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Abstract. Mirror-symmetric matrices have important applications
in studying odd/even-mode decomposition of symmetric multicon-
ductor transmission lines (MTL). In this paper, we propose an it-
erative algorithm to solve the mirror-symmetric solution of matrix
equation AXB + CY D = E. With it, the solvability of the equa-
tion over mirror-symmetric X, Y can be determined automatically.
When the equation is consistent, its solution can be obtained within
finite iteration steps, and its least-norm mirror-symmetric solution
can be obtained by choosing a special kind of initial iteration ma-
trices. Furthermore, the related optimal approximation problem is
also solved. Numerical examples are given to show the efficiency of
the presented method.

1. Introduction

Real or complex matrices of rather high order are commonly en-
countered in real physical systems analysis. Usually, a physical sys-
tem possesses certain geometrical symmetry. Mirror symmetry is the
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most common one. Interaction matrices of mirror-symmetric structures
are centrosymmetric while one component or only one component is on
the mirror plane. Centrosymmetric matrices play an important role in a
number of areas such as pattern recognition, antenna theory, mechanical
and electrical systems, quantum physics, and electrical packaging analy-
sis [1]. While there is more than one component on the mirror plane, the
mirror-symmetric matrix, which is originally proposed by Li and Feng
[2], is the one and the only one that can reflect the structure properly.
The background for introducing the concept of mirror-symmetric matrix
is to study odd/even-mode decomposition of symmetric multiconductor
transmission lines (MTL) [2, 3, 4].

Definition 1.1. An (r, p)-mirror matrix W(r,p) is defined by

W(r,p) =

 Jr

Ip

Jr

 ,

where Ip is the p-square identity matrix and Jr is the r-square back-
ward identity matrix with ones along the secondary diagonal and zero
elsewhere.

The dimension of the (r, p)-mirror matrix is n = 2r + p, where r ≥
1, p ≥ 0. The (r, p)-mirror matrix W(r,p) is orthogonal and symmetric,
i.e., W−1 = W T = W . When p = 0 or 1, mirror matrix W(r,p) is
backward identity matrix Jn.

Definition 1.2. A matrix M ∈ R(2r+p)×(2r+p) is called the (r, p)-mirror
symmetric matrix if and only if

(1.1) M = W(r,p)MW(r,p).

We denote the set of all (r, p)-mirror-symmetric matrices by MS(r,p).

From Definition 1.2, it is easy to see that the (k, 1)-mirror-symmetric
matrices and the (k, 0)-mirrorsymmetric matrices are centrosymmetric
matrices. That is to say, all centrosymmetric matrices are the spe-
cial cases of mirror-symmetric matrices; i.e., when p = 0 or 1, mir-
ror matrix W(r,p) is backward identity matrix Jn. Then, (1.1) becomes
M = JnMJn, which is the definition of centrosymmetric matrices [5].

Throughout this paper, we denote the sets of all m× n real matrices
by Rm×n. For a matrix A ∈ Rm×n, we denote its transpose by AT . On
Rm×n we define inner product: 〈A,B〉 = trace(BT A), for all A,B ∈
Rm×n. Then, Rm×n is a Hilbert inner product space and the norm of a
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matrix generate by this inner product is the Frobenious norm, denoted
by ‖.‖.

We study the following problems.

Problem I. For given matrices A ∈ Rs×(2r+p), B ∈ R(2r+p)×t, C ∈
Rs×(2h+q), D ∈ R(2h+q)×t, and E ∈ Rs×t, find X ∈ MS(r,p) and Y ∈
MS(h,q) such that

(1.2) AXB + CY D = E.

Problem II. When Problem I is consistent, let SE be the set of mirror-
symmetric solution of Problem I. For given matrices X̄ ∈ MS(r,p) and
Ȳ ∈ MS(h,q), find [X̃, Ỹ ] ∈ SE such that

(1.3) ‖X̃ − X̄‖2 + ‖Ỹ − Ȳ ‖2 = min
[X,Y ]∈SE

[‖X − X̄‖2 + ‖Y − Ȳ ‖2].

In fact, Problem II is to find the optimal approximation solutions
to the given matrix pair [X0, Y0]. Problem II occurs frequently in ex-
perimental design. About Problem II, we refer the reader to references
[13, 14, 16].

The well-known matrix equation (1.2) with arbitrary coefficient ma-
trices A, B, C, D and the right-hand side E, has been studied actively
for the past 40 or more years. For instance, Baksalary and Kala [6] pre-
sented a condition for the existence of a solution and derived a formula
for the general solution of the matrix equation (1.2). Chu [7] gave the
consistency conditions and the minimum-norm solution by making use of
the generalized singular value decomposition (GSVD). Huang and Zeng
[8] and Özgüler [9], respectively, gave the solvability conditions over a
simple Artinian ring and a principal ideal domain by using the general-
ized inverse. Xu, et al.[10] gave the least-squares solution of the matrix
equation (1.2) by making use of the canonical correlation decomposition
(CDD). Shim and Chen [11] presented the least-squares solution with
the minimum norm by using the singular value decomposition (SVD)
and the GSVD. Liao, et al. [12] studied the best approximate solution
of matrix equation (1.2) basing on the projection theorem and using the
GSVD and the CCD simultaneously. In addition, Peng [13] presented
an efficient iterative method for solving the matrix equation (1.2) by
making use of the idea of the classical CG method. The methods cited
in the above papers can find the solution X, Y of matrix equation in
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Rn×n. To our knowledge, however, no result exists about some certain
structured solutions, such as mirror-symmetric solution, of the matrix
equation (1.2). This paper represents a modest attempt to address this
situation.

In this paper, using the idea of the classical conjugate gradient method,
we present an iterative algorithm to solve Problem I. With it, the solv-
ability of the systems of matrix equations can be determined automat-
ically. When the matrix equation is consistent, for any initial mirror-
symmetric matrix pair [X0, Y0], we will show that the mirror-symmetric
solution and the least norm mirror-symmetric solution of Problem I can
be obtained within finite iteration steps in the absence of roundoff er-
rors, (this will be done in Section 2). It is only required to compute a
residual matrix and update the iterative solution and gradient matrices
linearly in each iteration. In Section 3, the unique optimal approxima-
tion solution pair of Problem II to given matrix pair [X̄, Ȳ ] in Frobenius
norm will be obtained by finding the least norm mirror-symmetric so-
lution of the new linear matrix equation AẌB + CŸ D = Ë, where
Ë = E −AX̄B −CȲ D. Finally, we present several numerical examples
to illustrate the effectiveness of our algorithm.

