Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 133-143.

ON THE RESTRICTION OF CHARACTERS OF SPECIAL LINEAR GROUPS OF DIMENSION THREE

V. DABBAGHIAN

Communicated by Jamshid Moori

ABSTRACT. Let G be the special linear group $SL(3, q)$, where q is power of a prime p. Here, we show that χ_P has a linear constituent with multiplicity one for each irreducible character χ and Sylow p-subgroup P of G. Furthermore, if $cf(G)$ is the vector space of class functions of G, we show that the restriction of a subset of irreducible characters of G on P is a basis for the vector space of class functions defined on P spanned by $\{\phi_P \mid \phi \in \text{cf}(G)\}.$

1. Introduction

Communicated by Jamshid Moori
 ABSTRACT. Let *G* be the special linear group $SL(3,q)$, where *q* is

power of a prime *p*. Here, we show that χ_P has a linear constituent

with multiplicity one for each irreducible c Steinberg asserts, in particular, that for any finite Chevalley group G , each nonprincipal linear character of a maximal unipotent subgroup H (a Sylow p-subgroup where p is the characteristic of G of G is a constituent of χ H with multiplicity at most 1 for every irreducible character χ of G [8, Theorem 49]. Moreover, in an earlier work, Gel'fand and Graev [2] showed the same results for groups $SL(n, q)$ for arbitrary n with a particular attention to the case $n = 3$. If q is a power of a prime p, by constructing the primitive central idempotents of the complex group algebra $\mathbb{C}G = \mathbb{C}SL(3,q)$, Guzel [3] shows that the restriction of χ to a Sylow p-subgroup of G has a linear constituents with multiplicity 1, for

MSC(2010): Primary: 20C15; Secondary: 20D20.

Keywords: Special linear group, irreducible representation, Sylow subgroup. Received:09 June 2008, Accepted: 28 August 2009.

c 2010 Iranian Mathematical Society.

¹³³

each irreducible character χ of G. This result has been referred by the author of this manuscript in [1] without any details.

Here, we provide another explicit proof of this result by using values of the irreducible characters of G on p -elements and writing them down as integral linear combinations of some specific characters.

Theorem 1.1. Let $G = SL(3, q)$, where $q > 2$ is a power of a prime p. Let P be a Sylow p-subgroup of G . Then, for all irreducible characters χ of G, there exists a linear character φ of P such that $\langle \chi_P, \varphi \rangle = 1$.

In the following section, we describe the structure of conjugacy classes and irreducible characters of G and their restrictions to the Sylow p subgroup P. Section 3 contains the proof of Theorem 1.1. Finally, in section 4 we conclude that a subset of restricted irreducible characters of G on P is a basis for the vector space of class functions defined on P and spanned by $\{\phi_P \mid \phi \in \text{cf}(G)\}\$, where $\text{cf}(G)$ is the vector space of class functions of G. 2. Structure of characters

The special linear group $G = SL(3,q)$, where q is a power of a prime p, of dimension 3 over the finite field $\mathbb{F}_q = \mathrm{GF}(q)$, is the set of all nonsingular 3×3 matrices with determinant 1.

and netations characters of *G* and then intestinctions to the sylump *P*. Section 3 contains the proof of Theorem 1.1. Finally, in
section 4 we conclude that a subset of restricted irreducible characters
of *G* on *P* is Let LT (a, b, c) denote a 3×3 lower triangular matrix with diagonal entries being 1 and the entries at the positions $(2, 1), (3, 1)$ and $(3, 2)$ being a, b and c, respectively. The set P of all matrices LT (a, b, c) with $a, b, c \in \mathbb{F}_q$ is a Sylow p-subgroup of G of order q^3 . We use the character values of G restricted to P to show that for each irreducible character χ of G there exists a linear character φ of P such that $\langle \chi_P, \varphi \rangle = 1$.

The conjugacy classes and the character table of G are given in [7]. We use notations defined in [7]. We shall use that table to get the values of characters on the different conjugacy classes of G which contain the elements of P.

