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AN OPERATIONAL METHOD FOR THE NUMERICAL
SOLUTION OF TWO DIMENSIONAL LINEAR

FREDHOLM INTEGRAL EQUATIONS WITH AN
ERROR ESTIMATION

M. Y. RAHIMI, S. SHAHMORAD*, F. TALATI AND A. TARI

Communicated by Mohammad Asadzadeh

Abstract. We formulate the operational Tau method for the two
dimensional linear Fredholm integral equations of the second kind.
Some theoretical results are given to simplify application of the Tau
method, and then existence and uniqueness of solution for these
equations are investigated. We also estimate error of the proposed
method and give some numerical examples to demonstrate its ac-
curacy in finding solutions.

1. Introduction

As we know, suitable work has been done on the development and
analysis of numerical methods for solving one dimensional integral equa-
tions of the second kind (for example, see [1-5] and their references).
But, for the numerical solution of two dimensional integral equations,
the work done is much less (for example, see [5, 7, 19]).
On the other hand, up to now, the operational Tau method (see Ortiz
[8] and Ortiz and Samara [9]) has been developed for the numerical solu-
tion of ordinary differential equations (see, for instance, [10-12]) and for
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partial differential equations (see, for example, [13-14]). Also, in recent
years, this method has been formulated for the numerical solution of one
dimensional integral and integro-differential equations (see [15-18]).
The aim of our work here is to formulate the operational Tau method
for the two dimensional linear Fredholm integral equations (TDLFIE)
of the form
(1.1)

φ(x, t)−
∫ d

c

∫ b

a
K(x, t, y, z)φ(y, z)dydz = f(x, t), xε[a, b], tε[c, d].

where, K(x, t, y, z) and f(x, t) are continuous functions.
To this end, we replace different parts of TDLFIE by their matrix repre-
sentations of the Tau method and hence convert it to the system of linear
algebraic equations, and solve it to obtain an approximate solution of
the problem.

2. Some preliminary results of the Tau method

The matrix Tau method, proposed by Ortiz and Samara [9] is based
on using three simple matrices,

µ =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , η =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 2 0 0 · · ·
0 0 3 0 · · ·
...

...
...

...
. . .



, ι =


0 1 0 0 · · ·
0 0 1/2 0 · · ·
0 0 0 1/3 · · ·
...

...
...

...
. . .

 ,

having the following properties.

Lemma 2.1. If yN (x) = aNX with aN = (a0, a1, ..., aN , 0, 0, ...) and
X = (1, x, x2, ...)T , then

a.
d

dx
yN (x) = aNηX.

b. xyN (x) = aNµX.
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c.

∫
yN (x)dx = aN ιX.

Proof. See [15].

Corollary 2.2. Generally, under assumptions of Lemma 2.1, we have

a. xiX = µiX.

b.

∫
Xdx = ιX.

For the remainder of the paper, we assume that µ, η and ι are (N +
1) × (N + 1) matrices including the first (N + 1) rows and columns of
µ, η and ι, respectively.

3. Existence and uniqueness of solution

Here, we give a proof for existence and uniqueness of solution of (1.1)
based on [1].
We define the integral operator A : C([a, b]× [c, d]) → C([a, b]× [c, d]) as

(3.1) Aφ(x, t) =
∫ d

c

∫ b

a
K(x, t, y, z)φ(y, z)dydz, xε[a, b], tε[c, d]

Then, (1.1) can be written in the operator form

(3.2) φ−Aφ = f

The following theorem is an extension from one dimensional case (of [1])
to two dimensional case about the operator A.

