Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 145-155.

COFINITENESS OF LOCAL COHOMOLOGY BASED ON A NON-CLOSED SUPPORT DEFINED BY A PAIR OF IDEALS

A. TEHRANIAN * AND A. POUR ESHMANAN TALEMI

Communicated by Siamak Yassemi

ABSTRACT. Let I, J be ideals of a commutative Noetherian ring R and let t be a non–negative integer. Let M be an R–module such that $\operatorname{Ext}_{R}^{t}(R/I, M)$ is a finite R–module. If t is the first integer such that the local cohomology module with respect to (I, J) is non–(I, J)–cofinite, then we show that $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite. Also, we study the finiteness of $\operatorname{Ext}_{R}^{i}(R/I, \operatorname{H}_{I,J}^{t}(M))$, for i = 1, 2. In addition, for a finite R–module M, we show that the associated primes of $\operatorname{H}_{I,J}^{t}(M)$ have an equal grade, when $t = \inf\{i | \operatorname{H}_{I,J}^{i}(M) \neq 0\}$.

Throughout this paper, R is a commutative Noetherian ring and I, J are ideals of R. The generalized local cohomology module with respect to a pair of ideals I, J of R is introduced by Takahashi–Yoshino [12].

We are concerned with the subsets

$$W(I,J) = \{ p \in \text{Spec}(R) | I^n \subseteq p + J, \text{ for an integer } n \gg 1 \}$$

*Corresponding author © 2010 Iranian Mathematical Society.

MSC(2010): Primary: 13D45, 13D22; Secondary: 13E99, 13D07. Keywords: Local cohomology, cofinite module, associated prime. Received: 29 June 2009, Accepted: 29 August 2009.

of Spec(R) and $\tilde{W}(I, J) = \{a \leq R | I^n \subseteq a + J, \text{ for an integer } n \gg 1\}$. In general, W(I, J) is closed under specialization, but not necessarily a closed subset of Spec(R). For an R-module M, we consider the (I, J)-torsion submodule $\Gamma_{I,J}(M)$ of M which consists of all elements x of M with $\text{Supp}(Rx) \subseteq W(I, J)$. Furthermore, for an integer i, we define the local cohomology functor $\text{H}^i_{I,J}(-)$ with respect to (I, J) to be the i-th right derived functor of $\Gamma_{I,J}(-)$. Note that if J = 0, then $\text{H}^i_{I,J}(-)$ coincides with the ordinary local cohomology functor $\text{H}^i_I(-)$, with the support in the closed subset V(I). On the other hand, if J contains I, then $\Gamma_{I,J}$ is the identity functor and $\text{H}^i_{I,J}(-) = 0$, for i > 0.

There are many questions about classical local cohomology modules. In particular, Grothendieck proposed the following conjecture.

CONJECTURE 1. Let M be a finite module over a ring R, and let I be an ideal of R. Then, the module Hom $_R(R/I, \mathrm{H}^j_I(M))$ is finite, for all $j \geq 0$.

Hartshorne later refined this conjecture, and proposed the following one.

CONJECTURE 2. Let M be a finite R-module, and let I be an ideal of R. Then, $\operatorname{Ext}_{R}^{i}(R/I, \operatorname{H}_{I}^{j}(M))$ is finite, for every $i \geq 0$ and $j \geq 0$.

Using the derived category, Hartshorne showed that if M is a finitely generated R-module, where R is a complete regular local ring, then $\operatorname{H}^{j}_{I}(M)$ is I-cofinite in two cases:

(i) I is non-zero principal ideal.

(ii) I is a prime ideal with dimension 1.

Kawasaki [9] proved (i) for any Noetherian ring and Marley–Delfino [1] proved (ii) for any Noetherian ring.

In Section 2, we study the finiteness condition of $\operatorname{Ext}_{R}^{i}(R/I, \operatorname{H}_{I,J}^{j}(M))$, for i = 0, 1, 2. More precisely, we show the following.

