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NEW BARRIER PARAMETER UPDATING
TECHNIQUE IN MEHROTRA-TYPE ALGORITHM
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Abstract. We introduce a new adaptive updating technique of the
barrier parameter in the celebrated Mehrotra’s predictor-corrector
algorithm for linear optimization. Our new technique enables us to
prove the polynomial iteration complexity of Mehrotra’s algorithm
without any safeguards. Encouraging computational results using
Lipsol software package are reported.

1. Introduction

Variations of celebrated Mehrotra’s [3, 4] predictor-corrector algo-
rithm have been implemented in most Interior-Point Methods (IPMs)
based software packages [1, 2, 10]. In [7], the authors have shown by a
numerical example that a feasible version of the algorithm may be forced
to make many small steps to reach optimality. Thus, they introduced
certain safeguards, which allowed them to prove polynomial iteration
complexity while keeping practical efficiency. In [6], the authors further
analyzed this algorithm by postponing the choice of barrier parameter
and proved results analogous to [7]. In this paper, we introduce a new
adaptive updating technique for the barrier parameter, which allows us
to prove the polynomial iteration complexity of Mehrotra’s algorithm
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without employing any safeguards, improving the results in [6, 7]. Our
computational experiments show that the new algorithm is competitive
with the heuristic based implementation in Lipsol [10].

Before going into the details of the algorithm, we give brief introduc-
tion to IPMs. Throughout the paper, we deal with the standard form
of the linear optimization problem:

(P ) min {cT x : Ax = b, x ≥ 0},

where A ∈ Rm×n with rank(A) = m, b ∈ Rm, c ∈ Rn. The dual of (p)
is:

(D) max {bT y : AT y + s = c, s ≥ 0}.

Without loss of generality [5], we may assume that both (P) and (D)
satisfy the interior point condition (IPC); i.e., there exists an (x0, y0, s0)
such that

Ax0 = b x0 > 0 AT y0 + s0 = c, s0 > 0.

Finding optimal solutions of (P ) and (D) is equivalent to solving the
following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1.1)
xs = 0,

where xs denotes the componentwise (Hadamard) product of the vectors
x and s. The basic idea of primal-dual IPMs is to replace the third
equation in (1.1) by the parameterized equation xs = µe, where e is the
all one vector. This leads to the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1.2)
xs = µe.

If the IPC holds, then system (1.2) has a unique solution for each µ > 0.
This solution, denoted by (x(µ), y(µ), s(µ)), is called the µ-center of the
primal-dual pair (P ) and (D). The set of µ-centers gives the central
path of (P ) and (D) [8]. It has been shown that the limit of the central
path (as µ goes to zero) exists. Because the limit point satisfies the
complementarity condition, it naturally yields optimal solutions for both
(P ) and (D), respectively [5].

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

New barrier parameter updating technique in Mehrotra-type algorithm 101

Applying Newton’s method to (1.2) from a given strictly feasible so-
lution gives the following linear system of equations1:

A∆x = 0,

AT ∆y + ∆s = 0,(1.3)
x∆s + s∆x = µe− xs,

where (∆x,∆y, ∆s) is the Newton direction. For detailed information
about classical IPMs and their iterations complexity one may consult
[5, 9], and the references therein.

Now, let us briefly discuss a feasible version of Mehrotra’s original
algorithm, which is the focus of our work here. In the predictor step, it
solves the following system of equations, called affine scaling system:

A∆xa = 0,

AT ∆ya + ∆sa = 0,(1.4)
s∆xa + x∆sa = −xs.

Then, the maximum feasible step size in this direction is computed;
i.e., the largest αa for which (x + αa∆xa, s + αa∆sa) ≥ 0. However, the
algorithm does not make such a step right away. Using this information,
it computes the corrector direction by solving the following system:

A∆x = 0,

AT ∆y + ∆s = 0,(1.5)
s∆x + x∆s = µe− xs−∆xa∆sa,

where µ is defined adaptively as µ =
(

ga

g

)2
ga

n with ga = (x+αa∆xa)T (s+

αa∆sa) and g = xT s. Since (∆xa)T ∆sa = 0, the previous relation can
be further simplified to

µ = (1− αa)3µg,(1.6)

where µg := xT s
n .

The major feature of this algorithm, as compared to the existing ones,
is that it uses one coefficient matrix in both the predictor and corrector
steps. This leads to a significant computating savings for large scale
problems. Moreover, in the corrector step, it uses some information

1We assume that one has a feasible starting point for the given problem, which
can be obtained by using the self-dual embedding model [1, 5]. The infeasible case
also can be carried out analogously [9].
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from the predictor step, namely αa and ∆xa∆sa, something that is not
practiced in classical algorithms.

