Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 75-83.

THE STRUCTURE AND AMENABILITY OF ℓ^P -MUNN ALGEBRAS

S. NASERI[∗] AND H. SAMEA

Communicated by Gholamhossein Esslamzadeh

ABSTRACT. We introduce the notion of $\mathcal{LM}_I^p(\mathcal{A})$, where $\mathcal A$ is a Banach space, I is an index set and $1 \leq p < \infty$. We find necessary and sufficient conditions for which $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra and investigate amenability of this Banach algebra. Applications to $\ell^p(S)$ ($1 \leq p < \infty$), where S is a Brandt semigroup, are also given.

1. Introduction

Communicated by Gholamhossein Esslamzadeh
 ABSTRACT. We introduce the notion of $\mathcal{LM}_I^p(A)$, where A is a

Banach space, I is an index set and $1 \leq p < \infty$. We find necessary

and similations for which $\mathcal{LM}_I^p(A)$ Some properties of ℓ^1 -Munn algebras were investigated by Esslamzadeh [3] , where the author introduced the notion and used them as a tool for studying certain semigroup algebras. For more information, see [2-4]. Our aim here is to introduce and investigate the properties of ℓ^p -Munn algebras. It enables us to study some properties of l^p -spaces on Brandt semigroups. This paper is organized as follows. Our notations are introduced in the present section. In section 2, we introduce and investigate the structure of $\mathcal{L}M_I^p$ $I_I^p(\mathcal{A})$, for the Banach space \mathcal{A} , the index set I, and $1 \leq p < \infty$. The Banach space $\mathcal{LM}_I^p(\mathcal{A})$ is the vector space of all $I \times I$ -I matrices A over A such that $||A||_p = \left(\sum_{i,j\in I} ||A_{ij}||^p\right)^{\frac{1}{p}} < \infty$. We find

MSC(2010): Primary: 43A07.

Keywords: Banach algebra, amenability, semigroup. Received: 30 September 2008. Accepted: 30 July 2009. ∗Corresponding author

c 2010 Iranian Mathematical Society.

⁷⁵

necessary and sufficient conditions for which $\mathcal{L}M_I^p$ $I^p(\mathcal{A})$ is a Banach algebra. We prove that if A is a unital Banach algebra, then $\mathcal{L}M_I^p$ $I^p(\mathcal{A})$ is a Banach algebra if and only if $1 \leq p \leq 2$. Moreover, it is proved that if G is a group and S is a Brandt semigroup over G with index set I , then the Banach space $\ell^p(S)/\mathbb{C}\delta_0$ is isometrically isomorphic with $\mathcal{LM}_I^p(\ell^p(G))$. Moreover, if G is a finite group, and I is finite, then $(\ell^p(S), \star)/\mathbb{C}\delta_0$ is isometrically isomorphic with $\mathcal{LM}^p_I(\ell^p(G),*)$. Finally, in Section 3 we study the amenability of the Banach algebra $\mathcal{L}M_I^p$ $_{I}^{p}(\mathcal{A})$ $(1 \leq p \leq 2)$ over a Banach algebra A with a unit. We prove that $\mathcal{L}M_I^p$ $_{I}^{p}(\mathcal{A})$ $(1 \leq p \leq 2)$ is amenable, if and only if A is amenable, and I is finite.

The following are some of the notations which we use here.

The following are some of the notations which we use here.