Theorem 2.3. Let t be a non-negative integer. Let M be an R-module such that $\operatorname{Ext}_{R}^{t}(R/I, M)$ is a finite R-module and $\operatorname{H}_{I,J}^{i}(M)$ is (I, J)cofinite, for every i < t. If $N \subseteq \operatorname{H}_{I,J}^{t}(M)$ is such that $\operatorname{Ext}_{R}^{1}(R/I, N)$ is finite, then $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t}(M)/N)$ is a finite R-module.

Theorem 2.5. Let t be a non-negative integer. Let M be an R-module such that $\mathrm{H}^{i}_{I,J}(M)$ is (I, J)-cofinite, for every i < t. Then, the following statements hold.

- (a) If $\operatorname{Ext}_{R}^{t+1}(R/I, M)$ is a finite R-module, then $\operatorname{Ext}_{R}^{1}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite.
- (b) If $\operatorname{Ext}_{R}^{i}(R/I, M)$ is finite, for all $i \geq 0$, then $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t+1}(M))$ is finite if and only if $\operatorname{Ext}_{R}^{2}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite.

We recall that an important problem in commutative algebra is determining the set of associated primes of local cohomology modules. Huneke [8] raised the following conjecture: If M is a finitely generated R-module, then the set of associated primes of $\mathrm{H}^i_I(M)$ is finite, for every ideals I of R and every $i \geq 0$. Singh [11] gives a counter-example to this conjecture. On the other hand, Brodmann and Lashgari [2] have shown that the first non-finite local cohomology module $\mathrm{H}^i_I(M)$ of a finite module M has only finitely many associated primes. Also, Dibaei and Yassemi [5], by using cofinitness, found a condition for finiteness of associated primes of local cohomology.

In Section 3, we study the above results for local cohomology with respect to a pair of ideals I, J of R and as a consequence of Theorem 2.3, We show that the set of associated primes of local cohomology are finite. Also, we prove that all associated prime ideals of the first non-zero local cohomology module have an equal grade.



Definition 2.1. An *R*-module *M* is called (I, J)-cofinite if $Supp(M) \subseteq W(I, J)$ and $Ext^{i}_{R}(R/I, M)$ is a finite *R*-module, for every $i \geq 0$.

Remark 2.2. Let M be an R-module and let E be the injective hull of the R-module $M/\Gamma_{I,J}(M)$. Let $L = E/(M/\Gamma_{I,J}(M))$. Since $AssHom_R(R/I, E) = V(I) \cap Ass(E) \subseteq W(I, J) \cap Ass(M/\Gamma_{I,J}(M)) = \phi$, the modules $Hom_R(R/I, E)$ and $\Gamma_{I,J}(E)$ are zero. Also, from the exact sequence

$$0 \longrightarrow M/\Gamma_{L,I}(M) \longrightarrow E \longrightarrow L \longrightarrow 0,$$

by applying $Hom_R(R/I, -)$, we have $\operatorname{Ext}^i_R(R/I, L) \cong \operatorname{Ext}^{i+1}_R(R/I, L) \cong (R/I, M/\Gamma_{I,J}(M))$ and $\operatorname{H}^i_{I,J}(L) \cong \operatorname{H}^{i+1}_{I,J}(M)$, for every $i \ge 0$.

Theorem 2.3. Let t be a non-negative integer. Let M be an R-module such that $Ext_R^t(R/I, M)$ is a finite R-module and $H_{I,J}^i(M)$ is (I, J)cofinite, for every i < t. If $N \subseteq H_{I,J}^t(M)$ is such that $Ext_R^1(R/I, N)$ is finite, then $Hom_R(R/I, H_{I,J}^t(M)/N)$ is a finite R-module.

Proof. First assume that N = 0. We use induction on t. Let t = 0. Then, Hom $_R(R/I, \Gamma_{I,J}(M))$ is equal to the finite R-module Hom $_R(R/I, M)$.

