗ ι)(Γ(x))) = ω(1)ϕ(x) (ω ∈ M∗, x ∈M+
ϕ ),

• there is an n.s.f. weight ψ on M which is right invariant; i.e.,

ψ((ι⊗ ω)(Γ(x))) = ω(1)ψ(x) (ω ∈ M∗, x ∈M+
ψ ).

For a locally compact group G, we have two locally compact quantum
groups (L∞(G),Γa, ϕa, ψa) and (VN(G),Γs, ϕs, ψs), in which ϕa and ψa
are the left and right Haar integrals, respectively, and ϕs = ψs is the
Plancherel weight on VN(G) [19, Definition VII.3.2].

Let M be in its standard form related to the GNS-construction (H, ι,Λ)
for the left invariant n.s.f. weight ϕ. Then, there exists a unique
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8 Ramezanpour and Vishki

unitary—the multiplicative unitary—W ∈ B(H ⊗H) such that

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)((Γ(y))(x⊗ 1)) (x, y ∈ Nϕ),

Satisfying (Γ⊗ i)(W ) = W13W23 and Γ(x) = W ∗(1⊗ x)W (x ∈ M); see
[10, Theorem 1.2] and [9, p. 913].

Equivalently, the von Neumann algebraic quantum group (M,Γ, ϕ)
has an underlying C∗-algebraic quantum group (A,Γc, ϕc) as discussed
in [9], where,

A = {(i⊗ ω)(W ); ω ∈ B(H)∗}−
‖.‖
,

and Γc and ϕc are the restriction of Γ and ϕ to A and A+, respectively
[10, Proposition 1.7] and [21, Proposition A.2, A.5]. The dual space of
A becomes a Banach algebra with the product ∗c given by (f ∗c g)(x) =
(f ⊗ g)Γc(x) (f, g ∈ A∗, x ∈ A). It canonically contains M∗ as a closed
ideal [9, p. 193].

Similar to the group setting we shall use the following notation: the
locally compact quantum group (M,Γ, ϕ) is denoted by G, and we write
L∞(G) for M, L1(G) for M∗, L2(G) for H, C0(G) for A and M(G) for
A∗.

We shall apply notions such as left amenability and unitary left corep-
resentation to locally compact quantum groups whenever they make
sense for the underlying Hopf-von Neumann algebras and we write CR(G)
instead of CR(H). It should be mentioned that U ∈ CR(G) on a
Hilbert space HU is, in a sense, automatically continuous; i.e., U ∈
M(C0(G)⊗K(HU )) [22, Theorem 1.6].

Before we proceed unit the definitions, let us describe our main aim
with more details. Let G be a locally compact group, p ∈ {1, 2} and
h ∈ Lp(G). The mapping F [h] : G −→ Lp(G), given by F [h](s) =
Ls−1h (s ∈ G), is bounded and continuous, where (Lsh)(t) = h(st) (t ∈
G). G is said to have Reiter’s property Pp if there is a net {hi} of non-
negative, norm one functions in Lp(G) such that for each compact subset
K of G,

lim
i

sup
x∈K

‖F [hi]− hi‖p = 0.

Moreover, these properties are equivalent to the amenability of G [13,
Proposition 6.12]. Let a ∈ C0(G) and define Fa[h] : G −→ Lp(G) by
Fa[h](s) = a(s)Ls−1h (s ∈ G). Since a ∈ C0(G), we have Fa[h] ∈
C0(G,Lp(G)) ∼= C0(G)⊗λ Lp(G), where ⊗λ denotes the injective tensor
product of Banach spaces. It is straightforward to verify that G has
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Reiter’s properties for the actions of quantum groups 9

Reiter’s property Pp if and only if there is a net {hi} of non-negative,
norm one functions in Lp(G) such that for each a ∈ C0(G),

lim
i
‖Fa[hi]− a⊗ hi‖⊗λ = 0.

Since C0(G) is a minimal operator space, C0(G) ⊗λ L1(G) ∼=
C0(G)⊗̌L1(G) and C0(G) ⊗λ L2(G) ∼= C0(G)⊗̌(L2(G))c [5, §8.2]. Daws
and Runde [17], by the canonical embedding C0(G)⊗̌L1(G) and
C0(G)⊗̌(L2(G))c into CB(L∞(G),C0(G)) and CB((L2(G))∗c ,C0(G)), re-
spectively, could extend Reiter’s properties P1 and P2 from locally com-
pact groups to locally compact quantum groups. Our motivation comes
from the fact that C0(G)⊗̌L1(G) and C0(G)⊗̌(L2(G))c can canonically
embed into CB(M(G),L1(G)) and CB(M(G), (L2(G))c), respectively.