Let A be a Banach algebra. If A admits a unit e_A ($ae_A = e_A a$
 a , for all $a \in A$) and $||e_A|| = 1$, we say that A is a unital normed
 $algebra.$ For a Banach alge Let A be a Banach algebra. If A admits a unit $e_{\mathcal{A}}$ ($ae_{\mathcal{A}} = e_{\mathcal{A}}a$ a, for all $a \in \mathcal{A}$ and $||e_{\mathcal{A}}|| = 1$, we say that A is a unital normed algebra. For a Banach algebra A , an A -bimodule will always refer to a *Banach* A -bimodule X ; that is, a Banach space which is algebraically an A-bimodule, and for which there is a constant $C_X \geq 0$ such that for $a \in \mathcal{A}, x \in X, \|a.x\| \leq C_X \|a\| \|x\|, \|x.a\| \leq C_X \|x\| \|a\|.$ A derivation $D: \mathcal{A} \longrightarrow X$ is a linear map, always taken to be continuous, satisfying $D(ab) = D(a) \cdot b + a \cdot D(b)$, for $a, b \in A$. For every $x \in X$, we define ad_x by $ad_x(a) = a.x - x.a$, for $a \in \mathcal{A}$. Note that ad_x is a derivation which is called an inner derivation. A Banach algebra A is called amenable if and only if, for any A -bimodule X, every derivation $D: A \longrightarrow X^*$ is inner.

2. The structure of the Banach space $\mathcal{LM}_I^p(\mathcal{A})$ $(1 \leq p < \infty)$ over a Banach algebra A

Definition 2.1. Let A be a Banach space, $1 \leq p < \infty$, and I be an arbitrary index set, and let $\mathcal{LM}_I^p(\mathcal{A})$ be the vector space of all $I \times I$ matrices A over A such that

$$
||A||_p = \left(\sum_{i,j \in I} ||A_{ij}||^p\right)^{\frac{1}{p}} < \infty.
$$

Then, it is easy to check that $\mathcal{LM}_I^p(\mathcal{A})$ with scaler multiplication, matrix addition, and the norm $\|.\|_p$ is a Banach space. This Banach space is called ℓ^p -Munn Banach space over A. If $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra, then $\mathcal{LM}_I^p(\mathcal{A})$ is called the ℓ^p -Munn Banach algebra over $\mathcal A$ with index set I.

The space $\mathcal{LM}^1_I(\mathcal{A})$ over a unital Banach algebra $\mathcal A$ is called the ℓ^1 -Munn Banach algebra over A with index set I (see [3]). If I is finite, then $\|.\|_{\mathcal{L}M^2_I(\mathbb{C})}$ is called *Frobenius norm.*

A Brandt semigroup S over a group G with index set I consists of all canonical $I \times I$ matrix units over $G \cup \{0\}$ and a zero matrix 0. Note that an $I \times I$ matrix whose entries are zero except one, is called a canonical matrix unit.

Let G be a group and S be a Brandt semigroup over G. For $f \in \ell^p(S)$, and $i, j \in I$, define $f_{ij} : G \longrightarrow \mathbb{C}$ by

$$
f_{ij}(g) = f((g)_{ij}),
$$

where $(g)_{ij}$ is the matrix with (k, l) -entry equal to g if $(k, l) = (i, j)$ and 0 if $(k, l) \neq (i, j)$. Since for every $i, j \in I$,

$$
\sum_{g \in G} |f((g)_{ij})|^p \le \sum_{s \in S} |f(s)|^p < \infty,
$$

then we have $f_{ij} \in \ell^p(G)$. It is clear that if $A = [f_{ij}]$, then $A \in$ $\mathcal{LM}_I^p(\ell^p(G))$. Now, as in Proposition 5.6 of [3], let

$$
\Phi: \ell^p(S) \longrightarrow \mathcal{LM}_I^p(\ell^p(G)): f \mapsto [f_{ij}].
$$

where $(g)_{ij}$ is the matrix with (k, l) -entry equal to g if $(k, l) = (i, j)$ and 0 if $(k, l) \neq (i, j)$. Since for every $i, j \in I$,
 $\sum_{g \in G} |f(g)_{ij}|^p \leq \sum_{s \in S} |f(s)|^p < \infty$,

then we have $f_{ij} \in \ell^p(G)$. It is clear that if A It is clear that Φ is a well-defined linear map with $\|\Phi\| \leq 1$. Suppose $A \in \mathcal{LM}_I^p(\ell^p(G))$ and $A = [f_{ij}]$. Define $f : S \longrightarrow \mathbb{C}$ by $f(0) = 0$ and $f((g)_{ij}) = f_{ij}(g)$, for $g \in G$ and $i, j \in I$. Since

$$
\sum_{s \in S} |f(s)|^p = \sum_{i,j \in I} \sum_{g \in G} |f((g)_{ij})|^p = \sum_{i,j \in I} ||f_{ij}||_p^p < \infty,
$$

Then $f \in \ell^p(S)$. Clearly $\Phi(f) = A$. Hence, Φ is onto. Therefore, there is an isometrical isomorphism from $\ell^p(S)/\mathbb{C}\delta_0$ onto $\mathcal{LM}_I^p(\ell^p(G))$. Thus, we have the following result.