Suppose that t > 0 and the case t - 1 is settled. Since $\Gamma_{I,J}(M)$ is (I, J)-cofinite, $\operatorname{Ext}^{i}_{R}(R/I, \Gamma_{I,J}(M))$ is finite, for every *i*. By using the exact sequence

$$0 \longrightarrow \Gamma_{I,J}(M) \longrightarrow M \longrightarrow M/\Gamma_{I,J}(M) \longrightarrow 0$$

we get that $\operatorname{Ext}_{R}^{t}(R/I, M/\Gamma_{I,J}(M))$ is finite. Now, by Remark 2.2, the *R*-module $\operatorname{Ext}_{R}^{t}(R/I, L)$ is finite and $\operatorname{H}_{I,J}^{i}(L)$ is (I, J)-cofinite for every i < t-1. Thus, by induction hypothesis, $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t-1}(L))$ is finite, which implies that $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite.

Now, assume that $N \neq 0$. By considering the exact sequence

$$0 \longrightarrow N \longrightarrow \mathrm{H}^t_{I,J}(M) \longrightarrow \mathrm{H}^t_{I,J}(M) / N \longrightarrow 0,$$

and applying $\operatorname{Hom}_R(R/I, -)$ to that, we obtain the exact sequence $\operatorname{Hom}_R(R/I, \operatorname{H}^t_{I,J}(M)) \longrightarrow \operatorname{Hom}_R(R/I, \operatorname{H}^t_{I,J}(M)/N) \longrightarrow \operatorname{Ext}^1_R(R/I, N).$ Since the left hand (by case N = 0) and the right hand sides are finite, we have that $\operatorname{Hom}_R(R/I, \operatorname{H}^t_{I,J}(M)/N)$ is finite.

The next result was shown by Dibaei and Yassemi in [5], and it generalized [2, Theorem 2.2]

Corollary 2.4. Let I be an ideal of a Noetherian ring R. Let t be a nonnegative integer. Let M be an R-module such that $Ext_R^t(R/I, M)$ is a finite R-module. If $H_I^i(M)$ is I-cofinite, for all i < t, then $Hom_R(R/I, H_I^t(M))$ is finite.

Theorem 2.5. Let t be a non-negative integer. Let M be an R-module such that $H^{i}_{I,J}(M)$ is (I,J)-cofinite, for all i < t. Then, the following statements hold:

(a) If $Ext_R^{t+1}(R/I, M)$ is a finite *R*-module, then $Ext_R^1(R/I, H_{I,J}^t(M))$ is finite.

(b) If $Ext^{i}_{R}(R/I, M)$ is finite, for all $i \geq 0$, then $Hom_{R}(R/I, H^{t+1}_{I,J}(M))$ is finite if and only if $Ext^{2}_{R}(R/I, H^{t}_{I,J}(M))$ is finite.

Proof. (a) We use induction on t. Let t = 0. Then, the short exact sequence

$$(*) \qquad \qquad 0 \longrightarrow \Gamma_{I,J}(M) \longrightarrow M \longrightarrow M/\Gamma_{I,J}(M) \longrightarrow 0$$

implies that $\operatorname{Ext}_{R}^{1}(R/I, \operatorname{Gamma}_{I,J}(M))$ is finite.

Suppose that t > 0 and the case t - 1 is settled. Since $\Gamma_{I,J}(M)$ is (I, J)-cofinite, the *R*-module $\operatorname{Ext}_{R}^{i}(R/I, \Gamma_{I,J}(M))$ is finite, for every *i*, and so by (*), $\operatorname{Ext}_{R}^{t+1}(R/I, M/\Gamma_{I,J}(M))$ is finite. Now, by Remark 2.2, the *R*-module $\operatorname{Ext}_{R}^{t}(R/I, L)$ is finite and $\operatorname{H}_{I,J}^{i}(L)$ is (I, J)-cofinite, for every i < t - 1. Thus, by the induction hypothesis, $\operatorname{Ext}_{R}^{1}(R/I, \operatorname{H}_{I,J}^{t-1}(L))$ is finite, and so $\operatorname{Ext}_{R}^{1}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite.