2. Adaptive choice of barrier parameter

Here, we introduce an adaptive way of updating the barrier parameter
rather than using (1.6). To do so, we use the classical logarithmic barrier
proximity measure to measure the distance from the central path and
define the barrier parameter:

Φ(x, s, µ) :=
xT s

2µ
− n

2
+

n

2
log µ− 1

2

n∑
i=1

log(xisi).(2.1)

It is obvious that the global minimum of (2.1) as a function of µ is
attain at µ = µg. For notational convenience, the geometric mean of the
vector xs is denoted by µh; i.e.,

µh = (x1s1 · · ·xnsn)
1
n .

Obviously, µh ≤ µg. We define the target barrier parameter as the
smaller positive root of the equation

Φ(x, s, µ) =
(τ − 1)n

2
,

where τ > 1 is a given constant, denoted by µt. This is equivalent to:
µg

µ
+ log

µ

µh
− τ = 0.(2.2)

In the next lemma, we give a condition under which, equation (2.2)
is solvable.

Lemma 2.1. For all (x, s) ∈ Rn
++×Rn

++, for which µg ≤ τµh, equation
(2.2) has two positive roots, one is smaller than µg and the other one of
which is greater than µg.

Proof. If µg = τµh, then from equation (2.2) one has µt = µh which
is obviously less than µg. Moreover, since Φ is a strictly decreasing
function of µ, for µ < µg, thus Φ(x, s, µg) < (τ−1)n

2 . Furthermore, since
Φ is a strictly increasing function of µ for µ > µg, then (2.2) has another
root that is greater than µg. Now, let us assume that µg = τ1µh, where
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1 ≤ τ1 < τ. Then, we have

Φ(x, s, µh) =
(τ1 − 1)n

2
<

(τ − 1)n
2

.

We also know that the value of the proximity measure goes to infinity
when µ approaches zero. All these together imply that (2.2) has a solu-
tion which is strictly less than µh. Similar to the previous case, another
root which is greater than µg must also exist. �

The following technical lemma plays a crucial role in our future anal-
ysis.

Lemma 2.2. For any (x, s) ∈ Rn
++ × Rn

++, for which µg ≤ τµh, one
has τ ≤ µg

µt
≤ 2τ.

Proof. Since µg ≤ τµh, then Φ(x, s, µh) ≤ (τ−1)n
2 . This together with

the fact that Φ is strictly decreasing for µ < µgimply that µt ≤ µh, and
from (2.2) we have µg ≥ τµt. Now, for the right hand side inequality, let
µg = τ1µh, where 1 ≤ τ1 ≤ τ. Then, (2.2) becomes µg

µt
+ log τ1− log µg

µt
−

τ = 0, which obviously implies the right hand side inequality. �

Remark 2.3. The new adaptive choice of barrier parameter always
guarantees a large update algorithm.

To discuss the polynomial iteration complexity of the algorithm using
the new technique, we keep the iterates of the algorithm in the widely
used negative infinity norm neighborhood as follows:

N−
∞(γ) := {(x, y, s) ∈ F0 : xisi ≥ γµg ∀i ∈ I},(2.3)

where γ ∈ (0, 1) is a constant independent of n, F0 denotes the interior
of the primal and dual feasible regions and I = {1, · · · , n}. For our
analysis, we use γ = 1

τ . Now, we outline the algorithm using our new
adaptive updating strategy.

Algorithm 1
Input:
a neighborhood parameter τ > 4;
an accuracy parameter ε > 0;
(x0, y0, s0) ∈ N−

∞(γ) with γ = 1
τ .

While xT s ≥ ε
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Predictor Step
Solve (1.4).
Corrector step
Solve (1.5) with µ = µt, the smaller positive root
of (2.2) and compute the maximum step size αc

such that (x(αc), y(αc), s(αc)) ∈ N−
∞(γ);

Set (x(αc), y(αc), s(αc)) = (x + αc∆x, y + αc∆y, s + αc∆s).
End

In the following lemma, we show that for any iterate of Algorithm 1,
equation (2.2) always has two positive roots.

Lemma 2.4. Let (x, y, z), the current iterate of Algorithm 1, be in
N−
∞(γ). Then,

µg ≤ τµh.

Proof. For any (x, y, s) ∈ N−
∞(γ), we have xisi ≥ γµg, ∀i ∈ I. This

implies µh ≥ γµg. Now, since τ = 1
γ , then we have µg ≤ τµh. �

Corollary 2.5. For all (x, y, s) generated by Algorithm 1, equation (2.2)
has two positive roots.

Proof. This follows from lemmas 2.1 and 2.4. �

The following corollary follows from Lemma 3.1 in [7] and is used in
the next theorem.

Corollary 2.6. Let µt be the smaller positive root of (2.2) for (x, y, s) ∈
N−
∞(γ). Then,

||∆x∆s|| ≤ τn2

4
µg.

