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THE BRUNN-MINKOWSKI-TYPE INEQUALITY

C. J. ZHAO

Communicated by Saeid Azam

Abstract. We establish the Brunn-Minkowski-type inequality for
Lp-dual mixed volumes of star duality of mixed intersection bodies.

1. Introduction

The intersection operator and the class of intersection bodies were
defined by Lutwak [14]. The closure of the class of intersection bodies
was studied by Goody et al. [6]. The intersection operator and the class
of intersection bodies played a critical role in Gardner [3] and Zhang [23]
solutions of the famous Busemann-Petty problem in three dimensions
and four dimensions, respectively. (See also Gardner et al. [5].)

Just as the period from the mid 60’s to the mid 80’s was a time of
great advances in the understanding of the projection operator and the
class of projection bodies, during the past 30 years significant advances
have been made in our understanding of the intersection operator and
the class of intersection bodies by Koldobsky, Campi, Goodey, Gardner,
Lutwak, Grinberg, Fallert, Weil, Zhang, Ludwig and others (see, e.g.,
[1-2], [4], [6-10],[12], [14], [23]).

As Lutwak [14] shows (and as is further elaborated in Gardner’s book
[4]), there is a duality between projection and intersection bodies (which
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at present is not yet understood). Consider the following illustrative ex-
ample: It is well known that the projections (onto lower dimensional
subspaces, the dimension lower than n− 1) of projection bodies are the
projection bodies themselves. Lutwak conjectured the “duality”: When
intersection bodies are intersected with lower dimensional subspaces, the
results are intersection bodies (within the lower dimensional subspaces).
This was proven by Fallert et al. [2]. In [17] (see also [15] and [16]),
Lutwak introduced mixed projection bodies and established the follow-
ing Brunn-Minkowski inequality for mixed projection bodies. If K and
L are convex bodies, then

V (Π(K + L))1/n(n−1) ≥ V (ΠK)1/n(n−1) + V (ΠL)1/n(n−1),

with equality if and only if K and L are homothetic.
Following Lutwak, the following Brunn-Minkowski inequality for polar

of mixed projection bodies was established as follows [24]. If K and L
are convex bodies, then

(1.1) V (Π∗(K + L))−1/n(n−1) ≥ V (Π∗K)−1/n(n−1) + V (Π∗L)−1/n(n−1),

with equality if and only if K and L are homothetic.
Moreover, the Brunn-Minkowski inequality for mixed intersection bod-

ies was established as follows [25].
If K and L are star bodies, then

V (I(K+̃L))1/n(n−1) ≥ V (IK)1/n(n−1) + V (IL)1/n(n−1),

with equality if and only if K and L are dilates, where +̃ is the radial
Minkowski sum.

Here, we intend to establish Brunn-Minkowski inequality for star du-
ality of intersection bodies as follows.
Theorem 1.1. If K, L ∈ ϕn, and −∞ < p < −1, then

(1.2) Ṽp(I◦(K+̃L))−1/p(n−1) ≤ Ṽp(I◦K)−1/p(n−1) + Ṽp(I◦L)−1/p(n−1),

with equality if and only if K and L are dilates, where I◦K denotes the
star dual of K.

Taking p = −n in (1.2), the following result is at hand.
Corollary 1.2. If K, L ∈ ϕn, then

V (I◦(K+̃L))1/−n(n−1) ≤ V (I◦K)1/−n(n−1) + V (I◦L)1/−n(n−1),

with equality if and only if K and L are dilates.
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This is just a dual form of inequality (1.1).

2. Background

The setting for this paper is n-dimensional Euclidean space Rn(n >
2). Let Cn denote the set of non-empty convex figures (compact, convex
subsets) and Kn denote the subset of Cn consisting of all convex bodies
(compact, convex subsets with non-empty interiors) in Rn. We reserve
the letter u for unit vectors, and the letter B is reserved for the unit ball
centered at the origin. The surface of B is Sn−1. For u ∈ Sn−1, let Eu

denote the hyperplane, through the origin, that is orthogonal to u. We
will use Ku to denote the image of K under an orthogonal projection
onto the hyperplane Eu. We use V (K) for the n-dimensional volume of
convex body K. The support function of K ∈ Kn, h(K, ·), defined on
Rn by h(K, ·) = Max{x · y : y ∈ K}. Let δ denote the Hausdorff metric
on Kn; i.e., for K, L ∈ Kn, δ(K, L) = |hK − hL|∞, where | · |∞ denotes
the sup-norm on the space of continuous functions, C(Sn−1).