(b) (\Rightarrow) We use induction on t. Let t = 0. Then, the short exact sequence (*) induces the following exact sequence

$$\operatorname{Ext}^{1}_{R}(R/I, M/\Gamma_{I,J}(M)) \longrightarrow \operatorname{Ext}^{2}_{R}(R/I, \Gamma_{I,J}(M)) \longrightarrow \operatorname{Ext}^{2}_{R}(R/I, M).$$

To show that $\operatorname{Ext}^2_R(R/I, \Gamma_{I,J}(M))$ is finite, it is enough to show that $\operatorname{Ext}^1_R(R/I, M/\Gamma_{I,J}(M))$ is finite. By Remark 2.2, we have

$$\operatorname{Ext}_{R}^{1}(R/I, M/\Gamma_{I,J}(M)) \cong \operatorname{Hom}_{R}(R/I, L)$$
$$\cong \operatorname{Hom}_{R}(R/I, \Gamma_{I,J}(L))$$
$$\cong \operatorname{Hom}_{R}(R/I, \operatorname{H}^{1}_{I,J}(M)).$$

Now, the assertion holds.

Suppose t > 0 and the case t - 1 is settled. Since $\Gamma_{I,J}(M)$ is (I, J)cofinite, the *R*-module $\operatorname{Ext}_{R}^{i}(R/I, \Gamma_{I,J}(M))$ is finite, for every *i*. Using the exact sequence (*), we get that $\operatorname{Ext}_{R}^{i}(R/I, M/\Gamma_{I,J}(M))$ is finite, for every *i*. By Remark 2.2, $\operatorname{Ext}_{R}^{i}(R/I, L)$ is finite, for every *i* and also $\operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t}(L)) \cong \operatorname{Hom}_{R}(R/I, \operatorname{H}_{I,J}^{t+1}(M))$ is finite. By the induction hypothesis, the *R*-module $\operatorname{Ext}_{R}^{2}(R/I, \operatorname{H}_{I,J}^{t-1}(L))$ is finite and hence, we have $\operatorname{Ext}_{R}^{2}(R/I, \operatorname{H}_{I,J}^{t}(M))$ is finite.

(\Leftarrow) We use induction on t. Let t = 0. The short exact sequence (*) induces the following exact sequence,

$$\operatorname{Ext}^{1}_{R}(R/I, M) \longrightarrow \operatorname{Ext}^{1}_{R}(R/I, M/\Gamma_{I,J}(M)) \longrightarrow \operatorname{Ext}^{2}_{R}(R/I, \Gamma_{I,J}(M)).$$

Thus, $\operatorname{Ext}_{R}^{1}(R/I, M/\Gamma_{I,J}(M))$ is finite. By Remark 2.2, $\operatorname{Hom}_{R}(R/I, L)$ is finite and hence the *R*-module $\operatorname{Hom}_{R}(R/I, \Gamma_{I,J}(L))$ is finite. Thus Hom $_R(R/I, \mathrm{H}^1_{I,J}(M))$ is finite.

Now, let t > 0 and the case t - 1 be settled. Remark 2.2 implies that the modules $\operatorname{Ext}_{R}^{2}(R/I, \operatorname{H}_{I,J}^{t-1}(L))$ and $\operatorname{Ext}_{R}^{i}(R/I, L)$ are finite, for all i. By the induction hypothesis, the $R\text{-module}\,\operatorname{Hom}_R(R/I,\operatorname{H}^t_{I,J}(L))$ is finite and hence $\operatorname{Hom}_{R}(R/I, \operatorname{H}^{t+1}_{I,J}(M))$ is finite.

The following corollary generalizes Dibaei and Yassemi's result [6].

Corollary 2.6. Let M be a finite R-module and $t = \inf\{i | H_{I,I}^i(M) \neq i\}$ 0}. Then, the following hold:

- (a) $Ext^{1}_{R}(R/I, H^{t}_{I,J}(M))$ is finite.
- (a) $Ext_{R}^{2}(R/I, H_{I,J}^{t}(M))$ is junce. (b) $Ext_{R}^{2}(R/I, H_{I,J}^{t}(M))$ is finite if and only if $Hom_{R}(R/I, H_{I,J}^{t+1}(M))$ is finite.