Table 1 is a part of Table 1a of [7] that shows the structure of conjugacy classes of G which contain some elements of the Sylow p -subgroup P. Let $d = \gcd(3, q - 1)$, ω be a cube root of unity and $\epsilon^3 \neq 1$, for $\epsilon \in \mathrm{GF}(q).$

Based on the structure of the elements of P and the fact that ω is a cube root of unity, the elements of P are contained only in the conjugacy classes $\mathcal{C}_1^{(0)}$ $\mathcal{C}_1^{(0)},\,\mathcal{C}_2^{(0)}$ $\ell_2^{(0)}$ and $\mathcal{C}_3^{(0,l)}$ $S_3^{(0,t)}$ of G. The centre $Z(P) = \{LT(0, z, 0) \mid z \in$

 \mathbb{F}_q is an elementary abelian *p*-group of order *q*. Using the canonical representative elements of conjugacy classes $\mathcal{C}_1^{(0)}$ $\mathcal{C}_1^{(0)},\,\mathcal{C}_2^{(0)}$ $\mathcal{C}_2^{(0)}$ and $\mathcal{C}_3^{(0,l)}$ $\mathcal{L}_3^{(0,\iota)}$, we see that the minimal polynomials of elements of these conjugacy classes have degrees 1,2 and 3, respectively. The minimal polynomials of nontrivial elements of $Z(P)$ have degree 2, and so nontrivial elements of $Z(P)$ are contained in the conjugacy class $\mathcal{C}_2^{(0)}$ $\frac{1}{2}$.

TABLE 1: Conjugacy classes of $SL(3, q)$

The following lemma gives some properties of P.

Lemma 2.1. Suppose $G = SL(3, q)$, where q is a power of a prime p. If P is a Sylow p-subgroup of G , then we have:

- (1) P has q^2+q-1 conjugacy classes.
- (2) P has q^2 linear characters and $q-1$ non-linear characters of degree q such that their values on nontrivial elements of $Z(P)$ are 1 and $q\omega^i$, for some $1 \leq i \leq p$, respectively, where ω is a primitive p^{th} root of unity.
- (3) If τ is an irreducible character of degree q of P, then $\tau(x) = 0$, \bar{f} or $x \notin Z(P)$, and $\sum_{1 \neq z \in Z(P)} \tau(z) = -q$.

Proof. First of all we show $P/Z(P)$ is abelian. Let $x, y \in P$. It is enough to show $x^{-1}y^{-1}xy \in Z(P)$. Let $x = LT(a, b, c)$ and $y =$ LT (d, e, f) . Then, $x^{-1}y^{-1}xy = LT(0, af - dc, 0)$. Hence, $P/Z(P)$ is abelian and $P' \subseteq Z(P)$, where P' is the derived subgroup of P. Conversely, if $z = LT(0, t, 0) \in Z(P)$, then $z = x^{-1}y^{-1}xy \in P'$, where $x = \text{LT}(t, b, c)$ and $y = \text{LT}(0, 1, e)$, for $b, c, e \in \mathbb{F}_q$. Therefore, $P' = Z(P)$. Now, suppose $h = LT(h_1, h_2, h_3) \in P\setminus Z(P)$ so that at least one of h_1, h_3 is not 0. Then $x^{-1}hx = h^x = LT(h_1, h_1c - ah_3 - h_2, h_3)$.

As x runs over P, $h_1c - ah_3 - h_2$ runs over \mathbb{F}_q . Thus, the conjugacy class $\{h^x \mid x \in P\}$ has order q. Therefore, each conjugacy class of P has order 1 or q and P has q single element conjugacy classes, since $|Z(P)| = q$. If *n* is the number of conjugacy classes of order q, then $|P| = (q \times 1) + (n \times q)$ and so $n = q^2 - 1$. Thus, P has $q^2 + q - 1$ conjugacy classes.

Since $|P : P'| = q^2$, then P has q^2 linear characters and since the number of conjugacy classes of P is $q^2 + q - 1$, then P has $q - 1$ nonlinear characters. Let τ be a non-linear irreducible character of P . Since $Z(P) \subseteq Z(\tau)$ and by [5, Corollary 2.30],

(2.1)
$$
\tau^2(1) \leqslant |P : Z(\tau)| \leqslant |P : Z(P)| = q^2,
$$

then $\tau(1) \leq q$. On the other hand, the number of conjugacy classes of P is $q^2 + q - 1$ and the order of P is q^3 , and thus

$$
q^{3} = |P| = \sum_{i=1}^{q^{2}} \varphi_{i}(1)^{2} + \sum_{j=1}^{q-1} \tau_{j}(1)^{2},
$$