2. An iterative method for solving Problem I

Here, we will construct an iterative method to solve Problem I Then,
some basic properties of the introduced iterative method are described.
Finally, we show that the method is convergent.

Lemma 2.1. Suppose that X ∈ R(2r+p)×(2r+p). Then,

X + W(r,p)XW(r,p) ∈ MS(r,p).

Proof. The proof is easily at hand using the definition, and so we omit
the details. �

Lemma 2.2. Suppose that A ∈ R(2r+p)×(2r+p)and X ∈ MS(r,p). Then,

〈A,X〉 = 〈1
2
[A + W(r,p)AW(r,p)], X〉.

Proof. 〈1
2 [A + W(r,p)AW(r,p)], X〉 = 1

2 [〈A,X〉 + 〈W(r,p)AW(r,p), X〉] =
1
2 [〈A,X〉+ 〈A, W(r,p)XW(r,p)〉] = 〈A,X〉. �
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Iterative method for mirror-symmetric solution 39

Algorithm 1. Input matrices A ∈ Rs×(2r+p), B ∈ R(2r+p)×t, C ∈
Rs×(2h+q), D ∈ R(2h+q)×t , E ∈ Rs×t and X0 ∈ MS(r,p), Y0 ∈ MS(h,q).
Step 1: Calculate

R0 = E −AX0B − CY0D;

P0,x = AT R0B
T , P0,y = CT R0D

T ;

Q0,x = 1
2(P0,x + W(r,p)P0,xW(r,p)), Q0,y = 1

2(P0,y + W(h,q)P0,yW(h,q))
k := 0;

Step 2: If Rk = 0 then stop; else let k := k + 1.
Step 3: Compute

Xk = Xk−1 + ‖Rk−1‖2
‖Qk−1,x‖2+‖Qk−1,y‖2

Qk−1,x;

Yk = Yk−1 + ‖Rk−1‖2
‖Qk−1,x‖2+‖Qk−1,y‖2

Qk−1,y;

Rk = E −AXkB − CYkD

= Rk−1 − ‖Rk−1‖2
‖Qk−1,x‖2+‖Qk−1,y‖2

(AQk−1,xB + CQk−1,yD);

Pk,x = AT RkB
T , Pk,y = CT RkD

T ;

Qk,x = 1
2(Pk,x + W(r,p)Pk,xW(r,p)) + ‖Rk‖2

‖Rk−1‖2
Qk−1,x;

Qk,y = 1
2(Pk,y + W(h,q)Pk,yW(h,q)) + ‖Rk‖2

‖Rk−1‖2
Qk−1,y;

Step 4: Go to step 2.

Remark 2.3. Obviously, Qk,x ∈ MS(r,p), Qk,y ∈ MS(h,q), Xk ∈ MS(r,p),
and Yk ∈ MS(h,q), for k = 0, 1, · · · , from Algorithm 1.

In the next part, we will analyze properties of Algorithm 1, and then
we will prove that the process will stop after a finite number of steps.

Lemma 2.4. Suppose that the sequences Ri, Qi,x, Qi,y(Ri 6= 0, i =
0, 1, 2, · · · , k) are generated by Algorithm 1. We have
(2.1)
〈Ri, Rj〉 = 0, 〈Qi,x, Qj,x〉+ 〈Qi,y, Qj,y〉 = 0, (i, j = 0, 1, 2, . . . , k, i 6= j).

Proof. We know that 〈A, B〉 = 〈B, A〉 for arbitrary matrices A, B ∈
Rn×n. Therefore, we only need to prove 〈Ri, Rj〉 = 0 and 〈Qi,x, Qj,x〉+
〈Qi,y, Qj,y〉 = 0, for 1 ≤ i < j ≤ k. To this end, we use induction.
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Step 1. Show that 〈R0, R1〉 = 0, 〈Q0,x, Q1,x〉+ 〈Q0,y, Q1,y〉 = 0 when
k = 1.

〈R0, R1〉
= 〈R0, R0 − ‖R0‖2

‖Q0,x‖2+‖Q0,y‖2 (AQ0,xB + CQ0,yD)〉

= ‖R0‖2 − ‖R0‖2
‖Q0,x‖2+‖Q0,y‖2 [〈AT R0B

T , Q0,x〉+ 〈CT R0D
T , Q0,y〉]

= ‖R0‖2 − ‖R0‖2
‖Q0,x‖2+‖Q0,y‖2 [〈P0,x, Q0,x〉+ 〈P0,y, Q0,y〉]

= ‖R0‖2 − ‖R0‖2
‖Q0,x‖2+‖Q0,y‖2 [〈1

2(P0,x + W(r,p)P0,xW(r,p)), Q0,x〉
+〈1

2(P0,y + W(h,q)P0,yW(h,q)), Q0,y〉]
= ‖R0‖2 − ‖R0‖2

‖Q0,x‖2+‖Q0,y‖2 [〈Q0,x, Q0,x〉+ 〈Q0,y, Q0,y〉]
= ‖R0‖2 − ‖R0‖2

= 0.

〈Q0,x, Q1,x〉+ 〈Q0,y, Q1,y〉

= 〈Q0,x, 1
2(P1,x + W(r,p)P1,xW(r,p)) + ‖R1‖2

‖R0‖2 Q0,x〉

+〈Q0,y,
1
2(P1,y + W(h,q)P1,yW(h,q)) + ‖R1‖2

‖R0‖2 Q0,y〉
= 〈Q0,x, 1

2 [P1,x + W(r,p)P1,xW(r,p)]〉

+〈Q0,y,
1
2 [P1,y + W(h,q)P1,yW(h,q)]〉+ ‖R1‖2

‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]

= 〈Q0,x, P1,x〉+ 〈Q0,y, P1,y〉+ ‖R1‖2
‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]

= 〈Q0,x, AT R1B
T 〉+ 〈Q0,y, CT R1D

T 〉+ ‖R1‖2
‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]

= 〈AQ0,xB, R1〉+ 〈CQ0,yD, R1〉+ ‖R1‖2
‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]

= ‖Q0,x‖2+‖Q0,y‖2
‖R0‖2 〈R0 −R1, R1〉+ ‖R1‖2

‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]

= −‖Q0,x‖2+‖Q0,y‖2
‖R0‖2 ‖R1‖2 + ‖R1‖2

‖R0‖2 [‖Q0,x‖2 + ‖Q0,y‖2]
= 0.