3. Associated primes

Let M be a finite R-module. Let $t = \inf\{i | \mathbf{H}_{I,J}^{i}(M) \neq 0\}$ and $N \subseteq$ $\mathrm{H}_{I,J}^t(M)$ be such that $Ext_R^1(R/I,N)$ is a finite *R*-module. If $\mathrm{H}_{I,J}^t(M)/N$ is an *I*-torsion, then by Theorem 2.3, $H_{L,I}^t(M)/N$ has finitely many associated primes. In particular, $AssH_{I,J}^t(M)$ is a finite set if and only if AssN is a finite set.

Remark 3.1. Let M be a finite R-module and i be an integer. Suppose that $p \in Ass H^i_{I,J}(M)$. Then, $pR_p \in Ass (H^i_{I,J}(M))_p$ implies that Hom $_{R_p}(R_p/pR_p,(\mathrm{H}^i_{I,J}(M))_p) \neq 0.$ By [12, Theorem 3.2], we have

$$\operatorname{Hom}_{R_p}(R_p/pR_p, (\lim_{\substack{a \in \tilde{W}(I,J)}} (\operatorname{Ha}^i_a(M)) \otimes_{R_p} R_p) \cong \lim_{\substack{a \in \tilde{W}(I,J)}} (\operatorname{Hom}_{R_p}(R_p/pR_p, \operatorname{H}^i_{aR_p}(M_p)).$$

So, there exists $a \in \tilde{W}(I, J)$ such that $\operatorname{Hom}_{R_p}(R_p/pR_p, H^i_{aR_p}(M_p)) \neq 0$. Hence, $pR_p \in Ass(H^i_{aR_p}(M_p))$, which implies that $p \in AssH^i_a(M)$, for an $a \in W(I, J)$. Therefore,

$$\operatorname{Ass} \operatorname{H}^i_{I,J}(M) \subseteq \underset{a \in \tilde{W}(I,J)}{\cup} \operatorname{Ass} \operatorname{H}^i_a(M).$$

Proposition 3.2. Let M be a finite R-module. If $t = \inf\{i | H_{I,J}^i(M) \neq 0\}$, then

(1)
$$Ass H^{t}_{I,J}(M) \subseteq \bigcup_{\substack{a \in \tilde{W}(I,J) \\ qrade_{M^{a=t}}}} Ass H^{t}_{a}(M).$$

Proof. By Remark 3.1, it is enough to show that $\operatorname{grade}_M \mathfrak{a} = t$. Since $V(\mathfrak{a}) \subseteq W(I, J)$, by [12, Theorem 4.1], we have $\operatorname{grade}_M \mathfrak{a} = \inf\{\operatorname{depth} M_{\mathfrak{p}} | \mathfrak{p} \in \operatorname{Supp}(M/\mathfrak{a}M)\} \geq \inf\{\operatorname{depth} M_{\mathfrak{p}} | \mathfrak{p} \in W(I, J)\} = t$. On the other hand, $\operatorname{H}^t_{\mathfrak{a}}(M) \neq 0$ implies that $\operatorname{grade}_M \mathfrak{a} = t$.

Now, we show that we can replace the set $\tilde{W}(I, J)$ by W(I, J) in (1).

Lemma 3.3. Let M be a finite R-module and $\mathfrak{a}, \mathfrak{b}$ be ideals of R such that $\mathfrak{a} \subseteq \mathfrak{b}$ and $grade_M \mathfrak{a} = grade_M \mathfrak{b} = t$. Then,

 $Ass H^t_{\mathfrak{b}}(M) \subseteq Ass H^t_{\mathfrak{a}}(M).$

Proof. By choosing $x \in \mathfrak{b} \setminus \mathfrak{a}$ and considering the following Mayer - Vietoris sequence, $0 \longrightarrow \operatorname{H}^{t}_{\mathfrak{a}+xR}(M) \longrightarrow \operatorname{H}^{t}_{\mathfrak{a}}(M) \longrightarrow \operatorname{H}^{t}_{\mathfrak{a}}(M_{x})$, we obtain that $\operatorname{Ass} \operatorname{H}^{t}_{\mathfrak{a}+xR}(M) \subseteq \operatorname{Ass} \operatorname{H}^{t}_{\mathfrak{a}}(M)$. Now, the assertion follows by induction.