 $|P| = (q \times 1) + (n \times q)$ and so $n = q^2 - 1$. Thus, *P* has $q^2 + q - 1$

Since $|P : P'| = q^2$, then *P* has q^2 linear characters and since the

number of conjugacy classes of *P* is $q^2 + q - 1$, then *P* has $q - 1$ non-

linear c where φ_i and τ_j are linear and non-linear irreducible characters of P, respectively. Since $\tau_i(1) \leq q$, then $\tau_i(1) = q$ and (2.1) implies $Z(P) =$ $Z(\tau)$. Since $P' = Z(P)$, then the value of all linear characters of P on $Z(P)$ is 1. Also, for an irreducible character τ of degree q, if ρ is the representation which affords τ , then $\rho(z)$ is a scalar for all $1 \neq z \in Z(P)$ and thus $\tau(z) = q\omega^j$, for some $1 \leqslant j \leqslant p$, where ω is a primitive p^{th} -root of unity.

Since $\tau^2(1) = q^2 = |P : Z(P)|$, [5, Corollary 2.30] shows that $\tau(x) = 0$, for all $x \notin Z(P)$. Using the first orthogonality relation, we get

$$
\frac{1}{|P|} \sum_{x \in P} \tau(x) 1(x^{-1}) = \frac{1}{|P|} \sum_{x \in P} \tau(x) = \frac{1}{|P|} \sum_{z \in Z(P)} \tau(z) = 0.
$$

Therefore, $\tau(1) = q$ implies

(2.2)
$$
\sum_{1 \neq z \in Z(P)} \tau(z) = -q,
$$

and this completes the proof.

The following lemmas are simple consequences of Clifford's Theorem [5, Theorem 6.2] and Frattini's argument [6, Lemma 1.13].

Lemma 2.2. Let H be a subgroup of any group $G, x \in N_G(H)$ and ϑ and ψ be characters of H. Then, $\langle \vartheta^x, \psi^x \rangle = \langle \vartheta, \psi \rangle$. In particular, taking $\psi = \vartheta$, ϑ^x is irreducible if and only if ϑ is irreducible.

Lemma 2.3. Let G be a normal subgroup of a group L and H be a Sylow p-subgroup of G. Let χ and ϑ be irreducible characters of G and H, respectively. Let $l \in L$. Then,

$$
\langle \chi_H, \vartheta \rangle = \langle \chi_H^l, \vartheta^x \rangle \text{ for some } x \in N_L(H).
$$

In particular, $\langle \chi_H, \mathbf{1} \rangle = \langle \chi_H^l, \mathbf{1} \rangle$.

Tables 2 and 3 show the values of the restriction of the irreducible characters of the groups $SL(3, q)$ on the elements of Sylow p-subgroup P when $d = 1$ and $d = 3$, respectively (see [7] Table 1b).

Lemma 2.4. Let $G = SL(3, q)$, where $q > 2$ is a power of a prime p and let P be the Sylow p-subgroup of G and ψ be the irreducible character of degree $q^2 + q$ of G. Then,

- (1) $\langle \psi_P, \mathbf{1} \rangle = 2.$
- (2) $\langle \psi_P , \tau \rangle = 1$, for each irreducible character τ of degree q of P.
- (3) There exist some non-principal linear characters φ and ϕ of P such that $\langle \psi_P , \varphi \rangle = 0$ and $\langle \psi_P , \phi \rangle = 1$.

Archivesy. Let $\ell \in \{1, 0\}$ *Archivesy.* $\langle \chi_H, 1 \rangle = \langle \chi_H^1, 1 \rangle$.
 Archive of the groups $\mathcal{SL}(3, q)$ on the dements of Sylow *p*-subgroup
 Archive of the groups $\mathcal{SL}(3, q)$ on the elements of Sylow *p*-subgrou **Proof.** Suppose $x = LT(a, b, c) \in P$ is contained in the conjugacy class $\mathcal{C}^{(0)}_2$ $\chi_2^{(0)}$ of G. Since each element in $\mathcal{C}_2^{(0)}$ $2^{(0)}$ has a minimal polynomial of degree $2, (x-1)^2 = LT(0, ac, 0) = 0$. This, together with $x \notin Z(P)$, implies $a = 0$ or $c = 0$ but not both. Therefore the number of possibilities for the elements x with the above properties is $2q(q-1)$. The elements of $Z(P)$ are also contained in $\mathcal{C}_2^{(0)}$ $\mathcal{C}_2^{(0)}$ and the values of ψ on $\mathcal{C}_1^{(0)}$ $\mathcal{C}_1^{(0)},\ \mathcal{C}_2^{(0)}$ $x_2^{(0)}$ and $\mathcal{C}_3^{(0,0)}$ $a_3^{(0,0)}$ are $q^2 + q$, q and 0, respectively. Thus, we have