Let α : N −→ L∞(G) ⊗ N be a left action of a locally compact
quantum group G on a von Neumann algebra N, and let a, b ∈ C0(G)
and ν ∈ N∗. Define,

Fαa,b[ν] : M(G) −→ N∗, Fαa,b[ν](f) = α∗(bfa⊗ ν); (f ∈ M(G)).

It is immediate that Fαa,b[ν] is bounded.

Proposition 3.2. Let α be a left action of G on N, ν ∈ N∗, and let
a, b ∈ C0(G). Then, Fαa,b[ν] lies in CB(M(G),N∗) and can be identified
with an element of C0(G)⊗̌N∗.

Proof. Let θ be an n.s.f. weight on N, and let (Λθ, ι,Hθ) be the
GNS-construction for it. Since N is in standard form on Hθ, there are
L, S ∈ K(Hθ) such that ν(y) = ν(LyS) (y ∈ N). For f ∈ M(G) and
y ∈ N, we have

(Fαa,b[ν](f))(y) = (bfa⊗ ν)α(y) = (f ⊗ ν)((a⊗ S)α(y)(b⊗ L)).

Let Uα ∈ L∞(G)⊗B(Hθ) be the unitary corepresentation such that U∗α
is the unitary implementation, as defined in [20, Definition 3.6], of the
left action α. Since α = αUα , the mapping

y → (i⊗ ν)((a⊗ S)α(y)(b⊗ L)) : N → C0(G)

is cb-norm limit of a net of finite rank operators in CB(N,C0(G)). By
taking adjoint, Fαa,b[ν] is also cb-norm limit of a net of finite rank op-
erators in CB(M(G),N∗). Thus, Fαa,b[ν] ∈ CB(M(G),N∗) and can be
identified with an element of C0(G)⊗̌N∗. �
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10 Ramezanpour and Vishki

Definition 3.3. Let α be a left action of G on N. We say that (N, α)
has Reiter’s property P1 if there is a net {νi} of states in N∗ such that

lim
i
‖Fαa,b[νi]− ab⊗ νi‖⊗̌ = 0

in C0(G)⊗̌N∗, for all a, b ∈ C0(G).

In the cases (i), (iii) and (iv) presented in Example 2.4, we respectively
have: (M,Γ) has Reiter’s property P1 if and only if G has Reiter’s
property P1 in the sense of [17, Definition 3.3 ]; in particular, G has
Reiter’s property P1 if and only if (L∞(G),Γa) has Reiter’s property P1.
(B(Hπ), απ) has Reiter’s property P1 if and only if the representation π
has Reiter’s property (P1)π in the sense of [3, Definition 4.1]; and (N, αG)
has Reiter’s property P1 if and only if the action s −→ βs satisfies the
condition (iii) of [11, Proposition 3.2] or satisfies the condition (2) of [18,
Proposition 1.13].

For the proof of the main theorem of this section that covers [17, The-
orem 4.5], [11, Proposition 3.2], [3, Theorem 4.3] and [18, Proposition
1.13], we quote the following technical lemma from [17].

Lemma 3.4. ([17, Lemma 4.4]) Let E0, E and F be operator spaces, and
let S ∈ CB(E,E0) lies in the cb-norm closure of the finite rank operators.
Then, for every norm bounded net {Ti} in CB(E0, F ) that converges to
T ∈ CB(E0, F ) pointwise on E0, we have

lim
i
‖Ti ◦ S‖⊗̌ = lim

i
sup
n∈N

sup
f ∈Mn(E)1

‖(Ti ◦ S)(n)(f )‖n = 0,

where Mn(E)1 = { f ∈ Mn(E) ; ‖ f ‖n ≤ 1}.

Theorem 3.5. Let α be a left action of G on N. Then, the following
assertions are equivalent:

(i) (N, α) is left amenable.
(ii) (N, α) has Reiter’s property P1.