Proposition 3.4. Let M be a finite R-module and $t = \inf\{i|H_{I,J}^i(M) \neq 0\}$. Then,

$$Ass H^t_{I,J}(M) \subseteq \bigcup_{\substack{\mathfrak{q} \in W(I,J) \\ grade_{M^{\mathfrak{q}=t}}}} Ass H^t_{\mathfrak{q}}(M).$$

Proof. By Proposition 3.2, for all $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{I,J}(M)$, there exists $\mathfrak{a} \in \widetilde{W}(I,J)$ such that grade $_M\mathfrak{a} = t$ and $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{\mathfrak{a}}(M)$. Now, consider the non-empty set

$$\Sigma_{\mathfrak{p}} = \{\mathfrak{a} \in \widetilde{W}(I, J) | \text{grade}_{M}\mathfrak{a} = t, \mathfrak{p} \in \text{Ass}\, \mathrm{H}^{t}_{\mathfrak{a}}(M) \},\$$

for a prime ideal $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{I,J}(M)$. Since R is a Noetherian ring, $\Sigma_{\mathfrak{p}}$ has a maximal element \mathfrak{q} . We claim that \mathfrak{q} is a prime ideal. Let $x, y \in R$ be such that $xy \in \mathfrak{q}$, but $x, y \notin \mathfrak{q}$. Therefore $xR + \mathfrak{q}, yR + \mathfrak{q} \notin \Sigma_{\mathfrak{p}}$. On the other hand, $\mathfrak{q}^2 \subseteq (xR + \mathfrak{q})(yR + \mathfrak{q}) \subseteq \mathfrak{q}$ implies that

grade ${}_M\mathfrak{q} = \operatorname{grade} {}_M(xR + \mathfrak{q})(yR + \mathfrak{q})$. So, we have $\operatorname{grade} {}_M(xR + \mathfrak{q}) \geq t$ and $\operatorname{grade} {}_M(yR + \mathfrak{q}) \geq t$. Now, from the exact sequence $0 \longrightarrow \operatorname{H}^t_{xR+\mathfrak{q}}(M) \longrightarrow \operatorname{H}^t_{\mathfrak{q}}(M) \longrightarrow \operatorname{H}^t_{\mathfrak{q}}(M_x)$, we obtain that $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M) \subseteq \operatorname{Ass} \operatorname{H}^t_{xR+\mathfrak{q}}(M) \cup \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M_x)$. If $\operatorname{grade} {}_M(xR + \mathfrak{q}) > t$, then $\operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M) \subseteq \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M_x)$. So, assume that $\operatorname{grade} {}_M(xR + \mathfrak{q}) = t$. Then, by maximality of \mathfrak{q} , we have $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M_x)$. Similarly, $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M_y)$. Thus, $\mathfrak{p} \in \operatorname{Supp}(M_x) \cap \operatorname{Supp}(M_y)$. On the other hand, $xy \in \mathfrak{p}$ implies that $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$, which is contradictory to $\operatorname{Supp} R(M_x) = \{\mathfrak{p} \in \operatorname{Supp}(M) | x$ is not in $\mathfrak{p}\}$. Hence, \mathfrak{q} is a prime ideal.

Corollary 3.5. Let M be a finite R-module and $t = \inf\{i|H_{I,J}^{i}(M) = 0\}$. If \mathfrak{q} is the maximal element of $\Sigma_{\mathfrak{p}}$, then $\mathfrak{p} = \mathfrak{q}$.