Theorem 3.1. Let K : [a, b]× [c, d]× [a, b]× [c, d] → R be continuous.
then, the operator A defined by (3.1) is bounded by the norm,

(3.3) ‖A‖∞ = max
x∈[a,b],t∈[c,d]

∫ d

c

∫ b

a
|K(x, t, y, z)|dydz

Proof. Let φ ∈ C([a, b]× [c, d]) and ‖φ‖∞ ≤ 1. Then,

|(Aφ)(x, t)| ≤
∫ d

c

∫ b

a
|K(x, t, y, z)|dydz, xε[a, b], tε[c, d].
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Hence,

‖A‖∞ = sup
‖φ‖∞≤1

‖Aφ‖∞ ≤ max
x∈[a,b],t∈[c,d]

∫ d

c

∫ b

a
|K(x, t, y, z)|dydz.

On the other hand, since K is continuous, there exist x0 ∈ [a, b] and
t0 ∈ [c, d] such that∫ d

c

∫ b

a
|K(x0, t0, y, z)|dydz = max

x∈[a,b],t∈[c,d]

∫ d

c

∫ b

a
|K(x, t, y, z)|dydz.

Let ε > 0 be given, and define

ψ(y, z) =
K(x0, t0, y, z)

|K(x0, t0, y, z)|+ ε
.

Then, ‖ψ‖∞ ≤ 1 and

‖Aψ‖∞ ≥ |(Aψ)(x0, t0)| =
∫ d

c

∫ b

a

|K(x0, t0, y, z)|2

|K(x0, t0, y, z)|+ ε
dydz

≥
∫ d

c

∫ b

a

|K(x0, t0, y, z)|2 − ε2

|K(x0, t0, y, z)|+ ε
dydz

=
∫ d

c

∫ b

a
|K(x0, t0, y, z)|dydz − ε(b− a)(d− c)

Hence,
‖A‖∞ = sup

‖φ‖∞≤1
‖Aφ‖∞ ≥

‖Aψ‖∞ ≥
∫ d

c

∫ b

a
|K(x0, t0, y, z)|dydz − ε(b− a)(d− c),

and since ε > 0 is arbitrary, we have

‖A‖∞ ≥
∫ d

c

∫ b

a
|K(x0, t0, y, z)|dydz

= max
x∈[a,b],t∈[c,d]

∫ d

c

∫ b

a
|K(x, t, y, z)|dydz,

and hence the proof is complete. �
Now, we recall the following theorem from [1].
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Theorem 3.2. Let A be a bounded operator on C([a, b] × [c, d]) with
‖A‖ < 1 and I denote the identity operator. Then I −A has a bounded
inverse on C([a, b]× [c, d]), which is given by the Neumann series

(I −A)−1 =
∞∑

k=0

Ak,

satisfying

‖(I −A)−1‖ ≤ 1
1− ‖A‖

.

Theorem 3.2 ensures that the following condition is a sufficient (not
necessary) condition for existence and uniqueness of the solution of (3.2):

max
x∈[a,b],t∈[c,d]

∫ d

c

∫ b

a
|K(x, t, y, z)|dydz < 1.

4. Description of the method

To solve Eq. (3.2) by operational approach, we assume thatK(x, t, y, z)
and f(x, t) are polynomials; otherwise, they can be approximated by
suitable polynomials.
We assume the approximate solution has the truncated series form,

(4.1) φ(x, t) '
N∑

i=0

N∑
j=0

Cijx
itj = XTCT ,

where, X = (1, x, x2, ..., xN )T , T = (1, t, t2, ..., tN )T and C is the fol-
lowing (N + 1)× (N + 1) matrix,

(4.2) C =


C00 C01 · · · C0N

C10 C11 · · · C1N
...

...
...

...
CN0 CN1 · · · CNN

 .

Theorem 4.1. Let K(x, t, y, z) =
∑N

i=0

∑N
j=0

∑N
m=0

∑N
n=0 kijmnx

itjymzn.
Then, we have
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(4.3)
∫ d

c

∫ b

a
K(x, t, y, z)φ(y, z)dydz = XT ΠIT ,

where,

(4.4) ΠI =
N∑

i=0

N∑
j=0

N∑
m=0

N∑
n=0

kijmnPijmn

with

(4.5) Pijmn = ei+1(ξ(m)T (b)− ξ(m)T (a))C(ξ(n)(d)− ξ(n)(c))eTj+1,

ξ(m)(x) = µmιX, and ξ(n)(x) = µnιX corresponding to the term xitjymzn

in the kernel.