Associated with a compact subset K of Rn, which is star-shaped with
respect to the origin, its radial function ρ(K, ·) : Sn−1 → R, is defined
for u ∈ Sn−1, by ρ(K, u) = Max{λ ≥ 0 : λu ∈ K}. If ρ(K, ·) is positive
and continuous, then K will be called a star body. Let ϕn denote the
set of star bodies with 0 in Rn.

2.1 Star duality and polar

In [20], Moszyńska introduced the notion of star duality of star body
(see also Moszyńska [21]) as follows.

For the star bodies with 0 in the kernel and positive continuous radial
function, a duality (◦) was introduced, named the star duality. Let
i : Rn \ {0} −→ Rn \ {0} be inversion with respect to Sn−1:

i(x) :=
x

‖x‖2
.

Definition 2.1. [20] For every K ∈ ϕn,

K◦ := cl(Rn \ i(K)).

Definition 2.2. [20] For every K ∈ ϕn,
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(2.1) ρ(K◦, u) =
1

ρ(K, u)
.

If K is a convex body that contains the origin in its interior, the polar
body of K, K∗, is defined by

K∗ := {x ∈ Rn : x · y ≤ 1, y ∈ K}.

2.2 Dual mixed volumes

If K1, . . . ,Kr ∈ ϕn and λ1, . . . , λr ∈ R, then the radial Minkowski
linear combination, λ1K1+̃ · · · +̃λrKr, is defined by λ1K1+̃ · · · +̃λrKr =
{λ1x1+̃ · · · +̃λrxr : xi ∈ Ki}.

The following property will be used later. If K, L ∈ ϕn and λ, µ ≥ 0,
then

(2.2) ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·).

For K1, . . . ,Kr ∈ ϕn and λ1, . . . , λr ≥ 0, the volume of the radial
Minkowski liner combination λ1K1+̃ · · · +̃λrKr is a homogeneous nth-
degree polynomial in the λi,

(2.3) V (λ1K1+̃ · · · +̃λrKr) =
∑

Ṽi1,...,inλi1 · · ·λin ,

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are
positive integers not exceeding r. If we require the coefficients of the
polynomial in (2.3) to be symmetric in their arguments, then they are
uniquely determined. The coefficient Ṽi1,...,in is nonnegative and depends
only on the bodies Ki1 , . . . ,Kin . It is written as Ṽ (Ki1 , . . . ,Kin) and is
called the dual mixed volume of Ki1 , . . . ,Kin . If K1 = · · · = Kn−i = K,

Kn−i+1 = · · · = Kn = L, the dual mixed volume is written as Ṽi(K, L).
The dual mixed volume Ṽi(K, B) is written as W̃i(K). If Ki ∈ ϕn(i =
1, 2, . . . , n−1), then the dual mixed volume of Ki∩Eu (i = 1, 2, . . . , n−1)
will be denoted by ṽ(K1∩Eu, . . . ,Kn−1∩Eu). If K1 = . . . = Kn−1−i = K
and Kn−i = . . . = Kn−1 = L, then ṽ(K1∩Eu, . . . ,Kn−1∩Eu) is written
as ṽi(K ∩ Eu, L ∩ Eu). If L = B, then ṽi(K ∩ Eu, B ∩ Eu) is written as
w̃i(K ∩ Eu).

Let K, L ∈ ϕn and p 6= 0, and define a star body K+̃pL by

(2.4) ρ(K+̃pL, u)p = ρ(K, u)p + ρ(L, u)p.

The operation +̃p is called Lp-radial addition. The radial addition +̃ is
the special case of the Lp-radial addition.
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The Lp-dual volume is defined to be:

(2.5) Ṽp(K) = 1
n

∫
Sn−1 ρ(K, u)pdS(u), −∞ < p < +∞.