Proof. Suppose that $\mathfrak{q} \subset \mathfrak{p}$ and consider $x \in \mathfrak{p} \setminus \mathfrak{q}$. By the exact sequence $0 \longrightarrow \operatorname{H}^t_{xR+\mathfrak{q}}(M) \longrightarrow \operatorname{H}^t_{\mathfrak{q}}(M) \longrightarrow \operatorname{H}^t_{\mathfrak{q}}(M_x)$, we obtain that $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M) \subseteq \operatorname{Ass} \operatorname{H}^t_{xR+\mathfrak{q}}(M) \cup \operatorname{Ass} \operatorname{H}^t_{\mathfrak{q}}(M_x)$. Since $x \in \mathfrak{p}$, we have $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^t_{xR+\mathfrak{q}}(M)$, which is a contradiction, by maximality of \mathfrak{q} . So, $\mathfrak{p} = \mathfrak{q}$.

Now, we can state our main theorem here.

Theorem 3.6. Let M be a finite R-module and $t = \inf\{i | H^i_{I,J}(M) \neq 0\}$. Then, for all $\mathfrak{p} \in Ass H^t_{I,J}(M)$, grade $_M \mathfrak{p} = t$.

Proof. This follows from Proposition 3.4 and Corollary 3.5.

Corollary 3.7. Let M be a finite R-module and $t = \inf\{i | H_{I,J}^i(M) \neq 0\}$. If $Hom_R(R/I, H_{I,J}^t(M)) \neq 0$, then $grade_M I = t$.

Proof. Let $\mathfrak{p} \in \operatorname{Ass} \operatorname{H}^{t}_{I,J}(M) \cap V(I)$. So, by Theorem 3.6, grade $_{M}I \leq t$. On the other hand, $V(I) \subseteq W(I,J)$ implies that grade $_{M}I \geq t$. Hence, grade $_{M}I = t$.

Theorem 3.8. Let M be a finite R-module. Let I, J be ideals of R such that grade $_MI = n$ and $\Gamma_{I,J}(M/(x_1, ..., x_{n-1})M) = 0$, for a maximal M-sequence $x_1, ..., x_n$ in I. Then, $Ass\Gamma_{I,J}(M/(x_1, ..., x_n)M) =$

$$\{\mathfrak{p} \in Ass(M/(x_1, ..., x_n)M) \cap W(I, J) | grade_M \mathfrak{p} = n\}.$$

Proof. We prove using induction on n. Let n = 1. Then, for a non-zero divisor $x \in I$, the following short exact sequence

$$0 \longrightarrow M \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0,$$

induces the long exact sequence, $0 \longrightarrow \Gamma_{I,J}(M/xM) \longrightarrow \mathrm{H}^{1}_{I,J}(M) \xrightarrow{x} \mathrm{H}^{1}_{I,J}(M)$. Since $\Gamma_{I}(M/xM) \neq 0$, $\Gamma_{I,J}(M/xM) \neq 0$ and Ass $\Gamma_{I,J}(M/xM) \subseteq \mathrm{Ass}\,\mathrm{H}^{1}_{I,J}(M)$, therefore by Theorem 3.6,

Ass
$$\Gamma_{I,J}(M/xM) = \{ \mathfrak{p} \in \operatorname{Ass}(M/xM) \cap W(I,J) | \operatorname{grade}_M \mathfrak{p} = 1 \}.$$

Suppose that n > 1 and the case n-1 is settled. Then, grade $_{M/x_1M}I = n-1$ implies:

$$\begin{split} &\Gamma_{I,J}(M/x_1M/(x_2,...,x_{n-1})M/x_1M) \cong \Gamma_{I,J}(M/(x_1,x_2,...,x_{n-1})M) = 0, \\ &\operatorname{H}^1_{I,J}(M/x_1M/(x_2,...,x_{n-1})M/x_1M) \cong \operatorname{H}^1_{I,J}(M/(x_1,x_2,...,x_{n-1})M) \neq 0 \\ &\operatorname{So, by the induction hypothesis, we have,} \end{split}$$

Ass
$$\Gamma_{I,J}(M/x_1M/(x_2, ..., x_n)M/x_1M) = \{ \mathfrak{p} \in Ass (M/x_1M/(x_2, ..., x_n) M/x_1M) \cap W(I, J) | \text{grade}_{M/x_1M} \mathfrak{p} = n-1 \}.$$

Therefore,

$$\operatorname{Ass} \Gamma_{I,J}(M/(x_1,...,x_n)M) = \{\mathfrak{p} \in \operatorname{Ass} (M/(x_1,...,x_n)M) \cap W(I,J) | \operatorname{grade} M\mathfrak{p} = n\}.$$

Now, we can conclude the same result for local cohomology module with respect to an ideal.