Proposition 2.2. Let G be a group and S be a Brandt semigroup over G with the index set I. Then, the Banach space $\ell^p(S)/\mathbb{C}\delta_0$ is isometrically isomorphic with $\mathcal {LM}_I^p(\ell^p(G))$.

For the rest of the paper, we assume that A is a Banach algebra.

Theorem 2.3. Let $1 \leq p \leq 2$. The Banach space $\mathcal{LM}_I^p(\mathcal{A})$ with matrix multiplication and norm $\|.\|_p$ is a Banach algebra.

Proof. Let $A, B \in \mathcal{LM}_I^p(\mathcal{A})$, and $i, j \in I$. Since $1 \leq p \leq 2$, then for q with $\frac{1}{p} + \frac{1}{q} = 1$, we have $q \ge 2 \ge p$. Hence, $\ell^p(I) \subseteq \ell^q(I)$ and

 $||f||_q^p \le ||f||_p^p$ $(f \in \ell^p(I))$. We denote the function $f: I \to \mathbb{C}$, by $(f(i))_i$. Now, we have

$$
\left(\sum_{k\in I} ||A_{ik}|| ||B_{kj}||\right)^p = ||(||A_{ik}||)_k(||B_{kj}||)_k||_1^p
$$

\n
$$
\leq ||(||A_{ik}||)_k||_p^p ||(||B_{kj}||)_k||_q^p
$$

\n
$$
\leq ||(||A_{ik}||)_k||_p^p ||(||B_{kj}||)_k||_p^p
$$

\n
$$
= \left(\sum_{k\in I} ||A_{ik}||^p\right) \left(\sum_{l\in I} ||B_{lj}||^p\right).
$$

Therefore,

 $\overline{}$

Therefore,
\n
$$
||AB||_p^p = \sum_{i,j\in I} \left\| \sum_{k\in I} A_{ik} B_{kj} \right\|^p
$$
\n
$$
\leq \sum_{i,j\in I} \left(\sum_{k\in I} ||A_{ik}|| ||B_{kj}|| \right)^p
$$
\n
$$
\leq \sum_{i,j\in I} \left(\sum_{k\in I} ||A_{ik}|||^p \right) \left(\sum_{l\in I} ||B_{lj}||^p \right)
$$
\n
$$
= \left(\sum_{i,k\in I} ||A_{ik}||^p \right) \left(\sum_{j,l\in I} ||B_{lj}||^p \right)
$$
\nHence, $||AB||_p \leq ||A||_p ||B||_p$. This shows that $||.||_p$ is an algebra norm.
\nHence, $\mathcal{LM}_I^p(A)$ is a Banach algebra.
\n**Example 2.4.** Let A be a non-zero Banach space. Define
\n $a.b = 0$ $(a, b \in A)$.
\nWith this multiplication A is a Banach algebra. Now, let I be an arbitrary set and $1 \leq p < \infty$. Then for each $A, B \in \mathcal{LM}_I^p(A)$, $AB = 0$.
\nHence, $\mathcal{LM}_I^p(A)$ is a Banach algebra.

Hence, $||AB||_p \leq ||A||_p||B||_p$. This shows that $||.||_p$ is an algebra norm. Hence, $\mathcal{LM}_I^{p'}(\mathcal{A})$ is a Banach algebra.

Example 2.4. Let $\overline{\mathcal{A}}$ be a non-zero Banach space. Define

 $a.b = 0 \quad (a, b \in \mathcal{A}).$

With this multiplication A is a Banach algebra. Now, let I be an arbitrary set and $1 \leq p < \infty$. Then for each $A, B \in \mathcal{LM}_I^p(\mathcal{A}), AB = 0$. Hence, $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra.