2.3 Intersection bodies and its star duality

For K ∈ ϕn, there is a unique star body IK whose radial function
satisfies, for u ∈ Sn−1,

(2.6) ρ(IK, u) = v(K ∩ Eu),

This is called the intersection bodies of K. From a result due to Buse-
mann, it follows that IK is convex if K is convex and centrally symmet-
ric with respect to the origin. Clearly, any intersection body is centred.
Volume of the intersection bodies is given by V (IK) = 1

n

∫
Sn−1 v(K ∩

Eu)ndS(u).
The mixed intersection bodies of K1,. . ., Kn−1∈ ϕn, is I(K1, . . . ,Kn−1),

whose radial function is defined by
(2.7) ρ(I(K1, . . . ,Kn−1), u) = ṽ(K1 ∩ Eu, . . . ,Kn−1 ∩ Eu),

where ṽ is the (n− 1)-dimensional dual mixed volume.
If K ∈ ϕn with ρ(K, u) ∈ C(Sn−1), and i ∈ R is positive, then

the intersection body of order i of K is the centered star body IiK
such that ρ(IiK) = 1

n−1

∫
Sn−1 ρ(K, u)n−i−1dS(u), for u ∈ Sn−1, where

IiK = I(K, . . . , K︸ ︷︷ ︸
n−i−1

, B, . . . , B︸ ︷︷ ︸
i

). If K1 = · · · = Kn−i−1 = K, Kn−i = · · · =

Kn−1 = L, then I(K1, . . . ,Kn−1) is written as Ii(K, L). If L = B, then
Ii(K, L) written as IiK is called the ith intersection body of K. For
I0K, simply write IK.

The star duality of the mixed intersection bodies of K1, . . . ,Kn−1 ∈
ϕn will be written as I◦(K1, . . . ,Kn−1). If K1 = · · · = Kn−i−1 =
K, Kn−i = · · · = Kn−1 = L, then I◦(K1, . . . ,Kn−1) is written as I◦i (K, L).
If L = B, then I◦i (K, L) written as I◦i K is called the star duality ith in-
tersection body of K. For I◦0K, simply write I◦K.

The following property will be used later: If K, L, M,K1, . . . ,Kn−1 ∈
ϕn, and λ, µ, λ1, . . . , λn−1 > 0, then

(2.8) I(λK+̃µL, M)=λI(K, M)+̃µI(L,M), M = (K1, . . . ,Kn−2).

2.4 Dual width-integrals of index i

In [11], Li et al. introduced the chord-integrals of star bodies. In fact,
there are some similar notions as follows next.
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For u ∈ Sn−1, b(K, u) =: 1
2(h(K, u) + h(K,−u)) is defined to be

half the width of K in the direction u. Two convex bodies K and L
are said to have similar width if there exists a constant λ > 0 such
that b(K, u) = λb(L, u), for all u ∈ Sn−1. Width-integrals were first
considered by Blaschke. The width-integral of index i is defined by
Lutwak [13], For K ∈ Kn, i ∈ R, Bi(K) = 1

n

∫
Sn−1 b(K, u)n−idS(u).

Here, we introduce dual width-integrals of star bodies.
For K ∈ ϕn, u ∈ Sn−1,

(2.9) b̃(K, u) =: 1
2(ρ(K, u) + ρ(K,−u))

is defined to be half the dual width of star body K in the direction u.
Two star bodies K and L are said to have similar dual width if there
exists a constant λ > 0 such that ρ(K, u) = λρ(L, u), for all u ∈ Sn−1.

We also introduce dual width-integral of index i as follows.
For K ∈ ϕn, i ∈ R,

(2.10) B̃i(K) = 1
n

∫
Sn−1 b̃(K, u)n−idS(u).

The dual width-integral of index i is a map B̃i : ϕn → R. It is positive,
continuous, homogeneous of degree n− i and invariant under motion.

3. Proof of Theorem 1.1

The following lemmas are needed to prove the theorem.

Lemma 3.1. If K, L ∈ ϕn, −∞ < p < ∞, then

(3.1) Ṽp(I◦K) = 1
n

∫
Sn−1 v(K ∩ u)−pdS(u),

(3.2) Ṽp(I◦jK) = 1
n

∫
Sn−1 w̃j(K ∩ u)−pdS(u),

(3.3) Ṽp(I◦j (K, L)) = 1
n

∫
Sn−1 ṽj(K ∩ u, L ∩ u)−pdS(u).