$$
\langle \psi_P, \mathbf{1} \rangle = \frac{1}{|P|} \sum_{x \in P} \psi_P(x) 1(x)
$$

$$
= \frac{1}{q^3} (\psi_P(1) + \sum_{1 \neq z \in Z(P)} \psi_P(z) + \sum_{z \notin Z(P)} \psi_P(z))
$$

138 Dabbaghian

$$
=\frac{1}{q^3}((q^2+q)+(q-1)q+2q(q-1)q)=2.
$$

This proves the first assertion.

Now, suppose τ is an irreducible character of degree q of P. By using Table 2 for the value of ψ on the conjugacy class $\mathcal{C}_2^{(0)}$ $2^{(0)}$ of G which contains the elements of $Z(P)$ and Lemma 2.1, we have

$$
\langle \psi_P, \tau \rangle = \frac{1}{|P|} \sum_{x \in P} \psi_P(x) \overline{\tau(x)}
$$

$$
= \frac{1}{q^3} (\psi_P(1)\tau(1) + \sum_{1 \neq z \in Z(P)} \psi_P(z) \overline{\tau(z)} + \sum_{z \notin Z(P)} \psi_P(z) \overline{\tau(z)})
$$

$$
= \frac{1}{q^3} ((q^2 + q)q - q^2 + 0) = 1,
$$

where $\overline{\tau(x)}$ is the complex conjugate of the value $\tau(x)$. Therefore, for each irreducible character τ of degree q of P.

as claimed.

 $\langle \psi_P , \tau \rangle = 1,$

 $=\frac{1}{q^3}(\psi_{P}(1)\tau(1)+\sum_{i\neq i\in Z(P)}\psi_{P}(z)\tau(z)+\sum_{i\in Z(P)}\psi_{P}(z)\tau(z))\\qquad \qquad =\frac{1}{q^3}((q^2+q)q-q^2+0)=1,$ where $\overline{\tau(x)}$ is the complex conjugate of the value $\tau(x)$. Therefore, for each irreducible character τ of degree q of Now, since $\langle \psi_P , \tau \rangle = 1$ for each irreducible character τ of degree q of P, then $\psi_P = \sum_{i=1}^{q-1} \tau_i + \sum_{j=1}^t m_j \phi_j$, where the ϕ_j are linear characters of P with the multiplicities m_j . Since $\psi(1) = q^2 + q$ and $\sum_{i=1}^{q-1} \tau_i(1) = q^2 - q$, we have $\sum_{j=1}^t m_j \phi_j(1) = 2q$. Since P possesses q^2-1 non-principal linear characters, there exists at least one non-principal linear character φ such that $\langle \psi_P , \varphi \rangle = 0$.

By the first assertion, $\langle \psi_P, \mathbf{1} \rangle = 2$. Hence, $\sum_{j=1}^{\prime t} m_j \phi_j(1) = 2q - 2 > 1$, where \sum' runs over $\phi_j \neq 1$. This means there exists some non-principal linear character ϕ of P such that $\langle \psi_P, \phi \rangle \neq 0$. Note that $(\nu_t)_P = \rho_P$ – $\psi_P + 1$ is a character of P and that ρ_P is the regular character of P. It follows that any nonprincipal linear constituent ϕ of ψ_P has multiplicity 1. This completes the proof.