Proposition 2.5. Let I be an infinite set and A be a Banach algebra such that $A^2 \neq 0$. Then, for each $2 < p < \infty$, $\mathcal{LM}_I^p(A)$ is not an algebra.

Proof. Since $A^2 \neq 0$, then there exist $a, b \in A$ such that $ab \neq 0$. Let ${i_n}_{n\in\mathbb{N}}$ be an infinite subset of distinct elements of I. Define the $I \times I$ matrix A over A by $A_{i_1i_n} = \frac{1}{\sqrt{n}}$ $\frac{1}{n}a$ $(n \in \mathbb{N})$ and $A_{ij} = 0$, for other $i, j \in I$. Also, define the $I \times I$ -matrix B over A by $B_{i_n i_1} = \frac{1}{\sqrt{n}}$ $\frac{1}{n}b$ $(n \in \mathbb{N})$ and $B_{ij} = 0$, for other $i, j \in I$. It is easy to see that $A, B \in \mathcal{LM}_I^p(\mathcal{A})$. But AB is not even well defined, since

$$
(AB)_{i_1 i_1} = \sum_{n \in \mathbb{N}} A_{i_1 i_n} B_{i_n i_1} = \left(\sum_{n \in \mathbb{N}} \frac{1}{n}\right) ab.
$$

Proposition 2.6. Let I be a set with at least two elements, and A be a unital Banach algebra. Then, $\mathcal{L}M_I^p$ $I\!\!P(\mathcal{A})$ is a Banach algebra if and only if $1 \leq p \leq 2$.

Proposition 2.6. Let I be a set with at least two elements, and A be unital Banach algebra. Then, $\mathcal{L}M_1^p(A)$ is a Banach algebra if and on if $1 \leq p \leq 2$.
 Proof. By Theorem 2.3, if $1 \leq p \leq 2$, then $\mathcal{L}M_1$ **Proof.** By Theorem 2.3, if $1 \leq p \leq 2$, then $\mathcal{L}M_I^p$ $I_I^p(\mathcal{A})$ is a Banach algebra. By Proposition 2.5, if I is infinite, and $2 < p < \infty$, then $\mathcal{L}M_I^p$ $I^p(A)$ is not a Banach algebra. Now, suppose I is finite. Let $i_1, i_2 \in I$ and $i_1 \neq i_2$. Define the $I \times I$ -matrix A over A by $A_{i_1i_1} = A_{i_1i_2} = e_{\mathcal{A}}$ and $A_{ij} = 0$, for other $i, j \in I$. Also, define the $I \times I$ -matrix B over A by $B_{i_1i_1} = B_{i_2i_1} = e_{\mathcal{A}}$ and $B_{ij} = 0$, for other $i, j \in I$. Then,

$$
||AB||_p = 2 > 2^{\frac{2}{p}} = 2^{\frac{1}{p}} 2^{\frac{1}{p}} = ||A||_p ||B||_p,
$$

and so $\Vert . \Vert_p$ is not an algebra norm. Hence, $\mathcal{L}M_I^p$ $I_I^p(\mathcal{A})$ is not a Banach algebra.

Remark 2.7. (a) Let I be finite and A be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose $Card(I) = m$. If $(A_1, \ldots, A_m) \in \mathcal{A}^m$, $1 \leq p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$
||(A_i)_i||_1 = ||(A_ie_{\mathcal{A}})_i||_1 \le ||(A_i)_{i \in I}||_p ||(e_{\mathcal{A}})_{i \in I}||_q = m^{\frac{1}{q}} ||e_{\mathcal{A}}|| ||(A_i)_{i \in I}||_p.
$$

 \Box

Thus, for arbitrary $I \times I$ matrices A, B on A ,

 \mathbf{r}

$$
||AB||_p^p = \sum_{i,j\in I} \left\| \sum_{k\in I} A_{ik} B_{kj} \right\|^p \le \sum_{i,j\in I} \left(\sum_{k\in I} ||A_{ik}|| ||B_{kj}|| \right)^p
$$