Proof. (i)⇒(ii): Let a, b ∈ C0(G) and ω0 ∈ L1(G) be an arbitrary
state. By Lemma 2.7, there exists a net {ν ′i}i∈I of states in N∗ such
that limi ‖α∗(ω ⊗ ν ′i) − ω(1)ν ′i‖ = 0, for all ω ∈ L1(G). For i ∈ I, set
νi = α∗(ω0 ⊗ ν ′i) and define Ti : L1(G) → N∗ by

Ti(ω) = α∗(ω ⊗ ν ′i)− ω(1)ν ′i.
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Reiter’s properties for the actions of quantum groups 11

Thus, limi ‖νi − ν ′i‖ = 0 and the net {Ti}, which lies in CB(L1(G),N∗),
is norm bounded and also converges to 0 pointwise on L1(G).

By Proposition 3.2, S := FΓ
a,b[ω0] ∈ CB(M(G),L1(G)) belongs to the

cb-norm closure of the finite rank operators. For f ∈ M(G), we have

Fαa,b[νi](f) = α∗(bfa⊗ α∗(ω0 ⊗ ν ′i))

= (bfa⊗ ω0 ⊗ ν ′i)(i⊗ α)α
= (bfa⊗ ω0 ⊗ ν ′i)(Γ⊗ i)α
= (bfa ∗c ω0 ⊗ ν ′i)α
= α∗(S(f)⊗ ν ′i).

So, by Lemma 3.4, we have,

lim
i
‖Fαa,b[νi]− ab⊗ νi‖⊗̌ ≤ lim

i

(
‖Ti ◦ S‖⊗̌ + ‖ab⊗ νi − ab⊗ ν ′i‖⊗̌

)
= 0.

This proves that (ii) holds.
(ii) ⇒ (i): Let {νi} be a net satisfying Definition 3.3, and let ω ∈ L1(G).
By the Cohen’s factorization theorem, [4, Corollary 2.9.26], there are
a, b ∈ C0(G) and ω′ ∈ L1(G) such that ω = bω′a. We then have:

lim
i
‖α∗(ω ⊗ νi)− ω(1)νi‖ = lim

i
‖Fαa,b[νi](ω′)− ω′(ab)νi‖

≤ ‖ω′‖ lim
i
‖Fαa,b[νi]− ab⊗ νi‖⊗̌ = 0.

This together with Lemma 2.7 imply that (i) holds. �

Applying Theorem 3.5 together with Lemma 2.7 for the action pre-
sented in Example 2.4 (ii), we have the next result, which provides some
equivalences for the left amenability of U ∈ CR(G), as in [2, Defin-
tion 4.1]. Recall that a locally compact quantum group G is called
co-amenable if the Banach algebra L1(G) has a bounded approximate
identity.

Corollary 3.6. For a locally compact quantum group G, consider the
following assertions:

(i) U ∈ CR(G) is left amenable.
(ii) (B(HU ), αU ) has the Reiter’s property FP1.
(iii) (B(HU ), αU ) has the Reiter’s property P1.
(iv) There is a left invariant mean on LUC(B(HU ), αU ).

Then, (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) and these are equivalent in the case
where G is co-amenable.
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4. Reiter’s Property P2 for (N, α)

Let α : N −→ L∞(G)⊗N be a left action of a locally compact quantum
group G on N. Fix an n.s.f. weight θ on N with the corresponding GNS-
construction (Λθ, ι,Hθ). Let Uα ∈ CR(G), acting on Hθ, be such that
U∗α is the unitary implementation, as defined in [20, Definition 3.6], of
the left action α; in other words, α = αUα on N. Let ξ ∈ Hθ and
a, b ∈ C0(G) and define

Fαa,b[ξ] : M(G) → Hθ by Fαa,b[ξ](f) = (bfa⊗ i)(Uα)ξ.

Then, we have the following result.

Lemma 4.1. Let α be a left action of G on N, ξ ∈ Hθ, and let a, b ∈
C0(G). Then, Fαa,b[ξ] lies in CB(M(G), (Hθ)c) and can be identified with
an element of C0(G)⊗̌(Hθ)c.

Proof. Let L ∈ K(Hθ) be such that Lξ = ξ. Since Uα is automatically
continuous, i.e., Uα ∈M(C0(G)⊗̌K(Hθ)), we have

(i⊗Mξ)((a⊗ 1)Uα(b⊗ L)) ∈ C0(G)⊗̌(Hθ)c,

where Mξ : K(Hθ) → (Hθ)c is the completely bounded map given by
Mξ(S) = Sξ (S ∈ K(Hθ)). From the canonical embedding C0(G)⊗̌(Hθ)c
into CB(M(G), (Hθ)c), we have

(f ⊗Mξ)((a⊗ 1)Uα(b⊗ L)) = Fαa,b[ξ](f).