Step 2. Suppose that (2.4) holds when k = v , and show for k = v + 1:

〈Rv, Rv+1〉
= 〈Rv, Rv − ‖Rv‖2

‖Qv,x‖2+‖Qv,y‖2 (AQv,xB + CQv,yD)〉

= ‖Rv‖2 − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈AT RvB

T , Qv,x〉+ 〈CT RvD
T , Qv,y〉]

= ‖Rv‖2 − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈Pv,x, Qv,x〉+ 〈Pv,y, Qv,y〉]
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= ‖Rv‖2 − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈1

2(Pv,x + W(r,p)Pv,xW(r,p)), Qv,x〉
+〈1

2(Pv,y + W(h,q)Pv,yW(h,q)), Qv,y〉]

= ‖Rv‖2 − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈Qv,x − ‖Rv‖2

‖Rv−1‖2 Qv−1,x, Qv,x〉

+〈Qv,y − ‖Rv‖2
‖Rv−1‖2 Qv−1,y, Qv,y〉]

= ‖Rv‖2 − ‖Rv‖2 = 0.

〈Qv,x, Qv+1,x〉+ 〈Qv,y, Qv+1,y〉

= 〈Qv,x, 1
2(Pv+1,x + W(r,p)Pv+1,xW(r,p)) + ‖Rv+1‖2

‖Rv‖2 Qv,x〉

+〈Qv,y,
1
2(Pv+1,y + W(h,q)Pv+1,yW(h,q)) + ‖Rv+1‖2

‖Rv‖2 Qv,y〉

= 〈Qv,x, 1
2(Pv+1,x + W(r,p)Pv+1,xW(r,p))〉

+〈Qv,y,
1
2(Pv+1,y + W(h,q)Pv+1,yW(h,q))〉

+‖Rv+1‖2
‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= 〈Qv,x, Pv+1,x〉+ 〈Qv,y, Pv+1,y〉+ ‖Rv+1‖2
‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= 〈Qv,x, AT Rv+1B
T 〉+ 〈Qv,y, CT Rv+1D

T 〉

+‖Rv+1‖2
‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= 〈AQv,xB, Rv+1〉+ 〈CQv,yD, Rv+1〉+ ‖Rv+1‖2
‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= ‖Qv,x‖2+‖Qv,y‖2
‖Rv‖2 〈Rv −Rv+1, Rv+1〉+ ‖Rv+1‖2

‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= −‖Qv,x‖2+‖Qv,y‖2
‖Rv‖2 ‖Rv+1‖2 + ‖Rv+1‖2

‖Rv‖2 [‖Qv,x‖2 + ‖Qv,y‖2]

= 0.

For j = 1, 2, . . . , v − 1, we have

〈Rj , Rv+1〉
= 〈Rj , Rv − ‖Rv‖2

‖Qv,x‖2+‖Qv,y‖2 (AQv,xB + CQv,yD)〉

= − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈AT RjB

T , Qv,x〉+ 〈CT RjD
T , Qv,y〉]
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= − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈Pj,x, Qv,x〉+ 〈Pj,y, Qv,y〉]

= − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈1

2(Pj,x + W(r,p)Pj,xW(r,p)), Qv,x〉

+〈1
2(Pj,y + W(h,q)Pj,yW(h,q)), Qv,y〉]

= − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 [〈Qj,x − ‖Rj‖2

‖Rj−1‖2 Qj−1,x, Qv,x〉

+〈Qj,y − ‖Rj‖2
‖Rj−1‖2 Qj−1,y, Qv,y〉] = 0.

〈Qj,x, Qv+1,x〉+ 〈Qj,y, Qv+1,y〉

= 〈Qj,x, 1
2(Pv+1,x + W(r,p)Pv+1,xW(r,p)) + ‖Rv+1‖2

‖Rv‖2 Qv,x〉

+〈Qj,y,
1
2(Pv+1,y + W(h,q)Pv+1,yW(h,q)) + ‖Rv+1‖2

‖Rv‖2 Qv,y〉

= 〈Qj,x, 1
2 [Pv+1,x + W(r,p)Pv+1,xW(r,p)]〉

+〈Qj,y,
1
2 [Pv+1,y + W(h,q)Pv+1,yW(h,q)]〉

+‖Rv+1‖2
‖Rv‖2 [〈Qj,x, Qv,x〉+ 〈Qj,y, Qv,y〉]

= 〈Qj,x, Pv+1,x〉+ 〈Qj,y, Pv+1,y〉

= 〈Qj,x, AT Rv+1B
T 〉+ 〈Qj,y, CT Rv+1D

T 〉
= 〈AQj,xB, Rv+1〉+ 〈CQj,yD, Rv+1〉

= ‖Qj,x‖2+‖Qj,y‖2
‖Rj‖2 〈Rj −Rj+1, Rv+1〉

= 0.