\n
$$
= \sum_{i,j\in I} \left\| (||A_{ik}||)_k (||B_{kj}||)_k \right\|_1^p \le \sum_{i,j\in I} \left\| (||A_{ik}||)_k \right\|_1^p \left\| (||B_{lj}||)_l \right\|_1^p
$$

\n
$$
\le m^{\frac{2p}{q}} ||e_{\mathcal{A}}||^{2p} \sum_{i,j\in I} \left\| (||A_{ik}||)_k \right\|_p^p \left\| (||B_{lj}||)_l \right\|_p^p = m^{\frac{2p}{q}} ||e_{\mathcal{A}}||^{2p} ||A||_p^p
$$

\n
$$
||B||_p^p.
$$

Hence, $||AB||_p \leq m^{\frac{2}{q}} ||e_{\mathcal{A}}||^2 ||A||_p ||B||_p.$

(b) Let I be finite and A be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose $Card(I) = m$. By (a), it is easy to see that $(\mathcal{L}M_I^p)$ $_{I}^{p}(\mathcal{A}),m^{\frac{2}{q}}\Vert e_{\mathcal{A}}\Vert^{2}\Vert.\Vert_{p})$ is a Banach algebra.

(c) Let I be finite and A be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose $Card(I) = m$. Define the norm $|||.|||$ on A by $|||a||| = C||a||$ (a ∈ \mathcal{A}), where $C \geq m^{\frac{2}{q}} \|e_{\mathcal{A}}\|^2$. Let $\widetilde{\mathcal{A}}$ denote the algebra \mathcal{A} with the norm $\|\cdot\|$ and A be an $I \times I$ -matrix over \widetilde{A} . Then,

$$
||A||_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} = C||A||_{\mathcal{L}M^p_I(\mathcal{A})}.
$$

From this equality and (a), for each $A, B \in \mathcal{L}M_I^p$ $I_I^p(\mathcal{A})$ we obtain,

Hence,
$$
||AB||_p \le m^{\frac{2}{q}} ||e_A||^2 ||A||_p ||B||_p
$$
.
\n(b) Let *I* be finite and *A* be a Banach algebra with the unit e_A . Suppose $Card(I) = m$. By (a), it is easy to see that $(LM_f^p(A), m^{\frac{2}{q}} ||e_A||^2 ||.||_p)$ is a Banach algebra.
\n(c) Let *I* be finite and *A* be a Banach algebra with the unit e_A . Suppose $Card(I) = m$. Define the norm $|||.\||$ on *A* by $|||a||| = C ||a||$ ($a \in A$), where $C \ge m^{\frac{2}{q}} ||e_A||^2$. Let \tilde{A} denote the algebra *A* with the norm $||.|||$ and *A* be an *I* × *I*-matrix over \tilde{A} . Then, $||A||_{CM_f^p(\tilde{A})} = C ||A||_{CM_f^p(A)}$.
\nFrom this equality and (a), for each $A, B \in CM_f^p(\tilde{A})$ we obtain, $||AB||_{CM_f^p(\tilde{A})} = C ||AB||_{CM_f^p(A)} \le C m^{\frac{2}{q}} ||e_A||^2 ||A||_{CM_f^p(\tilde{A})} ||B||_{CM_f^p(A)}$
\n $= \frac{m^{\frac{2}{q}} ||e_A||^2}{C} ||A||_{CM_f^p(\tilde{A})} ||B||_{CM_f^p(\tilde{A})} \le ||A||_{CM_f^p(\tilde{A})}$
\nTherefore, $CM_f^p(\tilde{A})$ is a Banach algebra.
\n**Example 2.8.** The algebra $A = \mathbb{C}$ with the norm $||A|| = 3|A|$ ($A \in \mathcal{A}$) is a Banach algebra with a the unit that is not unital (since $||1|| = 3 \ne 1$).
\nThen, by notations of Remark 2.7, $A = \mathbb{C}$ with $C = 3$. Let $I = \{1, 2\}$.
\nSince $C \ge 2^{2\frac{2}{3}} |1|$, then by remark 2.7, $LM_f^q(A)$ is a Banach

Therefore, $\mathcal{L}M_I^p$ $I_I^p(\mathcal{A})$ is a Banach algebra.