Proof. Since φ(x, t) = XTCT , we have

(4.6)
∫ d

c

∫ b

a
xitjymznφ(y, z)dydz =

∫ d

c
tj

[∫ b

a
xiymY Tdy

]
CZzndz,

where, Y = (1, y, y2, ..., yN )T and Z = (1, z, z2, ..., zN )T .
By corollary 2.2,∫ b

a
xiymY Tdy = xi

∫ b

a
Y T (µT )mdy = xi{

∫ b

a
Y Tdy}(µT )m = xi{Y T ιT }b

a

(µT )m

(4.7)
= xi{(µmιY |y=b)T − (µmιY |y=a)T } = XT ei+1(ξ(m)T (b)− ξ(m)T (a)),

and similarly,

(4.8)
∫ d

c
tjZzndz = (ξ(n)(d)− ξ(n)(c))eTj+1T .

By substituting (4.7) into the right side of (4.6), we obtain:∫ d

c
tj{XT ei+1(ξ(m)T (b)− ξ(m)T (a))}CZzndz

(4.9) = XT ei+1(ξ(m)T (b)− ξ(m)T (a))C
[∫ d

c
tjZzndz

]
.
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Substituting (4.8) into (4.9), we obtain:∫ d

c

∫ b

a
xitjymznφ(y, z)dydz

(4.10) = XT {ei+1(ξ(m)T (b)− ξ(m)T (a))C(ξ(n)(d)− ξ(n)(c))eTj+1}T
Therefore, the proof is complete.

Lemma 4.2. The elements of ξ(m)(x) = (ξ(m)
1 (x), ..., ξ(m)

N+1(x)) are de-
termined as:

(4.11) (ξ(m)
k (x)) =

{
xk+m

k+m , k = 1, 2, ..., N −m

0, otherwise.

A similar result is obtained for ξjn(x) by substituting m by n.

Proof. By the definition of ξim(x), we have

ξ(im)(x) = µmιX = (
1

m+ 1
xm+1,

1
m+ 2

xm+2, . . . ,
1
N
xN , 0, . . . , 0)T ,

where, the last zero elements are repeated (m+ 1) times.

Corollary 4.3. The matrix Pijmn in Theorem 4.1 has the form,

Pijmn =


0 · · · 0 · · · 0
...

...
...

0 · · · pi+1,j+1 · · · 0
...

...
...

0 · · · 0 · · · 0


where the nonzero element is computed as:

(4.12) pi+1,j+1 =
N−n∑
r=1

N−m∑
k=1

dr+n − cr+n

r + n

bk+m − ak+m

k +m
Ck−1,r−1,

, m, n = 0, 1, · · · , N − 1.

Proof. By substituting (4.11) in (4.5), the result is at hand.
Note that if m = N (or n = N), then ξim = 0̄ (ξjn = 0̄), and Pijmn

is a zero matrix.
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Note that, up to now, we have written the left hand side of (1.1) in
the matrix form by (4.1) and (4.3). At this time, we can write the right
hand side of the problem (4.1) in the form,

(4.13) f(x, t) =
N∑

i=0

N∑
j=0

fijx
itj = XTFT ,

where,

(4.14) F =


f00 f01 · · · f0N

f10 f11 · · · f1N
...

...
...

...
fN0 fN1 · · · fNN

 .

Now, by substituting (4.1), (4.3) and (4.13) in (1.1), we obtain:

XTCT −XT ΠIT = XTFT ,

or
XT (C −ΠI − F )T = 0,

and therefore,

(4.15) C −ΠI = F,

since X and T are bases.
By solving the system (4.15), we obtain φ(x, t) from (4.1).