From step 1 and step 2, the conclusion 〈Ri, Rj〉 = 0 and 〈Qi,x, Qj,x〉+
〈Qi,y, Qj,y〉 = 0 hold, for all i, j = 0, 1, 2, . . . , k(i 6= j) by the principle
of induction. �

Lemma 2.5. Suppose that Problem I is consistent, and [X∗, Y ∗] is an
arbitrary solution of Problem I. Then, for any initial mirror-symmetric
matrix pair [X0, Y0], the sequences Xi, Yi, Ri, Qi,x and Qi,y generated
by Algorithm 1 satisfy

(2.2) 〈Qi,x, X∗ −Xi〉+ 〈Qi,y, Y
∗ − Yi〉 = ‖Ri‖2, (i = 0, 1, 2. . . . ).
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Proof. We prove this by induction. For i = 0,

〈Q0,x, X∗ −X0〉+ 〈Q0,y, Y ∗ − Y0〉
= 〈1

2(P0,x + W(r,p)P0,xW(r,p)), X∗ −X0〉
+〈1

2(P0,y + W(h,q)P0,yW(h,q)), Y ∗ − Y0〉
= 〈P0,x, X∗ −X0〉+ 〈P0,y, Y ∗ − Y0〉
= 〈AT R0B

T , X∗ −X0〉+ 〈CT R0D
T , Y ∗ − Y0〉

= 〈R0, A(X∗ −X0)B〉+ 〈R0, C(Y ∗ − Y0)D〉
= 〈R0, AX∗B + CY ∗D −AX0B − CY0D〉
= 〈R0, R0〉
= ‖R0‖2.

Suppose that the result holds for i = v(v ≥ 0), that is, 〈Qv,x, X∗ −
Xv〉+ 〈Qv,y, Y

∗ − Yv〉 = ‖Rv‖2. Then, for i = v + 1,

〈Qv+1,x, X∗ −Xv+1〉+ 〈Qv+1,y, Y ∗ − Yv+1〉

= 〈1
2(Pv+1,x + W(r,p)Pv+1,xW(r,p) + ‖Rv+1‖2

‖Rv‖2 Qv,x), X∗ −Xv+1〉

+〈1
2(Pv+1,y + W(h,q)Pv+1,yW(h,q) + ‖Rv+1‖2

‖Rv‖2 Qv,y), Y ∗ − Yv+1〉
= 〈Pv+1,x, X∗ −Xv+1〉+ 〈Pv+1,y, Y ∗ − Yv+1〉

+‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv+1〉+ 〈Qv,y, Y ∗ − Yv+1〉]

= 〈AT Rv+1B
T , X∗ −Xv+1〉+ 〈CT Rv+1D

T , Y ∗ − Yv+1〉

+‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv+1〉+ 〈Qv,y, Y ∗ − Yv+1〉]

= 〈Rv+1, A(X∗ −Xv+1)B〉+ 〈Rv+1, C(Y ∗ − Yv+1)D〉

+‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv+1〉+ 〈Qv,y, Y ∗ − Yv+1〉]

= 〈Rv+1, AX∗B + CY ∗D −AXv+1B − CYv+1D〉

+‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv+1〉+ 〈Qv,y, Y ∗ − Yv+1〉]

= ‖Rv+1‖2 + ‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv − ‖Rv‖2

‖Qv,x‖2+‖Qv,y‖2 Qv,x〉

+〈Qv,y, Y ∗ − Yv − ‖Rv‖2
‖Qv,x‖2+‖Qv,y‖2 Qv,y〉]

= ‖Rv+1‖2 + ‖Rv+1‖2
‖Rv‖2 [〈Qv,x, X∗ −Xv〉+ 〈Qv,y, Y ∗ − Yv〉 − ‖Rv‖2]

= ‖Rv+1‖2.
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By the principle of induction, the result (2.2) holds for all i = 0, 1, 2, . . . .
�

Theorem 2.6. Suppose that Problem I is consistent. Then, for any
initial mirror-symmetric matrix pair [X0, Y0], a solution of Problem I
can be obtained within at most st iteration steps by Algorithm 1.

Proof. If Ri 6= 0(i = 0, 1, 2, . . . , st− 1), then Qi,x 6= 0 and Qi,y 6= 0, for
i = 0, 1, 2, . . . , st − 1, from Lemma 2.5. Therefore Qst,x, Qst,y and Rst

can be calculated by Algorithm 1. Also, from Lemma 2.3, we can write

〈Ri, Rst〉 = 0, i = 0, 1, 2, . . . , st− 1

and

〈Ri, Rj〉 = 0, i, j = 0, 1, 2, . . . , st− 1, i 6= j.

So, the set composed of R0, R1, . . . , Rst−1 is an orthogonal basis for
the matrix space Rs×t, which implies that Rst = 0; i.e., [Xst, Yst] is a
mirror-symmetric solution of Problem I. �

Remark 2.7. Theoretically, for any initial mirror-symmetric matrix
pair, a mirror-symmetric solution of Problem I can be obtained within
at most s×t iteration steps by Algorithm 1, but actually roundoff errors
is unavoidable in the process, and hence the solution of Problem I is
generally obtained in more than st iteration steps.

Theorem 2.8. Problem I is consistent if and only if there exists a non-
negative integer number k such that Rk = 0 or Qk,x 6= 0 and Qk,y 6= 0.

Proof. Suppose that there exists a nonnegative integer number k such
that Rk = 0. Then, Problem I is obviously consistent. If Qk,x 6= 0 and
Qk,y 6= 0, then a mirror-symmetric solution of Problem I can be obtained
within at most st iteration steps from Theorem 2.6, and so Problem I is
also consistent.

Conversely, suppose that Problem I is consistent. Then, there exists
a nonnegative integer number k, such that Rk = 0 or Qk,x 6= 0 and
Qk,y 6= 0. Actually, if Rk 6= 0 and Qk,x = 0, Qk,y = 0, then Lemma 2.5
is contradicted. �

Remark 2.9. From Lemma 2.5, if there exists a nonnegative integer
number k such that Qk,x = 0 and Qk,y = 0 , but Rk 6= 0, then Problem
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I is inconsistent. Hence, the solvability of Problem I can be judged
automatically by Algorithm 1.

Lemma 2.10. Problem I has mirror-symmetric solution if and only if
the following linear matrix equations is consistent:

(2.3)
{

AXB + CY D = E,
AW(r,p)XW(r,p)B + CW(h,q)Y W(h,q)D = E.

Proof. Suppose that Problem I has a mirror-symmetric solution [X, Y ].
Then, X = W(r,p)XW(r,p), Y = W(h,q)Y W(h,q), and

AXB + CY D = E,

AW(r,p)XW(r,p)B + CW(h,q)Y W(h,q)D = AXB + CY D = E.

Hence, the mirror-symmetric solution [X, Y ] is a solution of the linear
matrix equations (2.3); that is, the linear matrix equations (2.3) is con-
sistent.