In other words, Fαa,b[ξ] ∈ CB(M(G), (Hθ)c) and it can be identified with
an element of C0(G)⊗̌(Hθ)c. �

Now, we define the property P2 for a left action of a locally compact
quantum group on a von Neumann algebra; see also [17, Definition 5.2].

Definition 4.2. Let α be a left action of G on N. We say that (N, α)
has Reiter’s property P2 if there is a net {ξi} of unit vectors in Hθ such
that for every a, b ∈ C0(G),

lim
i
‖Fαa,b[ξi]− ab⊗ ξi‖⊗̌ = 0

in C0(G)⊗̌(Hθ)c.

It is obvious that (L∞(G),Γ) has Reiter’s property P2 if and only if
G has Reiter’s property P2 in the sense of [17, Definition 5.2 ].
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Recall that U ∈ CR(G) has the weak containment property (WCP)
if there exists a net {ξi}i∈I of unit vectors in HU such that

lim
i
‖U(η ⊗ ξ′i)− η ⊗ ξ′i‖ = 0 (η ∈ L2(G));

see [2, §5] for details.

Now, we can prove the main result of this section that covers [17,
Theorem 5.4].

Theorem 4.3. Let α be a left action of G on N. Then, the following
assertions are equivalent:

(i) Uα ∈ CR(G) has the WCP.
(ii) (N, α) has Reiter’s property P2.

Proof. (i) ⇒ (ii): Let a, b ∈ C0(G) and let ω0 ∈ L1(G) be an arbitrary
state. Let {ξ′i}i∈I , be a net of unit vectors in Hθ such that

lim
i
‖Uα(η ⊗ ξ′i)− η ⊗ ξ′i‖ = 0 (η ∈ L2(G)),

or equivalently, limi ‖(ω⊗ i)(Uα)ξ′i−ω(1)ξ′i‖ = 0, for all ω ∈ L1(G). For
i ∈ I, set ξi = (ω0 ⊗ i)(Uα)ξ′i and define Ti : L1(G) → Hθ by

Ti(ω) = (ω ⊗ i)(Uα)ξ′i − ω(1)ξ′i.

Then, limi ‖ξi−ξ′i‖ = 0 and the net {Ti}, which lies in CB(L1(G), (Hθ)c),
is norm bounded and also converges to 0 pointwise on L1(G). Let S be
defined as in the proof of Theorem 3.5. Then, for f ∈ M(G),

Fαa,b[ξi](f) = (bfa⊗ i)(ω0 ⊗ i)(Uα)ξ′i
= (bfa⊗ ω0 ⊗ i)((Uα)13(Uα)23)ξ′i
= (bfa⊗ ω0 ⊗ i)((Γ⊗ i)(Uα))ξ′i
= (bfa ∗c ω0 ⊗ i)(Uα)ξ′i
= (S(f)⊗ i)(Uα)ξ′i.

Thus, by Lemma 3.4, we have

lim
i
‖Fαa,b[ξi]− ab⊗ ξi‖⊗̌ ≤ lim

i

(
‖Ti ◦ S‖⊗̌ + ‖ab⊗ ξ′i − ab⊗ ξi‖⊗̌

)
= 0.

(ii)⇒ (i): Let {ξi} be a net satisfying Definition (4.2), and let ω ∈ L1(G).
By the Cohen’s factorization theorem, [4, Corollary 2.9.26], there are
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a, b ∈ C0(G) and ω′ ∈ L1(G) such that ω = bω′a. Thus,

lim
i
‖(ω ⊗ i)(Uα)ξi − ω(1)ξi‖ = lim

i
‖Fαa,b[ξi](ω′)− ω′(ab)ξi‖

≤ ‖ω′‖ lim
i
‖Fαa,b[ξi]− ab⊗ ξi‖⊗̌ = 0,

and this completes the proof. �

Applying Theorem 4.3 for the action presented in Example 2.4 (ii),
we obtain the next result which provides an equivalence for the WCP of
U ∈ CR(G); see [2, Theorem 5.1].

Corollary 4.4. For a locally compact quantum group G, the following
assertions are equivalent:

(i) U ∈ CR(G) has the WCP.
(ii) (B(HU ), αU ) has Reiter’s property P2.

At this stage, we remark that it would be desirable if one could present
the quantum group version of the property (P2)π for U ∈ CR(G), in the
sense of [3, Definition 4.1].