Example 2.8. The algebra $\mathcal{A} = \mathbb{C}$ with the norm $||A|| = 3|A|$ ($A \in \mathcal{A}$) is a Banach algebra with a the unit that is not unital (since $||1|| = 3 \neq 1$). Then, by notations of Remark 2.7, $\mathcal{A} = \mathbb{C}$ with $C = 3$. Let $I = \{1, 2\}$. Since $C \geq 2^{2\frac{2}{3}}|1|$, then by remark 2.7, $\mathcal{L}M_{I}^{3}(\mathcal{A})$ is a Banach algebra. This example shows that we can not replace the condition " A is unital" by " A has a unit" in the Proposition 2.6.

Proposition 2.9. Let G be a finite group with $Card(G) = m, 1 < p <$ ∞ , and S be a Brandt semigroup over G with the index set I. Then, $\ell^p(S)$ is closed under convolution if and only if I is finite. Moreover, if I is finite, then there exists a constant C such that $\ell^p(S)$ with the product

$$
\delta_s * \delta_t = \delta_{st} \quad (s, t \in S),
$$

and the norm $C\|.\|_p$ defines a Banach algebra. Also, $\ell^p(G)$ with the norm $C\Vert .\Vert_p$ is a Banach algebra under convolution, and $\ell^p(S)/\mathbb{C}\delta_0$ is an isometric Banach algebra-isomorphic with $\mathcal{LM}^p_I(\ell^p(G))$.

Proof. Suppose I is infinite. Let $\{i_n\}_{n\in\mathbb{N}}$ be an infinite subset of distinate elements of I . Let $f = \sum_{n=1}^{\infty} \frac{1}{n} \delta_{(e)_{i_1 i_1}},$ and $g = \sum_{n=1}^{\infty} \frac{1}{n} \delta_{(e)_{i_1 i_1}}$. Clearl $f, g \in \ell^p(S)$. But f **Proof.** Suppose I is infinite. Let $\{i_n\}_{n\in\mathbb{N}}$ be an infinite subset of distinct elements of *I*. Let $f = \sum_{n=1}^{\infty} \frac{1}{n}$ $\frac{1}{n}\delta_{(e)i_1i_n}$, and $g=\sum_{n=1}^{\infty}\frac{1}{n}$ $\frac{1}{n}\delta_{(e)i_{n}i_{1}}$. Clearly, $f, g \in \ell^p(S)$. But

$$
f * g(0) = \sum_{m,n \in \mathbb{N}, m \neq n} \frac{1}{mn} = \infty.
$$

Hence, $\ell^p(S)$ is not closed under convolution.

Suppose I is finite with $Card(I) = l$. It is easy to see that the Banach space $\ell^p(G)$ with the norm $\|.\|_{\ell^p(G)} = m^{1-\frac{1}{p}} \|\|_p$ and the product

$$
\delta_x * \delta_y = \delta_{xy} \quad (x, y \in G),
$$

defines a convolution Banach algebra. Note that δ_e (e is the unit of G) is the unit of $\ell^p(G)$ with $\|\delta_e\|_{\ell^p(G)} = m^{1-\frac{1}{p}}$.