Conversely, suppose that the linear matrix equations (2.3) is consis-
tent. Then, there exists a matrix pair [X̂, Ŷ ] (X ∈ R(2r+p)×(2r+p), Y ∈
R(2h+q)×(2h+q)) such that

(2.4)
{

AX̂B + CŶ D = E,

AW(r,p)X̂W(r,p)B + CW(h,q)Ŷ W(h,q)D = E.

Let X = X̂+W(r,p)X̂W(r,p)

2 and Y = Ŷ +W(h,q)Ŷ W(h,q)

2 . Then X ∈ MS(r,p), Y ∈
MS(h,q), and

AXB + CY D = A
X̂+W(r,p)X̂W(r,p)

2 B + C
Ŷ +W(h,q)Ŷ W(h,q)

2 D

= AXB+CY D+AW(r,p)X̂W(r,p)B+CW(h,q)Ŷ W(h,q)D

2

= E+E
2 = E.

Therefore, [X, Y ] is a mirror-symmetric solution group of Problem I. �

Remark 2.11. From Lemma 2.10, any mirror-symmetric solution of
the linear matrix equations (2.3) must be a solution group of Problem
I. Therefore, if we want to prove that [X, Y ] is the least Frobenius norm
mirror-symmetric solution of Problem I, then it is enough to prove that
[X, Y ] is the least Frobenius norm mirror-symmetric solution of the lin-
ear matrix equations (2.3).
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The following lemma is derived from [16], and so we omit the proof.

Lemma 2.12. Suppose that the consistent system of the linear equations
Ax = b has a solution x∗ ∈ R(AT ). Then, x∗ is a unique least Frobenius
norm solution of the system of linear equations.

Theorem 2.13. Suppose that Problem I is consistent. If we choose the
initial mirror-symmetric matrices X0 = AT HBT +W(r,p)(AT HBT )W(r,p),
Y0 = CT HDT +W(h,q)(CT HDT )W(h,q), H arbitrary, or more especially,
let X0 = 0 and Y0 = 0 with suitable dimensions, then the mirror-
symmetric solution [X∗, Y ∗] obtained by Algorithm 1 is the unique least
Frobenius norm mirror-symmetric solution of Problem I.

Proof. From Theorem 2.6, if we take

X0 = AT HBT + W(r,p)(A
T HBT )W(r,p),

Y0 = CT HDT + W(h,q)(C
T HDT )W(h,q),

where H is arbitrary, we can obtain the mirror-symmetric solution [X∗, Y ∗]
of Problem I, and [X∗, Y ∗] can be expressed as

X∗ = AT TBT + W(r,p)(A
T TBT )W(r,p),

Y ∗ = CT TDT + W(h,q)(C
T TDT )W(h,q),

where T ∈ Rs×t. In the sequel, we will prove that [X∗, Y ∗] is the unique
least Frobenius norm mirror-symmetric solution of Problem I. From Re-
mark 3, we only prove that [X∗, Y ∗] is the least Frobenius norm mirror-
symmetric solution of the linear matrix equations (2.3).

Linear matrix equations (2.3) is equivalent to the system of linear
matrix equations
(2.5)(

BT ⊗A DT ⊗ C
(BT W(r,p))⊗ (AW(r,p)) (DT W(h,q))⊗ (CW(h,q))

)(
vec(X)
vec(Y )

)
=
(

vec(E)
vec(E)

)
,
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Noting that(
vec(X∗)
vec(Y ∗)

)
=
(

vec(AT TBT + W(r,p)(AT TBT )W(r,p))
vec(CT TDT + W(h,q)(CT TDT )W(h,q))

)
=
(

B ⊗AT (W(r,p)B)⊗ (W(r,p)A
T )

D ⊗ CT (W(h,q)D)⊗ (W(h,q)C
T )

)(
vec(T )
vec(T )

)

=
(

BT ⊗A DT ⊗ C
(BT W(r,p))⊗ (AW(r,p)) (DT W(h,q))⊗ (CW(h,q))

)T (
vec(T )
vec(T )

)

∈ R

((
BT ⊗A DT ⊗ C
(BT W(r,p))⊗ (AW(r,p)) (DT W(h,q))⊗ (CW(h,q))

)T
)

.

Hence, from Lemma 2.12, [vec(X∗), vec(Y ∗)] is the unique least Frobe-
nius norm mirror-symmetric solution of the matrix equations (2.5). Since
vec operator is isomorphic, [vec(X∗), vec(Y ∗)] is the unique least Frobe-
nius norm mirror-symmetric solution of the linear matrix equations
(2.3), and thus it is also the unique least Frobenius norm mirror-symmetric
solution group of Problem I. �

3. The solution of Problem II

Here, we show that the optimal approximation solution of Problem II
can be derived by first finding the least norm mirror-symmetric solution
of a new matrix equation.

Suppose that Problem I is consistent, and its mirror-symmetric solu-
tion set SE is nonempty. Hence, for given mirror-symmetric matrix pair
[X̄, Ȳ ], we have

AXB + CY D = E ⇔ A(X − X̄)B + C(Y − Ȳ )D = E −AX̄B − CȲ D

Set Ẍ = X − X̄, Ÿ = Y − Ȳ , and Ë = E −AX̄B −CȲ D. Then, Prob-
lem II is equivalent to find the least Frobenius norm mirror-symmetric
solution of the linear matrix equation

(3.1) AẌB + CŸ D = Ë

By using Algorithm 1, and letting the initial matrix be X0 = 0, Y0 = 0
in suitable dimensions, we can obtain the unique least Frobenius norm
mirror-symmetric solution [X̃∗, Ỹ ∗] of the linear matrix equations (3.1).
Once the above [X̃∗, Ỹ ∗] is obtained, the unique solution [X̃, Ỹ ] of the
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matrix nearness Problem II can be computed. In this case, X̃ and Ỹ
can be expressed as X̃ = X̃∗ + X̄, Ỹ = Ỹ ∗ + Ȳ .