By the values of characters ω_m and γ_n on the conjugacy classes $\mathcal{C}_1^{(0)}$ $\binom{(0)}{1}$ $\mathcal{C}^{(0)}_2$ $\stackrel{(0)}{2} \text{ and } \mathcal{C}_3^{(0,l)}$ $3^{(0,1)}$ in the Table 1b of [7], we have

(2.3)
$$
\{(\omega_1)_P, (\omega_2)_P, (\omega_3)_P\} = \{(\gamma_1)_P, (\gamma_2)_P, (\gamma_3)_P\}.
$$

TABLE 2: VALUES OF CHARACTERS OF $SL(3, q)$

ON ELEMENTS OF P WHEN $d = 1$, WHERE $1 \leq i, j \leq q-2, 1 \leq r \leq (q^2-5q+6)/6$,

$1 \leq s \leq (q^2 - q)/2$ AND $1 \leq t \leq (q^2 + q)/3$.									
	$\mathcal{C}^{(0)}$	$\mathcal{C}_2^{(0)}$	$\mathcal{C}_3^{(0,0)}$						
1									
ψ	q^2+q	q							
ρ									
ζ_i	$q^2 + q + 1$	$q+1$							
η_j	$\sqrt{q^3+q^2+q}$								
ε_r	$\sqrt{q^3+2q^2+2q+1}$	$2q + 1$							
μ_s	$a^3=1$	-1							
ν_t	$a^3 - a^2 - q + 1$								

TABLE 1: VALUES OF CHARACTERS OF $SL(3, q)$ ON ELEMENTS OF P WHEN $d = 3$, WHERE $1 \leq i, j \leq q-2, 1 \leq r \leq (q^2-5q+4)/6, 1 \leq s \leq (q^2-q)/2,$

		μ_s	q^3-1		-1	-1					
		ν_t	$q^3 - q^2 - q + 1$		$1-q$						
TABLE 1: VALUES OF CHARACTERS OF $SL(3, q)$ ON ELEMENTS OF P WHEN $d =$											
WHERE $1 \le i, j \le q-2, 1 \le r \le (q^2-5q+4)/6, 1 \le s \le (q^2-q)/2,$											
$\begin{array}{c c} 1\leqslant t\leqslant (q^2+q-2)/3 \text{ and } 1\leqslant k,m,n\leqslant 3. \\ \hline C_1^{(0)} & C_2^{(0)} & \end{array}$											
			$\mathcal{C}^{(0)}_2$			$\mathcal{C}^{(0,l)}_3$					
	$\mathbf{1}$			1							
	ψ		q^2+q		q		θ				
	ρ			0			0				
	ζ_i		$q^2 + q + 1$		$q+1$		1				
	η_j		q^3+q^2+q				0				
	θ_k		$\frac{(q^3+2q^2+2q+1)}{3}\sqrt{(2q+1)/3}$ OR				$(2q+1)/3$ OR				
					$(1 - q)/3$		$(1 - q)/3$				
	ε_r		$q^3 + 2q^2 + 2q + 1$		$2q + 1$						
	μ_s		q^3				$^{-1}$				
	ν_t		$q^3 - q^2 - q + 1$		$1-q$		1				
	ω_m	$(q^3 -$	$q^2 - q + 1)/3$		$(1 - q)/3$ OR		$(1-q)/3$ OR				
					$(2q+1)/3$		$(2q+1)/3$				
	γ_n		$(q^3-q^2-q+1)/3$		$(1-q)/3$ OR		$\frac{(1-q)}{3 \text{ or }}$				
					$(2q+1)/3$		$(2q+1)/3$				
	3. Proof										

Proof of Theorem 1. By Table 2, the characters ρ and ψ have degrees q^3 and $q^2 + q$, respectively. Now, if we restrict them to P we see that

for all nontrivial $x \in P$, we have $\rho_P(x) = 0$ and $\psi_P(x) = q$ or 0. Thus, from the values of the other characters of G on P , we get

$$
(3.1) \qquad \qquad (\zeta_i)_P = \psi_P + \mathbf{1}
$$

$$
(3.2) \t\t\t (\eta_j)_P = \rho_P + \psi_P
$$

$$
(3.3) \qquad (\varepsilon_r)_P = \rho_P + 2\psi_P + 1
$$

$$
(3.4) \qquad (\mu_s)_P = \rho_P - \mathbf{1}
$$

and

$$
(3.5) \qquad \qquad (\nu_t)_P = \rho_P - \psi_P + \mathbf{0}
$$

and $(2\ell)^2 = \rho p - \psi p + 0$

Since $\rho(1) = q^3$ is the order of P and $\rho p(x) = 0$, for all $x \neq 1$ in P ,