Proof. From (2.1), (2.5) and (2.7), we obtain:

Ṽp(I◦j (K, L)) =
1
n

∫
Sn−1

ρ(I◦j (K, L), u)pdS(u)

=
1
n

∫
Sn−1

ρ(Ij(K, L), u)−pdS(u)
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=
1
n

∫
Sn−1

ṽj(K ∩ u, L ∩ u)−pdS(u).

The proof of the identity (3.3) is complete.
Taking K = L in (3.3), (3.3) changes to (3.1). Taking L = B in (3.3),

(3.3) changes to (3.2). �

Lemma 3.2. [26] If If K, L ∈ ϕn and i < n− 1 , then

(3.4) W̃i(K, L)n−i ≤ W̃i(K)n−i−1W̃i(L),

with equality if and only if K is a dilation of L.
The inequality is reversed, for i > n or (n− 1) < i < n.

Lemma 3.3. Let K, L ∈ ϕn, n ∈ N,n > 1 and −∞ < p < 0.
(i) If 0 < j < n− 1, then

Ṽp(I◦j (K, L))n−1 ≤ Ṽp(I◦K)n−j−1Ṽp(I◦L)j ,

with equality if and only if K and L are dilates.
(ii) If j > n− 1, then

Ṽp(I◦j (K, L))n−1 ≥ Ṽp(I◦K)n−j−1Ṽp(I◦L)j ,

with equality if and only if K and L are dilates.

Proof. We first give the proof of the case j > n− 1 as follows.
In view of the reverse of inequality (3.4), we obtain:

(3.5) ṽj(K ∩ Eu, L ∩ Eu)−p ≥ v(K ∩ Eu)
−p(n−j−1)

n−1 v(L ∩ Eu)
−jp
n−1 ,

with equality if and only if K ∩Eu and L∩Eu are dilates, which follows
if and only if K and L are dilates.

From Lemma 3.1, (3.5) and in view of the reverse of Hölder’s inequal-
ity for integral, we have

(3.6) Ṽp(I◦j (K, L)) = 1
n

∫
Sn−1 ṽj (K ∩ Eu, L ∩ Eu))−p dS(u)

≥ 1
n

∫
Sn−1

v(K ∩ Eu)
−p(n−j−1)

n−1 v(L ∩ Eu)
−jp
n−1 dS(u)

≥
(

1
n

∫
Sn−1

v(K ∩ Eu)−pdS(u)
) (n−j−1)

n−1
(

1
n

∫
Sn−1

v(L ∩ Eu)−pdS(u)
) j

n−1

= Ṽp(I◦K)
(n−j−1)

n−1 Ṽp(I◦L)
j

n−1 .
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In view of the equality case of (3.5) and Hölder’s inequality for integral,
it follows that the equality holds if and only if K and L are dilates.

Similarly, from Lemma 3.1, Lemma 3.2 and in view of Hölder’s in-
equality for integral, the proof of the case 0 < j < (n − 1) can be
completed by the same steps as in the proof of the case j > (n−1) with
suitable changes. Here, we omit the details.

The proof of Lemma 3.3 is thus complete. �

Lemma 3.4. Assume K ∈ ϕn.
(i) If −∞ < p < −1 or 0 < p < ∞, then

B̃n+p(K) ≤ Ṽp(K◦),

with equality if and only if K is centered.
(ii) If −1 < p < 0, then

B̃n+p(K) ≥ Ṽp(K◦),

with equality if and only if K is centered.

Proof. For −∞ < p < −1, from (2.9) and (2.10), we have

B̃
−1/p
n+p (K) =

(
1
n

∫
Sn−1

(
1
2
ρ(K, u) +

1
2
ρ(K,−u))−pdS(u)

)−1/p

.

Apply Minkowski inequality for integral and in view of (2.1) and (2.5),
we obtain:

B̃n+p(K)≤ 1
n

∫
Sn−1

ρ(K, u)−pdS(u)=
1
n

∫
Sn−1

ρ(K◦, u)pdS(u)= Ṽp(K◦),

with equality if and only if ρ(K, u) = ρ(K,−u), for u ∈ Sn−1. This is
the desired result.