5. Error estimation

A complete error analysis and convergence of the Tau method are
investigated in [6]. Here, we give a way of estimating error for our pro-
posed method. Indeed, this error estimation ensures that the method
can be applied to problems with areasonable confidence unknowns solu-
tions.

Define the error function as:

(5.1) e(x, t) = φ(x, t)− φN (x, t),

where, φ(x, t) and φN (x, t) are the exact and approximate solutions of
the integral equation (1.1), respectively.
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Substituting φN (x, t) in (1.1) leads to:

(5.2) φN (x, t)−
∫ d

c

∫ b

a
K(x, t, y, z)φN (y, z)dydz = f(x, t) + pN (x, t)

where, pN (x, t) is a perturbation term and can be obtained by substi-
tuting the computed solution φN (x, t) into the equation,

(5.3) pN (x, t) = φN (x, t)−
∫ d

c

∫ b

a
K(x, t, y, z)φN (y, z)dydz − f(x, t).

We proceed to find an approximation eN (x, t) to the error function e(x, t)
in the same way as we did before for the solution of equation (1.1).
Now, by subtracting (5.2) from (1.1) and using (5.1), the error function
e(x, t) satisfies:

(5.4) e(x, t)−
∫ d

c

∫ b

a
K(x, t, y, z)e(y, z)dydz = −pN (x, t).

It should be noted that in order to construct the approximation eN (x, t)
to e(x, t), only the right hand side of the equation (5.1) needs to be
recomputed, and thus by solving the integral equation (5.4) we obtain
an estimate for the error function (5.1).
We also get the following error bound from (5.4), which enable us to
control the estimated errors:

(5.5) ‖e‖∞ ≤ ‖pN‖∞
1− ‖K‖∞

6. Numerical examples

Here, we give some examples to show accuracy of the solutions ob-
tained by our proposed method.
Note that, as we mentioned previously, whenever K(x, t, y, z) or f(x, t)
are not polynomials, they must be approximated by polynomials of suit-
able degrees. Therefore, in the following examples, we approximate non-
polynomial parts of K(x, t, y, z) and f(x, t) by the Taylor polynomial.

Example 1. Consider the integral equation,
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φ(x, t)−
∫ 1

−1

∫ 1

−1
(xsiny + tsinz)φ(y, z)dydz

= xcost+ t+ 4(xsin(1)− t)(cos(1)− sin(1)),
x, t ∈ [−1, 1],

with the exact solution φ(x, t) = xcost+ t.
First, we expand sinz and cost in Taylor series on z0 = 0 and t0 = 0.
Tables 1 and 2 show the absolute errors (e(x, t)) and their estimations
(eN (x, t)) at the points (x, t) = ((0.25)i, (0.25)i), i = −4, . . . , 4, with
N = 12 and N = 14, respectively.

TABLE 1

(x, t) e(x, t) eN (x, t)

(−1,−1) 0.680166e− 7 0.680104e− 7
(−0.75,−0.75) 0.510209e− 7 0.510163e− 7
(−0.5,−0.5) 0.340140e− 7 0.340109e− 7
(−0.25,−0.25) 0.170070e− 7 0.170055e− 7
(0, 0) 0 0
(0.25, 0.25) 0.170070e− 7 0.170055e− 7
(0.5, 0.5) 0.340140e− 7 0.340109e− 7
(0.75, 0.75) 0.510209e− 7 0.510163e− 7
(1, 1) 0.680166e− 7 0.680104e− 7

TABLE 2

(x, t) e(x, t) eN (x, t)