Corollary 3.9. Let M be a finite R-module and let I be an ideal of R such that $grade_M I = n$ is a non-zero integer. Then, for a maximal M-sequence $x = x_1, ..., x_n$ in I,

$$Ass\,\Gamma_I(M/xM) = \{\mathfrak{p} \in Ass\,(M/xM) \cap V(I) | grade_M \mathfrak{p} = n\}.$$

Theorem 3.10. Let M be a finite R-module and let I be an ideal of R such that $grade_M I = n$ is a non-zero integer. Then, for a maximal M-sequence $x = x_1, ..., x_n$ in I,

$$Ass H^n_I(M) = \{ \mathfrak{p} \in Ass (M/xM) \cap V(I) | grade_M \mathfrak{p} = n \}.$$

Proof. It is enough to prove the case n = 1. Consider $x \in I \setminus Z(M)$. From the short exact sequence $0 \longrightarrow M \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0$, we obtain the exact sequence $0 \longrightarrow \Gamma_I(M/xM) \longrightarrow \mathrm{H}^1_I(M) \xrightarrow{x} \mathrm{H}^1_I(M)$. Since

Ass
$$\Gamma_I(M/xM)$$
 = Ass $(0:_{\operatorname{H}^1_I(M)} x)$ = Ass $\operatorname{H}^1_I(M)$,

by Corollary 3.9, we get

Ass
$$\mathrm{H}^{1}_{I}(M) = \{ \mathfrak{p} \in \mathrm{Ass}(M/xM) \cap V(I) | \mathrm{grade}_{M} \mathfrak{p} = 1 \}.$$

Now, the result follows by induction on grade $_MI$.

Corollary 3.11. Let (R, \mathfrak{m}) be a local ring, and let M be a finite Cohen-Macaulay R-module. Let I be an ideal of R such that $\dim M/IM > 0$ and grade $_MI = n$. Then, $m \notin AssH_I^n(M)$.

Acknowledgments

The authors are deeply grateful to Professor S. Yassemi for his constant help, advice and, in particular, for suggesting many of the topics considered in this paper.

References

- D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121(1) (1997) 45–52.
- [2] M. P. Brodmann and A. L. Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128(10) (2000) 2851–2853.
- [3] M. P. Brodmann, Ch. Rotthaus and R. Y. Sharp, On annihilators and associated primes of local cohomology modules, J. Pure Appl. Algebra 153 (2000) 197–227.
- [4] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, *Cambridge Studies in Advanced Mathematics* 60, Cambridge University Press, Cambridge, 1998.
- [5] M. T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, *Manuscripta Mathematica*, **117** (2005) 199–205.
- [6] M. T. Dibaei and S. Yassemi, Finiteness of extension functors of local cohomology modules, *Comm. Algebra* 34 (2006) 3097–3101.
- [7] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970) 145–164.
- [8] C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, *Res. Notes Math. 2*, Jones and Bartlett, Boston, MA (1992) 93–108.
- K. I. Kawasaki, Cofiniteness of local cohomology modules for principal ideals, Bull. London. Math. Soc. 30(3)(1998) 241–246.

- [10] T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules J. Algebra 256 (1) (2002) 180–193.
- [11] A. K. Singh, P-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000) 165–176.
- [12] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra 213(4) (2009) 582–600.

Abolfazl Tehranian

Department of Mathematics, Science and Research Branch, Islamic Azad University of Tehran, P.O. Box: 14515, 775, Tehran, Iran. Email: tehranian1340@yahoo.com

Atiyeh Pour Eshmanan Talemi

Department of Mathematics, Science and Research Branch, Islamic Azad University of Tehran , P.O. Box: 14515, 775, Tehran, Iran. Email: ptalemy@yahoo.com