thus ρ_P is the regular character of P and $\rho_P = \sum_{\nu \in \text{Tr}(P)} v(1)v$. On the

other hand, by Lemma 2.4 there exis Since $\rho(1) = q^3$ is the order of P and $\rho_P(x) = 0$, for all $x \neq 1$ in P, thus ρ_P is the regular character of P and $\rho_P = \sum_{v \in \text{Irr}(P)} v(1)v$. On the other hand, by Lemma 2.4 there exists a non-principal linear character φ of P such that $\langle \psi_P, \varphi \rangle = 0$. Then, since $\langle \rho_P, \varphi \rangle = 1$, we have

$$
\langle (\eta_j)_P, \varphi \rangle = \langle \rho_P + \psi_P, \varphi \rangle = 1,\n\langle (\varepsilon_r)_P, \varphi \rangle = \langle \rho_P + 2\psi_P + 1, \varphi \rangle = 1,\n\langle (\mu_s)_P, \varphi \rangle = \langle \rho_P - 1, \varphi \rangle = 1
$$

and

$$
\langle (\nu_t)_P, \varphi \rangle = \langle \rho_P - \psi_P + \mathbf{1}, \varphi \rangle = 1.
$$

Also, by Lemma 2.4 there exists a non-principal linear character ϕ of P such that $\langle \psi_P, \phi \rangle = 1$. Thus,

$$
\langle (\zeta_i)_P, \phi \rangle = \langle \psi_P + \mathbf{1}, \phi \rangle = 1.
$$

For the case that $d = 3$, the only remaining characters to consider are θ_k , ω_m and γ_n , for $1 \leq k, m, n \leq 3$.

Using the Frobenius reciprocity, we have

$$
\langle \eta_j, \varphi^G \rangle = \langle \varepsilon_r, \varphi^G \rangle = \langle \mu_s, \varphi^G \rangle = \langle \nu_t, \varphi^G \rangle = 1,
$$

and $\langle \zeta_i, \varphi^G \rangle = 0$. Also, if

$$
\langle (\theta_k)_P, \varphi \rangle = K_k, \langle (\omega_m)_P, \varphi \rangle = M_m \text{ and } \langle (\gamma_n)_P, \varphi \rangle = N_n,
$$

then

$$
\langle \theta_k, \varphi^G \rangle = K_k, \langle \omega_m, \varphi^G \rangle = M_m \text{ and } \langle \gamma_n, \varphi^G \rangle = N_n,
$$

for $1 \leqslant k, m, n \leqslant 3$. Therefore, if we induce φ to G, we get

$$
\varphi^{G} = \rho + (q - 2)\eta_{j} + ((q^{2} - 5q + 4)/6)\varepsilon_{r} + ((q^{2} - q)/2)\mu_{s}
$$

$$
+((q^{2}+q-2)/3)\nu_{t} + \sum_{k=1}^{3} K_{k}\theta_{k} + \sum_{m=1}^{3} M_{m}\omega_{m} + \sum_{n=1}^{3} N_{n}\gamma_{n}.
$$

Using the fact that $\varphi^{G}(1) = |G : P | \varphi(1)$, we calculate the value at 1 and simplifing the above equation, we have

$$
|G:P| = -q^2 - 2q^3 + q^5 + \sum_{k=1}^{3} K_k \theta_k(1) + \sum_{m=1}^{3} M_m \omega_m(1) + \sum_{n=1}^{3} N_n \gamma_n(1).
$$

Since $|G : P| = q^5 - q^3 - q^2 + 1$, we get

$$
\sum_{k=1}^{3} K_{k} \theta_{k}(1) + \sum_{m=1}^{3} M_{m} \omega_{m}(1) + \sum_{n=1}^{3} N_{n} \gamma_{n}(1) = q^{3} + 1.
$$

Since

$$
\theta_k(1) = (q^3 + 2q^2 + 2q + 1)/3
$$

and

$$
\omega_m(1) = \gamma_n(1) = (q^3 - q^2 - q + 1)/3,
$$

we have

$$
(\sum_{k=1}^{3} K_k)((q^3+2q^2+2q+1)/3)+(\sum_{m=1}^{3} M_m+\sum_{n=1}^{3} N_n)((q^3-q^2-q+1)/3)=q^3+1.
$$