By Theorem 2.3, for $p \leq 2$, $\mathcal{LM}_I^p(\ell^p(G))$ defines a Banach algebra. In I this case, let $C = m^{1-\frac{1}{p}}$ For $p > 2$, by Remark 2.7(c),

 $\| ||. \| = l^{\frac{2}{q}} \| \delta_e \|^2_{\ell^p(G)} \|.\|_{\ell^p(G)} = l^{\frac{2}{q}} \| \delta_e \|^2_{\ell^p(G)} m^{1-\frac{1}{p}} \|.\|_p = l^{\frac{2}{q}} m^{3(1-\frac{1}{p})} \|.\|_p.$

Thus, $\mathcal{LM}_I^p(\ell^p(G))$ defines a Banach algebra. In this case, let $C =$ $l^{\frac{2}{q}}m^{3(1-\frac{1}{p})}$. It is easy to see that for the mapping

 $\Phi: (\ell^p(S), C \|.\|_p) \longrightarrow \mathcal{LM}_I^p((\ell^p(G), C \|.\|_p)) : f \mapsto [f_{ij}],$

 $\Phi(\delta_s * \delta_t) = \Phi(\delta_s) \Phi(\delta_t)$. Hence, Φ is an algebra homomorphism. Therefore, by Proposition 2.2, the Banach algebra $(\ell^p(S), C\Vert . \Vert_p)/\mathbb{C}\delta_0$ is isometrically algebra isomorphic with $\mathcal{LM}_I^p((\ell^p(G), C||.||_p)).$

Remark 2.10. By Proposition 5.6 of [3], for a Brandt semigroup S over a group G with an index set I, $\ell^1(S)/\mathbb{C}\delta_0$ is isometrically algebra isomorphic with $\mathcal{LM}_I(\ell^1(G))$.

3. Amenability of the Banach algebra $\mathcal{LM}_I^p(\mathcal{A})$ $(1 \leq p \leq 2)$ over a Banach algebra A with unit

Throughout this section, we suppose A has a unit which we denote by $e_{\mathcal{A}}$.

Lemma 3.1. Let A be a Banach algebra with unit e_A , and $1 \leq p \leq 2$. The following conditions are equivalent:

(1) $\mathcal{LM}_I^p(\mathcal{A})$ has a bounded approximate identity.

 (2) *I* is finite.

Proof. (1)⇒(2) Suppose on the contrary that I is infinite and $(E_{\alpha})_{\alpha}$ is an approximate identity for $\mathcal{LM}_I^p(\mathcal{A})$. For every finite subset F of I, define E_F by $(E_F)_{ii} = e_{\mathcal{A}}$ if $i \in F$, $(E_F)_{ii} = 0$ if $i \in I-F$ and $(E_F)_{ii} = 0$ if $i \neq j$. Then,

Proof. (1)
$$
\Rightarrow
$$
 (2) Suppose on the contrary that *I* is infinite and $(E_{\alpha})_{\alpha}$
is an approximate identity for $\mathcal{LM}_I^p(A)$. For every finite subset *F* of *I*,
define E_F by $(E_F)_{ii} = e_A$ if $i \in F$, $(E_F)_{ii} = 0$ if $i \in I - F$ and $(E_F)_{ij} = 0$
if $i \neq j$. Then,

$$
(CardF)^{\frac{1}{p}} = (\sum_{i \in F} ||e_A||^p)^{\frac{1}{p}} = ||E_F||_p
$$

$$
= \lim_{\alpha} ||E_F E_{\alpha}||_p = \lim_{\alpha} (\sum_{i \in F, j \in I} ||(E_{\alpha})_{ij}||^p)^{\frac{1}{p}}
$$

$$
\leq \liminf_{\alpha} ||E_{\alpha}||_p.
$$
Therefore, $\lim_{\alpha} ||E_{\alpha}||_p = \infty$. Thus, $\mathcal{LM}_I^p(A)$ does not have a bounded approximate identity.
(2) \Rightarrow (1) Suppose *I* is finite. Then, it is clear that E_I is a unit for $\mathcal{LM}_I^p(A)$.
Theorem 3.2. Let *A* be a Banach algebra with a unit and $1 \leq p \leq 2$.
The following conditions are equivalent:
(i) $\mathcal{LM}_I^p(A)$ is amenable.
(ii) *A* is amenable and *I* is finite.
Proof. (i) \Rightarrow (ii): Since $\mathcal{LM}_I^p(A)$ is amenable, then by Proposition (2.2.1)
of [5], $\mathcal{LM}_I^p(A)$ has a bounded approximate identity and by Lemma 3.1,
I is a finite set. By Corollary 4 of Section 4 of [1], there exists an

Therefore, $\lim_{\alpha} ||E_{\alpha}||_p = \infty$. Thus, $\mathcal{LM}_I^p(\overline{A})$ does not have a bounded approximate identity.