4. Examples for the iterative method

Here, we present numerical example to illustrate the efficiency of the
proposed iteration method. All the tests are performed using Matlab 7.0
which has a machine unit round off precision of around 10−16. Because of
computing error, the process will not stop within a finite number of steps.
Hence, we regard the approximation solution [Xk, Yk] to be a solution
of Problem I if the corresponding residual satisfies ‖Rk‖ ≤ 10e− 010.

Example 1. Let

A =


0 −2 1.3 1.5 0 −1 −1 5 4 3.4
−1 −0.3 2 4 −0.5 1 −1 2 1 1.2
0 −2 3 0.5 0 −1 −1 1 1.9 −6
−1 −3 2 4 −0.5 1 −2 1 0.2 3
3 1.2 2 0 4.6 0 1 2 0 1.8
−1 −3 2 1 −5 1 −2 1 1 5
2 −0.8 1 4.2 1.5 2.8 3.5 0.2 0.5 2.5

−0.9 0.4 0.4 −0.9 0.6 1 0.7 1.4 −1.2 −0.7

 ,

B =



−0.9 0.4 0.4 −0.9 0.6 0.8 5
1.8 1.2 0.3 0.8 0.8 5 1.8
1.5 0.7 0 0.5 −1.2 2.1 −4
−5 1.5 0 −0.3 2.0 0.8 −3.6
0.7 5.6 1 0.7 1.4 4 3
−1.2 0.6 0 −1.2 −0.7 1.7 5

2 4 −0.5 1 −2 1 2
0.4 0.4 −0.9 0.6 1 0.7 1.4
−1 −0.3 2 4 −0.5 1 4.1
1.5 −0.7 0 0.5 −1.6 2.1 −4

 ,

E =


130 121 151 −59 99.6 120 87
143 −222 168 95 49 121 151
79 121 69 87 −89 −121 144
120 211 82 −96 231 −98 120
−117 213 234 98 −89 120 211
200 −121 144 57 100 69 87
112 68 −86 83 64 211 82
212 221 182 −96 231 −98 −120

 ,

C =
(

ones(3, 4) zeros(3, 5)
zeros(5, 4) hankel(1 : 5)

)
,

D =
(

toeplitz(1 : 5) ones(5, 2)
zeros(4, 5) 3ones(4, 2)

)
,
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W(r,p) =

 J3

I4

J3

 , W(h,q) =

 J3

I3

J3

 ,

where toeplitz(1 : n) and hankel(1 : n) denote the n-th order Toeplitz
matrix and Hankel matrix whose first rows are (1, 2, · · · , n), respectively.
ones(n, m) and zeros(n, m) respectively denote the n×m matrices whose
elements are ones and zeros.

(I) Find the mirror-symmetric solution and the least-norm mirror-
symmetric solution of the matrix equation AXB + CY D = E.

(II) Let SE denote the set of all mirror-symmetric solution of ma-
trix equation AXB + CY D = E. Denote K = toeplitz(1 : 10), L =
magic(9), and let

X̄ = K + W(r,p)KW(r,p)

=



1 2 3 5.5 5.5 5.5 5.5 8 9 10
2 1 2 4.5 4.5 4.5 4.5 7 8 9
3 2 1 3.5 3.5 3.5 3.5 6 7 8

5.5 4.5 3.5 1 2 3 4 3.5 4.5 5.5
5.5 4.5 3.5 2 1 2 3 3.5 4.5 5.5
5.5 4.5 3.5 3 2 1 2 3.5 4.5 5.5
5.5 4.5 3.5 4 3 2 1 3.5 4.5 5.5
8 7 6 3.5 3.5 3.5 3.5 1 2 3
9 8 7 4.5 4.5 4.5 4.5 2 1 2
10 9 8 5.5 5.5 5.5 5.5 3 2 1

 ,

Ȳ = L + W(h,q)LW(h,q)

=


8.2 8.2 8.2 15.0 8.2 1.4 8.2 8.2 8.2
8.2 8.2 8.2 6.9 8.2 9.5 8.2 8.2 8.2
8.2 8.2 8.2 6.0 8.2 10.4 8.2 8.2 8.2
14.3 6.2 7.1 4.0 6.2 8.4 7.1 6.2 14.3
8.2 8.2 8.2 6.0 8.2 10.4 8.2 8.2 8.2
2.1 10.2 9.3 8.0 10.2 12.4 9.3 10.2 2.1
8.2 8.2 8.2 6.0 8.2 10.4 8.2 8.2 8.2
8.2 8.2 8.2 6.9 8.2 9.5 8.2 8.2 8.2
8.2 8.2 8.2 15.0 8.2 1.4 8.2 8.2 8.2

 .

From Lemma 2.1, we know that X̄ ∈ MS(r,p), Ȳ ∈ MS(h,q). Find
[X̃, Ỹ ] ∈ SE such that

‖X̃ − X̄‖2 + ‖Ỹ − Ȳ ‖2 = min
[X,Y ]∈SE

[‖X − X̄‖2 + [‖Y − Ȳ ‖2].

(I). Choose an arbitrary initial iterative matrix pair [X0, Y0], where
X0 ∈ MS(r,p) and Y0 ∈ MS(h,q), such as X0 = ones(10) and Y0 =
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ones(9). By Algorithm 1, we have

X120 =



−12.8344 −1.4268 −9.2204 4.5426 −4.9021 −9.6123 4.0051
4.9134 11.0713 1.7931 −6.4630 −17.0482 −8.9912 −9.3492
−2.4879 −9.0842 −20.9229 4.5123 −2.4561 −6.7207 3.8151
−1.6214 4.2922 10.4121 −4.9958 4.7209 4.4588 1.8047
−0.4631 −4.1193 −7.8290 5.0554 5.8670 15.0789 −3.4014
4.3806 6.2396 2.1064 −5.0134 −18.3562 5.7664 −39.5967
−5.5744 −7.6941 11.5926 −0.5759 13.8524 0.1333 20.0304
11.5028 8.2197 2.4255 4.5123 −2.4561 −6.7207 3.8151
11.4781 17.5962 −2.0215 −6.4630 −17.0482 −8.9912 −9.3492
6.6383 9.3157 3.2470 4.5426 −4.9021 −9.6123 4.0051