Theorem 2.7. Suppose that (x, y, s), the current iterate of Algorithm
1, belong to N−

∞(γ) with γ = 1
τ , τ > 4 and (∆x,∆y, ∆s) being the so-

lution of (1.5) with µ = µt as the smaller positive root of (2.2). Then,
the maximum step size αc, that keeps (x(αc), y(αc), s(αc)) in N−

∞(γ),
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satisfies

αc ≥
1

2τ2n2
.

Proof. The goal is to find the maximum nonnegative α for which,
xi(α)si(α) ≥ γµg(α), ∀i ∈ I. To do so, first define

t = max
i∈I+

{∆xa
i ∆sa

i

xisi
},(2.4)

where I+ = {i ∈ I|∆xa
i ∆sa

i > 0}. Since (∆xa)T ∆sa = 0, then I+ 6= ∅.
The worst case may happen when ∆xa

i ∆sa
i > 0. Therefore we have

xi(α)si(α) = xisi + α(µt − xisi −∆xa
i∆sa

i) + α2∆xi∆si

≥ (1− α)xisi + αµt − αtxisi − α2 τn2

4
µg

= (1− (1 + t)α)xisi + αµt − α2 τn2

4
µg,

≥ (1− (1 + t)α)γµg + αµt − α2 τn2

4
µg,

where the first inequality follows from α ≥ 0, Corollary 2.6, definition
of t given by (2.4) and the last inequality holds for 0 ≤ α ≤ 4

5 since
1

1+t ≥
4
5 , by Lemma A.1 in [7]. Moreover,

µg(α) =
(

1− α + α
µt

µg

)
µg.(2.5)

In order to keep the next iterate in N−
∞(γ), one has to have

(1− (1 + t)α)γµg + αµt − α2 τn2

4
µg ≥ γ

(
1− α + α

µt

µg

)
µg,

which is equivalent to:

(1− γ)µt − γtµg ≥ α
τn2

4
µg.(2.6)

Moreover, by Lemma 2.2, one has

(1− γ)µt − γtµg ≥
µg

8τ
.

Therefore, inequality (2.6) holds if

µg

8τ
≥ α

τn2

4
µg,
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or in other words, if α ≤ 1
2τ2n2 , then (2.6) holds. Finally, we can conclude

that

αc ≥ min
(

4
5
,

1
2τ2n2

)
=

1
2τ2n2

,

which completes the proof. �

Theorem 2.8. Algorithm 1 stops after at most

O

(
n2 log

(x0)T s0

ε

)
iterations with a solution for which xT s ≤ ε.

Proof. After each iteration in the direction generated by system (1.5),
one has

µg(αc) =
(

1− αc − αc
µt

µg

)
µg.

Now using Lemma 2.2 it follows that

µg(αc) ≤
(

1− αc − αc
1
2τ

)
µg =

(
1− αc(

2τ + 1
τ

)
)

µg,

which completes the proof by Theorem 3.2 of [9]. �

Analogous to the Theorem 4.5 in [7], if we use the following modified
Newton system for the corrector step

A∆x = 0,

AT ∆y + ∆s = 0,(2.7)
s∆x + x∆s = µe− xs− αa∆xa∆sa,

then the iteration complexity of the new algorithm can be reduced to
O

(
n log (x0)T s0

ε

)
.

3. Computational experiments

Here we present some preliminary numerical results using Lipsol soft-
ware package [10]. Lipsol is taking advantages of several heuristics in
determining the barrier parameter at each iteration. To show the per-
formance of our updating scheme, we disabled all heuristics and simply
followed what we discussed in the previous section. For our approach,
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TABLE 1. Comparison of iteration Numbers for some Netlib Test Problems

Problem MLIPSOL LIPSOL Problem MLIPSOL LIPSOL
25fv47 24 25 pilotwe 37 37

80bau3b 42 39 pilot 29 31
afiro 8 8 capri 19 20
blend 12 12 brandy 17 17
bnl1 27 26 scfxm1 19 19
bnl2 33 31 scfxm2 21 21

boeing1 21 21 scfxm3 22 21
boeing2 20 19 truus 19 19
cycle 27 24 tuff 17 20
e226 20 21 woodw 29 28

we use γ = 1
τ with τ = 100 for all the test problems. Test problems are

taken from Netlib. The results obtained by modified version of Lipsol is
denoted by MLipsol and are summarized in Table 1.

As we see, our preliminary computational experiments show that our
updating technique is competitive with various heuristics that are im-
plemented in the LIPSOL software package.

4. Concluding remarks

We have introduced a new adaptive updating of the barrier parameter
in the celebrated Mehrotra-type predictor-corrector algorithm. Our new
strategy allow us to prove the polynomial iteration complexity of the
algorithm without employing any safeguards. This improved on authors
previous results in [6, 7]. Encouraging preliminary numerical results
using Lipsol were reported.

Acknowledgments. The author thanks the referee for his/her useful
comments.
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