5. The right actions

Since Definition 2.2 and all of its consequences are given in terms of
left actions, a natural question that arises is what happens if we reset our
definition and results with the right actions. Here, we explain further.

Let H and N be a Hopf-von Neumann algebra and a von Neumann
algebra, respectively. A right action of H on N is a normal, injective
∗-homomorphism δ : N −→ N ⊗ M such that (δ ⊗ ι)δ = (ι ⊗ Γ)δ. A
state N of N is called a δ-right invariant mean if

N((ι⊗ ω)(δ(y))) = ω(1)N(y) (ω ∈ M∗, y ∈ N).

If there is a δ-right invariant mean on N, Then we call (δ,N) right
amenable. Two important example of such actions are as follows:

(i) The comultiplication Γ is a right action of H on M and H is
amenable if and only if the pair (Γ,M) is right amenable.

(ii) If V ∈ CR′(H), i.e., there is a Hilbert space HV such that V is a
unitary element of B(HV ) ⊗M with (ι ⊗ Γ)(V ) = V13V12, then
δV : B(HV ) −→ B(HV ) ⊗M, where δV (x) = V ∗(x ⊗ 1)V (x ∈
B(HV )) is a right action of H on B(HV ) and (δV ,B(HV )) is right
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amenable if and only if V is right amenable in the sense of [2,
Defiition 4.1]. Moreover, (ι⊗ Γ)(V ∗) = V ∗12V

∗
13 and δV ∗ is also a

right action of H on B(HV ). (δV ∗ ,B(HV )) is right amenable if
and only if V is left amenable in the sense of [2, Defiition 4.1].

If δ is a right action, then σδ will be a left action of Hop = (M,Γop)
on N, where σ denotes the flip map and Γop = σΓ denotes the opposite
comultiplication. So, we can easily prove the right version of results
presented in the left case. It should be mentioned that we must place
RUC(δ,N) instead of LUC(N, α) in the right version of Lemma 2.7,
where RUC(δ,N) is defined by

RUC(δ,N) = span{(ι⊗ ω)δ(y); y ∈ N, ω ∈ M∗}.
Since RUC(Γ,M) = RUC(G), as defined in [16, Definition 2.2], the right
version of Lemma 2.7 covers [16, Theorem 3.4] and [12, Proposition 4.7].

Let V ∈ CR′(G) act on the Hilbert space HV . Set V̄ = (j ⊗ R)(V ).
Then, V̄ ∈ CR′(G) and HV̄ = H̄V , where j : B(HV ) −→ B(H̄V ) is
the canonical anti-isomorphism given by j(x)(ξ̄) = x∗(ξ) (ξ̄ ∈ H̄V ) and
H̄V is the conjugate Hilbert space of HV . Let HS(HV ) denote the
Hilbert space of the Hilbert-Schmidt operators on HV . Let Θ : HV ⊗
H̄V −→ HS(HV ) be the canonical isometric isomorphism which is given
by Θ(ξ ⊗ η̄)(ζ) = 〈ζ, η〉ξ (ξ, ζ ∈ HV , η̄ ∈ H̄V ). Define a normal unital
∗-isomorphism,

Θ̃ : B(HV ⊗H̄V ) → B(HS(HV ) by Θ̃(T ) = ΘTΘ∗ (T ∈ B(HV ⊗H̄V )),

and also define the Hilbert-Schmidt operator VHS by VHS = (Θ̃⊗ ι)(V ×
V̄ ), where V × V̄ ∈ CR′(G) is given by V × V̄ = V13V̄23. Then, VHS ∈
CR′(G) and HV

HS
= HS(HV ).

Now, apply the right case version of Theorem 4.3 for V ∈ CR′(G) to
obtain the next result which provides some equivalences for the property
(P̌2) of V ∗, as in [12, Definition 4.2(a)]; see [12, Proposition 4.5].

Corollary 5.1. Let V ∈ CR′(G) act on the Hilbert space HV . Then,
the following assertions are equivalent:

(i) VHS has the WCP.
(ii) V ∗ has property (P̌2).
(iii) (δV

HS
,B(HS(HV ))) has Reiter’s property P2.

(iv) (δ(V×V̄ ),B(HV ⊗ H̄V )) has Reiter’s property P2.
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Proof. Since for every ξ ∈ HS(HV ) we have F
δ
VHS
a,b [ξ] = F

δV×V̄

a,b [Θ∗(ξ)],
the proof is straightforward. �
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