3.2470 9.3157 6.6383
−2.0215 17.5962 11.4781
2.4255 8.2197 11.5028
10.4121 4.2922 −1.6214
−7.8290 −4.1193 −0.4631
2.1064 6.2396 4.3806
11.5926 −7.6941 −5.5744
−20.9229 −9.0842 −2.4879
1.7931 11.0713 4.9134
−9.2204 −1.4268 −12.8344

 ,

Y120 =


−5.5669 −6.7131 −9.0979 9.1966 −9.4912 −6.2543 16.0266
2.8884 1.7423 −0.6425 −1.6379 5.8628 2.2010 −2.7707
4.8196 3.6734 1.2886 −6.9047 19.3670 4.1322 −10.1262
−0.7924 −1.9386 −4.3233 3.4571 14.5716 −1.4798 −4.3233
1.6962 0.3936 −1.7968 19.3128 −1.3390 −7.8185 −1.7968
−5.9112 −1.9349 11.5889 −15.6114 −1.1189 4.0328 11.5889
2.6174 −1.2038 −10.1262 −6.9047 19.3670 4.1322 1.2886
1.5151 −1.6631 −2.7707 −1.6379 5.8628 2.2010 −0.6425
−3.7257 −3.0389 16.0266 9.1966 −9.4912 −6.2543 −9.0979

−3.0389 −3.7257
−1.6631 1.5151
−1.2038 2.6174
−1.9386 −0.7924
0.3936 1.6962
−1.9349 −5.9112
3.6734 4.8196
1.7423 2.8884
−6.7131 −5.5669

 .

By concrete computations, we have

R120 = 2.9396e− 011, ‖X120‖+ ‖Y120‖ = 156.8131,

and we can further get

‖X120 −W(r,p)X120W(r,p)‖ = 1.6220e− 013,

‖Y120 −W(h,q)Y120W(h,q)‖ = 4.3010e− 014.

So, [X120, Y120] is regarded to be a mirror-symmetric solution of the
matrix equation AXB + CY D = E.

If we let the initial matrix pair be

X0 = AT HBT + W(r,p)(A
T HBT )W(r,p),

Y0 = CT HDT + W(h,q)(C
T HDT )W(h,q),
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where H = eye(8, 7), then by the Algorithm 1 we have

X121 =



−12.6654 −1.5153 −9.1239 4.7177 −5.2634 −9.2547 4.2326
4.0979 10.5115 1.4469 −6.3556 −17.2289 −9.8456 −9.1222
−2.8617 −8.6098 −21.1405 3.9250 −1.3432 −7.4618 3.0554
−1.6848 4.7034 10.5063 −5.3446 5.3525 4.3139 1.2927
−0.3882 −3.9547 −7.8273 4.6750 6.6536 15.1534 −3.8814
3.7978 5.8318 1.7258 −5.0566 −18.2256 5.3286 −39.5504
−5.8683 −7.8724 11.3957 −0.3635 13.5397 −0.5625 20.2510
11.0834 8.4042 2.3992 3.9250 −1.3432 −7.4618 3.0554
10.8405 17.2484 −2.4373 −6.3556 −17.2289 −9.8456 −9.1222
6.9216 9.4288 3.3627 4.7177 −5.2634 −9.2547 4.2326

3.3627 9.4288 6.9216
−2.4373 17.2484 10.8405
2.3992 8.4042 11.0834
10.5063 4.7034 −1.6848
−7.8273 −3.9547 −0.3882
1.7258 5.8318 3.7978
11.3957 −7.8724 −5.8683
−21.1405 −8.6098 −2.8617
1.4469 10.5115 4.0979
−9.1239 −1.5153 −12.6654

 ,

Y121 =


−6.1046 −7.3241 −9.7151 9.3482 −9.8904 −6.9936 15.9449
3.0297 1.8103 −0.5808 −1.5531 5.4715 2.1407 −2.8471
4.5912 3.3717 0.9807 −6.8005 19.2832 3.7022 −10.1172
−1.3837 −2.6031 −4.9942 2.7489 13.9215 −2.2727 −4.9942
1.5988 0.2951 −1.7956 19.1879 −1.3822 −7.4342 −1.7956
−5.9820 −1.9777 11.3988 −15.7560 −0.9684 4.3709 11.3988
2.7470 −1.0788 −10.1172 −6.8005 19.2832 3.7022 0.9807
1.1654 −1.6985 −2.8471 −1.5531 5.4715 2.1407 −0.5808
−3.9390 −2.8659 15.9449 9.3482 −9.8904 −6.9936 −9.7151

−2.8659 −3.9390
−1.6985 1.1654
−1.0788 2.7470
−2.6031 −1.3837
0.2951 1.5988
−1.9777 −5.9820
3.3717 4.5912
1.8103 3.0297
−7.3241 −6.1046

 ,

and

R121 = 9.3519e− 011,

‖X121‖+ ‖Y121‖ = 152.7857 < 156.8131,

‖X121 −W(r,p)X121W(r,p)‖ = 1.7760e− 013,

‖Y121 −W(h,q)Y121W(h,q)‖ = 4.4697e− 014.

Hence, [X121, Y121] is regarded to be the least-norm mirror-symmetric
solution of matrix equation AXB + CY D = E.

If we let X0 = 0 ∈ R10×10 and Y0 = 0 ∈ R9×9, using Algorithm 1 we
can obtain the least-norm mirror-symmetric solution of matrix equation
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AXB + CY D = E as follows:

X110 =



−12.6654 −1.5153 −9.1239 4.7177 −5.2634 −9.2547 4.2326
4.0979 10.5115 1.4469 −6.3556 −17.2289 −9.8456 −9.1222
−2.8617 −8.6098 −21.1405 3.9250 −1.3432 −7.4618 3.0554
−1.6848 4.7034 10.5063 −5.3446 5.3525 4.3139 1.2927
−0.3882 −3.9547 −7.8273 4.6750 6.6536 15.1534 −3.8814
3.7978 5.8318 1.7258 −5.0566 −18.2256 5.3286 −39.5504
−5.8683 −7.8724 11.3957 −0.3635 13.5397 −0.5625 20.2510
11.0834 8.4042 2.3992 3.9250 −1.3432 −7.4618 3.0554
10.8405 17.2484 −2.4373 −6.3556 −17.2289 −9.8456 −9.1222
6.9216 9.4288 3.3627 4.7177 −5.2634 −9.2547 4.2326