(−1,−1) 0.379145e− 9 0.379124e− 9
(−0.75,−0.75) 0.284394e− 9 0.284378e− 9
(−0.5,−0.5) 0.189596e− 9 0.189586e− 9
(−0.25,−0.25) 0.947983e− 10 0.947928e− 10
(0, 0) 0 0
(0.25, 0.25) 0.947983e− 10 0.947928e− 10
(0.5, 0.5) 0.189596e− 9 0.189586e− 9
(0.75, 0.75) 0.284394e− 9 0.284378e− 9
(1, 1) 0.379145e− 9 0.379124e− 9
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Example 2. The integral equation,

φ(x, t)−
∫ 1

−1

∫ 1

−1
(xy + tez)φ(y, z)dydz

= xe−t − 1
3
x(1 + 2e− 2

e
) + t(1− 4

e
), x, t ∈ [−1, 1],

has the exact solution φ(x, t) = xe−t + x+ t.
Similar to Example 1, we estimate e−t by Taylor series on t0 = 0 .
Numerical results are reported in tables 3 and 4 for the absolute er-
rors and their estimations at the points (x, t) = ((0.25)i, (0.25)i), i =
−4, ..., 4, with N = 12 and N = 14, respectively.

TABLE 3

(x, t) e(x, t) eN (x, t)

(−1,−1) 0.169117e− 7 0.169090e− 7
(−0.75,−0.75) 0.128104e− 7 0.128078e− 7
(−0.5,−0.5) 0.854228e− 8 0.854055e− 8
(−0.25,−0.25) 0.427114e− 8 0.427028e− 8
(0, 0) 0.212730e− 20 0.212730e− 20
(0.25, 0.25) 0.427114e− 8 0.427028e− 8
(0.5, 0.5) 0.854229e− 8 0.854057e− 8
(0.75, 0.75) 0.128161e− 7 0.128135e− 7
(1, 1) 0.172344e− 7 0.172302e− 7

TABLE 4

(x, t) e(x, t) eN (x, t)

(−1,−1) 0.934594e− 10 0.934498e− 10
(−0.75,−0.75) 0.706981e− 10 0.706887e− 10
(−0.5,−0.5) 0.471374e− 10 0.471311e− 10
(−0.25,−0.25) 0.235687e− 10 0.235656e− 10
(0, 0) 0.425459e− 20 0.425459e− 20
(0.25, 0.25) 0.235687e− 10 0.235656e− 10
(0.5, 0.5) 0.471374e− 10 0.471312e− 10
(0.75, 0.75) 0.707135e− 10 0.707040e− 10
(1, 1) 0.949944e− 10 0.949792e− 10

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

130 Rahimi, Shahmorad, Talati and Tari

Example 3. Consider the third example as:

φ(x, t)−
∫ 1

0

∫ 1

0
(siny+tcosz−1)φ(y, z)dydz = xsin(x−t)+7

4
t−5

4
cos(1)

−3
2
sin(1)− 1

2
tcos(1)− tsin(1) +

1
8
sin(2)− 1

4
cos(2) +

1
4
tcos(2) + 2,

x, t ∈ [−1, 1],

which has the exact solution: φ(x, t) = xsin(x− t) + t.
Tables 5 and 6 show absolute errors and their estimations with N = 12
and N = 14, respectively.

TABLE 5

(x, t) e(x, t) eN (x, t)

(0, 0) 0.315868e− 6 0.315900e− 6
(0.25, 0.25) 0.454994e− 6 0.455033e− 6
(0.5, 0.5) 0.594120e− 6 0.594166e− 6
(0.75, 0.75) 0.733212e− 6 0.733265e− 6
(1, 1) 0.870615e− 6 0.870665e− 6

TABLE 6

(x, t) e(x, t) eN (x, t)

(0, 0) 0.748611e− 8 0.748626e− 8
(0.25, 0.25) 0.106630e− 7 0.106632e− 7
(0.5, 0.5) 0.138399e− 7 0.138402e− 7
(0.75, 0.75) 0.170168e− 7 0.170170e− 7
(1, 1) 0.201841e− 7 0.201844e− 7
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