(2)⇒(1) Suppose I is finite. Then, it is clear that E_I is a unit for $\mathcal{L}\mathcal{\dot{M}}_{I}^{\acute{p}}$ (A) .

Theorem 3.2. Let A be a Banach algebra with a unit and $1 \leq p \leq 2$. The following conditions are equivalent:

(i) $\mathcal{LM}_I^p(\mathcal{A})$ is amenable.

(ii) A is amenable and I is finite.

Proof. (i) \Rightarrow (ii): Since $\mathcal{LM}_I^p(\mathcal{A})$ is amenable, then by Proposition(2.2.1) of [5], $\mathcal{LM}_I^p(\mathcal{A})$ has a bounded approximate identity and by Lemma 3.1, I is a finite set. By Corollary 4 of Section 4 of $[1]$, there exists an equivalent norm $\|.\|$ on A such that $\tilde{A} = (A, \|.\|)$ is unital. Since I is finite, then the identity map $A \mapsto A$; $\mathcal{LM}_I^p(A) \longrightarrow \mathcal{LM}_I(\widetilde{A})$ is continuous. Indeed, if $c||a|| \leq ||a|| \leq C||a||$ ($a \in \mathcal{A}$), then by Remark

2.7(a), $||A||_{\mathcal{LM}_I(\widetilde{\mathcal{A}})} \leq \frac{C}{c^2}$ $\frac{C}{c^2}(Card(I))^{\frac{2}{q}}\|e_{\mathcal{A}}\|^2\|A\|_{\mathcal{LM}_I^p(\mathcal{A})}.$ So, $\mathcal{LM}_I^p(\mathcal{A})$ is Banach algebra isomorphic with $\mathcal{LM}_I(\widetilde{\mathcal{A}})$. Hence, $\mathcal{LM}_I(\widetilde{\mathcal{A}})$ is amenable, and so by Theorem 4.1 of [3], \tilde{A} is amenable. Therefore, A is amenable. $(ii) \Rightarrow (i)$: We apply the notations of the above paragraph. By Theorem 4.1 of [3], $\mathcal{LM}_I(\widetilde{\mathcal{A}})$ is amenable. Hence, $\mathcal{LM}_I^p(\mathcal{A})$ is amenable. \Box

Remark 3.3. The above theorem remains valid, if we replace the condition " $1 \le p \le 2$ " by " $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra".

Example 3.4. Let S be a Brandt semigroup over a finite group G with a finite index I. Then, by Proposition 2.9, Theorem 3.2, and Remark 3.3, the convolution Banach algebra $\ell^p(S)$ is amenable.

Acknowledgments

Example 3.4. Let *S* be a Brandt semprony over a finite group *G* wi

a finite index *I*. Then, by Proposition 2.9, Theorem 3.2, and Rema

3.3, the convolution Banach algebra $\ell^p(S)$ is amenable.
 Acknowledgments
 A The first author is grateful to the Office of Graduate Studies of the University of Isfahan for its support and the second author also thanks the University of Bu-Ali Sina (Hamedan) for its support. Also, the authors thank the referee for his invaluable comments.

REFERENCES

- [1] F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- [2] H. G. Dales, A. T. M. Lau D. Strauss, Banach algebras on semigroups and their compactifications, To appear in the Memoirs of AMS.
- [3] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal. 161 (1999) 364-383.
- [4] G. H. Esslamzadeh, Ideals and representations of certain semigroup algebras, Semigroup Forum 69 (2004) 51-56.
- [5] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Vol. 1774, Springer, Berlin, 2002.

S. Naseri

Department of Mathematics, University of Isfahan, Isfahan, Iran. Email: naserisaber@yahoo.com

H. Samea

Department of Mathematics, University of Bu-Ali Sina, Hamedan, Iran. Email: h-samea@basu.ac.ir