3.3627 9.4288 6.9216
−2.4373 17.2484 10.8405
2.3992 8.4042 11.0834
10.5063 4.7034 −1.6848
−7.8273 −3.9547 −0.3882
1.7258 5.8318 3.7978
11.3957 −7.8724 −5.8683
−21.1405 −8.6098 −2.8617
1.4469 10.5115 4.0979
−9.1239 −1.5153 −12.6654

 ,

Y110 =


−6.1046 −7.3241 −9.7151 9.3482 −9.8904 −6.9936 15.9449
3.0297 1.8103 −0.5808 −1.5531 5.4715 2.1407 −2.8471
4.5912 3.3717 0.9807 −6.8005 19.2832 3.7022 −10.1172
−1.3837 −2.6031 −4.9942 2.7489 13.9215 −2.2727 −4.9942
1.5988 0.2951 −1.7956 19.1879 −1.3822 −7.4342 −1.7956
−5.9820 −1.9777 11.3988 −15.7560 −0.9684 4.3709 11.3988
2.7470 −1.0788 −10.1172 −6.8005 19.2832 3.7022 0.9807
1.1654 −1.6985 −2.8471 −1.5531 5.4715 2.1407 −0.5808
−3.9390 −2.8659 15.9449 9.3482 −9.8904 −6.9936 −9.7151

−2.8659 −3.9390
−1.6985 1.1654
−1.0788 2.7470
−2.6031 −1.3837
0.2951 1.5988
−1.9777 −5.9820
3.3717 4.5912
1.8103 3.0297
−7.3241 −6.1046

 ,

and we have

‖R110‖ = 2.1067e− 011, ‖X110‖+ ‖Y110‖ = 152.7857.

(II) In order to find the optimal approximate solutions to given matrix
pair [X̄, Ȳ ], let Ẍ = X − X̄, Ÿ = Y − Ȳ , Ë = E − AX̄B − CȲ D, and
iterate 118 steps. Then, we can obtain the least-norm mirror-symmetric
solution [X̃∗

118, Ỹ ∗
118] of the matrix equation AẌB + CŸ D = Ë by

choosing the initial iterative matrix Ẍ = 0, Ÿ = 0 in suitable dimen-
sions. To save space, we shall not report the date of X̃∗

118 and Ỹ ∗
118,
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but will make them available upon request. Then, the optimal approxi-
mate solution [X̃, Ỹ ] can be expressed as:

X̃ = X̃∗
118 + X̄

=



−15.6252 −0.8352 −9.4674 3.7689 −3.4859 −10.8982 2.5761
8.6823 13.2198 2.5517 −8.4811 −14.4880 −4.9077 −11.3101
0.4917 −12.2154 −20.3244 7.9298 −8.8334 −4.3524 8.6673
0.4279 2.9758 9.4895 −2.3833 0.3376 4.5902 6.0586
−0.5246 −5.1232 −9.1928 6.2355 3.1269 13.3938 −0.9210
6.9876 6.8229 1.3293 −5.2572 −18.5363 4.9872 −39.5965
−5.7068 −6.2600 10.5866 −1.4444 18.1366 0.4211 17.1217
13.1741 5.5555 1.7077 7.9298 −8.8334 −4.3524 8.6673
15.6661 18.3224 0.3863 −8.4811 −14.4880 −4.9077 −11.3101
5.3065 9.7053 4.2965 3.7689 −3.4859 −10.8982 2.5761

4.2965 9.7053 5.3065
0.3863 18.3224 15.6661
1.7077 5.5555 13.1741
9.4895 2.9758 0.4279
−9.1928 −5.1232 −0.5246
1.3293 6.8229 6.9876
10.5866 −6.2600 −5.7068
−20.3244 −12.2154 0.4917
2.5517 13.2198 8.6823
−9.4674 −0.8352 −15.6252

 ,

Ỹ = Ỹ ∗
118 + Ȳ

=


−2.2171 −2.8335 −4.8400 12.0123 −9.3036 −7.1310 16.6278
2.1991 1.5827 −0.4238 −3.1004 7.5822 5.3852 −3.1926
4.2704 3.6540 1.6475 −7.0590 20.5729 8.3565 −10.5838
9.7553 1.0390 −0.0675 4.4932 17.7133 5.7415 −0.0675
2.1843 0.7233 −0.7712 16.8608 0.9408 −6.9919 −0.7712
−8.3694 −0.1331 12.7569 −13.6853 −2.6245 4.3545 12.7569
4.5109 −2.4037 −10.5838 −7.0590 20.5729 8.3565 1.6475
3.5065 −2.3679 −3.1926 −3.1004 7.5822 5.3852 −0.4238
−2.8855 −2.6541 16.6278 12.0123 −9.3036 −7.1310 −4.8400

−2.6541 −2.8855
−2.3679 3.5065
−2.4037 4.5109
1.0390 9.7553
0.7233 2.1843
−0.1331 −8.3694
3.6540 4.2704
1.5827 2.1991
−2.8335 −2.2171

 ,

with the minimum,

min
[X,Y ]∈SE

[‖X − X̄‖2 + [‖Y − Ȳ ‖2] = ‖X̃ − X̄‖2 + ‖Ỹ − Ȳ ‖2 = 187.6832.

5. Conclusions

Mirror-symmetric matrices, which are the interaction matrices of mirror-
symmetric structures, have already been thoroughly investigated by Li
and Feng [2, 3, 4]. Here, we mainly studied the mirror-symmetric solu-
tion of the well-known matrix equation AXB + CY D = E.
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With the proposed extended CG method (Algorithm 1), when the
equation is consistent, it is shown that theoretically for any initial mirror-
symmetric pair [X0, Y0], a solution is obtained within st iterations, where
s and t denote the size of the matrix E. Moreover, it was shown that the
unique least Frobenius norm mirror-symmetric solution was obtained by
special choices of initial mirror-symmetric iteration matrices, especially
the zero matrices. Several numerical examples were presented to illus-
trate the theory in action.
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