On the other hand, in view of the reverse Minkowski inequality for
integral, the cases 0 < p < ∞ and −1 < p < 0 easily follow.

For the special case p = n:
If K ∈ ϕn, then

B̃2n(K) ≤ V (K◦),
with equality if and only if K is centered.

Lemma 3.5. If K, L ∈ ϕn, λ > 0, µ > 0, then

b̃(λK+̃µL, u) = λb̃(K, u) + µb̃(L, u).

Form (2.2) and (2.9), this easily follows.
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Proof of Theorem. Assume that C = (L1, . . . , Ln−2), where L1,
. . . , Ln−2 ∈ ϕn. From (2.8)-(2.10) and in view of Minkowski inequal-
ity for integral, we obtain that for j < n− 1(j ∈ R),

(3.7) B̃j(I(K+̃L,C))1/(n−j) = n−1/(n−j)‖b̃(I(K+̃L,C), u)‖n−j

= n−1/(n−j)‖b̃(I(K, C), u) + b̃(I(L,C), u)‖n−j

≤ n−1/(n−j)
(
‖b̃(I(K, C), u)‖n−j + ‖b̃(I(L,C), u)

)
‖n−j

= B̃j(I(K, C))1/(n−j) + B̃j(I(L,C))1/(n−j),

with equality if and only if I(K, C) and I(L,C) have similar dual width.
In view of intersection bodies being centered, it follows that I(K, C) and
I(L,C) are dilates.

Taking j = n + p in (3.7), we have

B̃n+p(I(K+̃L,C))−1/p ≤ B̃n+p(I(K, C))−1/p + B̃n+p(I(L,C))−1/p.

Using Lemma 3.4, we obtain:

(3.8) Ṽp(I◦(K+̃L,C))−1/p ≤ Ṽp(I◦(K, C))−1/p + Ṽp(I◦(L,C))−1/p,

with equality if and only if I(K, C) and I(L,C) are dilates.
Taking L1 = · · · = Ln−2 = K+̃L in (3.8), we obtain:

Ṽp(I◦(K+̃L))−1/p ≤ Ṽp(I◦n−2(K, K+̃L))−1/p + Ṽp(I◦n−2(L,K+̃L))−1/p.

Now, apply Lemma 3.3 twice in right sides of the above inequality,
and get

Ṽp(I◦(K+̃L))−1/p ≤ Ṽp(I◦K)−1/p(n−1)Ṽp(I◦(K+̃L))−(n−2)/p(n−1)

(3.9) + Ṽp(I◦L)−1/p(n−1)Ṽp(I◦(K+̃L))−(n−2)/p(n−1),

and with equality if and only if K, L and K+̃L are dilates, along with
I(K, C) and I(L,C) being dilates, the equality holds if and only if K
and L are dilates.

Dividing both sides of (3.9) by Ṽp(I◦(K+̃L))−(n−2)/p(n−1), we get

Ṽp(I◦(K+̃L))−1/p(n−1) ≤ Ṽp(I◦K)−1/p(n−1) + Ṽp(I◦L)−1/p(n−1),

with equality if and only if K and L are dilates.
The proof is now complete. �
Taking p = −(n− i) in (1.2), we have the following result.
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Corollary 3.1. If K, L ∈ ϕn, and 0 ≤ i < n, then

W̃i(I(K+̃L))1/(n−i)(n−1) ≤ W̃i(IK)1/(n−i)(n−1) + W̃i(IL)1/(n−i)(n−1),

with equality if and only if K and L are dilates.
This is just the Brunn-Minkowski inequality for intersection bodies

which was given in [27]. This is also a dual form of the following in-
equality which was given by Lutwak [15].

The Brunn-Minkowski inequality for mixed projection bodies: If K, L ∈
Kn, and 0 ≤ i < n, then

Wi(Π(K+L))−1/(n−i)(n−1)≥Wi(ΠK)−1/(n−i)(n−1)+Wi(ΠL)−1/(n−i)(n−1),

with equality if and only if K and L are homothetic.
See [11], [19] and [22] for some recent interrelated results.
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