Hence, by considering $K = \sum_{k=1}^{3} K_k$, $M = \sum_{m=1}^{3} M_m$ and $N = \sum_{n=1}^{3} N_n$, we get

$$
K((q3 + 2q2 + 2q + 1)/3) + (M + N)((q3 - q2 - q + 1)/3) = q3 + 1,
$$

and so

$$
(K+M+N)q^{3}+(2K-(M+N))q^{2}+((2K-(M+N))q+(K+M+N)=3(q^{3}+1).
$$
 Thus,

(3.6)
$$
(A-3)(q^3+1) = -B(q^2+q),
$$

 $\sum_{k=1} K_k \theta_k(1) + \sum_{m=1} M_m \omega_m(1) + \sum_{n=1} N_n \gamma_n(1) = q^3 + 1$

Since
 $\theta_k(1) = (q^3 + 2q^2 + 2q + 1)/3$

and
 $\omega_m(1) = \gamma_n(1) = (q^3 - q^2 - q + 1)/3$,

we have
 $(\sum_{k=1}^3 K_k)((q^3 + 2q^2 + 2q + 1)/3) + (\sum_{m=1}^3 M_m + \sum_{n=1}^3 N_n)((q^3 - q^2 - q + 1)/3) =$

He where $A = K + M + N$ and $B = 2K - (M + N)$. Since K, M and N_1 are non negative integers and are not all equal to 0, then A is a positive integer. Since $q \mid -B(q^2 + q)$, then $q \mid A - 3$ and this means that $A - 3 = tq$, for some integer t. Hence, simplifying equation (3.6) implies $-B = t(q^2 - q + 1)$. Thus,

$$
0 \leqslant 3K = A + B = 3 - t(q - 1)^2.
$$

Since $d = \gcd(3, q - 1) = 3$, then we can consider $q > 3$, which in this case $A = 3 + tq > 0$ implies $t \ge 0$ and $A + B = 3 - t(q - 1)^2 \ge 0$ shows $t \le 0$. Thus, $t = 0$, $A = 3$ and $B = 0$, which yield $K = 1$ and $M + N = 2$. Therefore, $\sum_{k=1}^{3} K_k = 1$ and $\sum_{m=1}^{3} M_m + \sum_{n=1}^{3} N_n = 2$. So, for some k, $K_k = 1$ and $\langle (\theta_k)_P , \varphi \rangle = 1$.

Let $\langle (\theta_1)_P , \varphi \rangle = 1$. Then, the characters θ_1, θ_2 and θ_3 are conjugate in $L = GL(3, q)$ (see [7, Sec. 4]). Hence, by Lemma 2.3, we have

$$
\langle (\theta_1)_P, \varphi \rangle = \langle (\theta_2)_P, \varphi^x \rangle = \langle (\theta_3)_P, \varphi^y \rangle = 1,
$$

for some $x, y \in N_L(P)$. On the other hand, by Lemma 2.2, φ^x and φ^y are linear characters of P and so the restriction of characters θ_1, θ_2 and θ_3 to P have at least a constituent of degree one with multiplicity one.

Also, by (2.3),

$$
\{(\omega_1)_P, (\omega_2)_P, (\omega_3)_P\} = \{(\gamma_1)_P, (\gamma_2)_P, (\gamma_3)_P\},\
$$

and so $\sum_{m=1}^{3} M_m = 1$ and $\sum_{n=1}^{3} N_n = 1$. Therefore, for some m and n we have $N_n = 1$ and $M_m = 1$, which means $\langle (\omega_m)_P , \varphi \rangle = \langle (\gamma_n)_P , \varphi \rangle = 1$. Without any ambiguity, we can suppose $\langle (\omega_1)_P , \varphi \rangle = \langle (\gamma_1)_P , \varphi \rangle = 1.$ Since the elements of each set of characters $\{\omega_1, \omega_2, \omega_3\}$ and $\{\gamma_1, \gamma_2, \gamma_3\}$ are conjugate in $L = GL(3, q)$ (see [7, Sec. 4]), then by Lemma 2.3 and Lemma 2.2, there exist $r, s, t, u \in N_L(G)$ such that $\varphi^r, \varphi^s, \varphi^t$ and φ^u are linear characters of P and

$$
\langle (\omega_2)_P, \varphi^r \rangle = \langle (\omega_3)_P, \varphi^s \rangle = \langle (\gamma_2)_P, \varphi^t \rangle = \langle (\gamma_3)_P, \varphi^u \rangle = 1.
$$

Hence, for $1 \leq m, n \leq 3$, the characters $(\omega_m)_P$ and $(\gamma_n)_P$ have a linear constituent with multiplicity 1. This completes the proof. \Box

4. Basis for class functions

Also, by (2.3) ,
 $\{G(\omega)_P, (\omega_2)_P, (\omega_3)_P\} = \{(\gamma_1)_P, (\gamma_2)_P, (\gamma_3)_P\}$,

and so $\sum_{m=1}^3 M_m = 1$ and $\sum_{n=1}^3 N_n = 1$. Therefore, for some m and m

we have $N_n = 1$ and $M_m = 1$, which means $\langle(\omega_n)_P, \varphi\rangle = \langle(\gamma_n)_P, \varphi\rangle = 1$. If G is a finite group with n conjugacy classes such that t of these classes are *p*-elements, then the $n \times n$ matrix X constructed from the character table of G has an $n \times t$ submatrix M whose columns correspond to the p-elements. Since X is invertible, the columns of M are linearly independent and so M has rank t . Thus, there exist t irreducible characters of G such that for every irreducible character χ of G, the restriction of χ on p-elements is a linear combination of these t characters. Now, suppose $G = SL(3, q)$. If $d = 1$, then equations (3.1) to (3.5) show that the class function ϕ_P of P is an integral linear combination of characters ρ_P , ψ_P and 1, for each generalized character ϕ of G. If $d = 3$, then using the values of the characters θ_k , ω_m and γ_n on p-elements, we have

$$
\rho_P = (\theta_k)_P + (\omega_m)_P + (\gamma_n)_P - \mathbf{1}.
$$

Now, considering equations (3.1) to (3.5) , we have

$$
(\zeta_i)_P = \psi_P + \mathbf{1},
$$

\n
$$
(\eta_j)_P = (\theta_k)_P + (\omega_m)_P + (\gamma_n)_P + \psi_P - \mathbf{1},
$$

\n
$$
(\varepsilon_r)_P = (\theta_k)_P + (\omega_m)_P + (\gamma_n)_P + 2\psi_P,
$$

\n
$$
(\mu_s)_P = (\theta_k)_P + (\omega_m)_P + (\gamma_n)_P - 2 \cdot \mathbf{1},
$$

and

$$
(\nu_t)_P = (\theta_k)_P + (\omega_m)_P + (\gamma_n)_P - \psi_P.
$$

Thus, $\{(\theta_k)_P, (\omega_m)_P, (\gamma_n)_P, \psi_P, \mathbf{1}_P\}$ is a basis for the vector space of class functions defined on P with integer coefficients. This is analogous to the theory of π -partial characters of solvable groups, developed by Isaacs, for the case $\pi = \{p\}$ (see [4]).

Acknowledgments

The author thanks the referee for the valuable comments and suggestions.

REFERENCES

- [1] V. Dabbaghian-Abdoly, Constructing representations of finite simple groups and covers, Canad. J. Math. 58 (2006) 23–38.
- **Example 20**
 Acknowledgments
 Acknowledgments [2] I.M. Gelfand and M.I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk SSSR 147 (1962) 529– 532.
	- [3] E. Güzel, Les representations irreductibles complexes des groups $SL(3, q)$, PSL(3, q), J. Karadeniz Tech. Univ. 11 (1988) 53-62.
	- [4] I. M. Isaacs, *Characters of* π -separable groups, J. Algebra 86 (1984) 98–128.
	- [5] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.
	- [6] I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, 92, AMS, Providence, RI, 2008.
	- [7] A. W. Simpson and J. S. Frame, The character tables for $SL(3, q)$, $SU(3, q^2)$, $PSL(3, q)$, $PSU(3, q^2)$, Canad. J. Math. 25 (1973) 486-494.
	- [8] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968.

Vahid Dabbaghian

MoCSSy Program, The IRMACS Centre, Simon Fraser University, BC, V5A 1S6, Canada.

Email: vdabbagh@sfu.ca