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EXTENSIONS OF NILPOTENT P.P. RINGS

L. OUYANG

Communicated by Fariborz Azarpanah

Abstract. We introduce the notion of nilpotent p.p. rings, and
prove that the nilpotent p.p. condition is preserved over polynomial
rings and skew polynomial rings.

1. Introduction

Throughout this paper, R denotes an associative ring with unity, α :
R −→ R is an endomorphism, and δ an α-derivation of R, that is, δ is an
additive map such that δ(ab) = δ(a)b+α(a)δ(b), for a, b ∈ R. We denote
S = R[x;α, δ] the Ore extension whose elements are the polynomials over
R, the addition is defined as usual and the multiplication subject to the
relation xa = α(a)x+δ(a), for any a ∈ R. Recall that a ring R is called:

reduced if a2 = 0 ⇒ a = 0, for all a ∈ R,
reversible if ab = 0 ⇒ ba = 0, for all a, b ∈ R,

semicommutative if ab = 0 ⇒ aRb = 0, for all a, b,∈ R.

The following implications hold:

reduced ⇒ reversible ⇒ semicommutative.

In general, each of these implications is irreversible (see [14]).
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Let α be an endomorphism and δ an α−derivation of a ring R. Fol-
lowing Hashemi and Moussavi [6], a ring R is said to be α−compatible
if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Moreover, R is called to
be δ−compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both
α−compatible and δ−compatible, then R is said to be (α, δ)−compatible.

For a nonempty subset X of a ring R, we write rR(X) = {r ∈ R |
Xr = 0} and lR(X) = {r ∈ R | rX = 0}, which are called the right
annihilator of X in R and the left annihilator of X in R, respectively.
The concept of annihilators has been the focus of a number of research
papers (see [1, 2, 3, 5, 8, 15, 16]). As a generalization of annihilators,
here we introduce the notion of nilpotent annihilators. Let R be a ring
and nil(R) be the set of all nilpotent elements of R. For a nonempty
subset X of a ring R, we define NR(X) = {a ∈ R | xa ∈ nil(R), for all
x ∈ X}, which is called a nilpotent annihilator of X in R. Obviously,
for any nonempty subset X of a ring R, we have rR(X) ⊆ NR(X) and
lR(X) ⊆ NR(X). So, a nilpotent annihilator is a natural generalization
of an annihilator. If R is reduced, then rR(X) = NR(X) = lR(X).

In [10], Kaplansky introduced the Baer rings as rings in which the
right (left) annihilator of every nonempty subset is generated by an
idempotent. Closely related to Baer rings are p.p. rings. A ring R is
called a right p.p. ring if the right annihilator of each element of R is gen-
erated by an idempotent. A ring R is called a p.p. ring if it is both a right
and a left p.p. ring [9, 13]. These concepts have their roots in functional
analysis, having close links to C∗−algebras and von Neumann algebras
[4, 10]. Large classes of rings satisfy the Baer property-examples include
right self-injective von Neumann regular rings, von Neumann algebras,
and the endomorphisms rings of semisimple modules. Examples of p.p.
rings also include large classes, such as all Baer rings. Motivated by their
work, in this note we initiate the study of nilpotent p.p. rings. A ring
R is said to be a nilpotent p.p. ring if the nilpotent annihilator of each
element of R does not equal R, then it is generated as a right ideal by a
nilpotent. Recently, the surge of interest in quantum groups and quan-
tized algebras has brought renewed interest in general skew polynomials
rings, due to the fact that many of these quantized algebras and their
representations can be expressed in terms of iterated skew polynomial
rings. So, in this note we mainly investigate the nilpotent p.p. condition
over polynomial extensions and skew polynomial extensions.

For a polynomial f(x) = a0 + a1x + · · · + atx
t ∈ R[x]. If f(x) is a

nilpotent element of R[x], then we say that f(x) ∈ nil(R[x]).
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2. Polynomial extensions over nilpotent p.p. rings

Definition 2.1. Let R be a ring. For a subset X of a ring R, we define
NR(X) = {a ∈ R | xa ∈ nil(R), for all x ∈ X}, which is called the
nilpotent annihilator of X in R. If X is a singleton, say X = {r}, we
use NR(r) in place of NR({r}). Clearly, for any nonempty subset X of
R, we have NR(X) = {a ∈ R | xa ∈ nil(R), for all x ∈ X} = {b ∈ R |
bx ∈ nil(R), for all x ∈ X}.

Example 2.2. Let Z be the ring of integers and T2(Z) the 2 × 2
upper triangular matrix ring over Z. We consider the subset X ={(

2 0
0 2

)}
.

Clearly, rT2(Z)(X) = 0, and NT2(Z)(X) =
{(

0 m
0 0

)
, |m ∈ Z

}
.

Thus, rT2(Z)(X) 6= NT2(Z)(X). Hence, a nilpotent annihilator is a non-
trivial generalization of an annihilator.

Proposition 2.3. Let X, Y be subsets of R. Then, we have the follow-
ings:

(1) X ⊆ Y implies NR(X) ⊇ NR(Y ).
(2) X ⊆ NR(NR(X)).
(3) NR(X) = NR(NR(NR(X))).

Proof. proofs of (1) and (2) are really easy.
(3) Applying (2) to NR(X), we obtain NR(X) ⊆ NR(NR(NR(X))).

Since X ⊆ NR(NR(X)), we have NR(X) ⊇ NR(NR(NR(X))), by (1).
Therefore, NR(X) = NR(NR(NR(X))). �

Lemma 2.4. Let R be a subring of S. Then, for any subset X of R,
we have NR(X) = NS(X) ∩R.

Proof. Let r ∈ NR(X). Then, r ∈ R and xr ∈ nil(R), for each x ∈ X,
and so xr ∈ nil(S), for each x ∈ X. Hence, r ∈ NS(X) ∩ R and so
NR(X) ⊆ NS(X) ∩ R. Assume that a ∈ NS(X) ∩ R. Then, a ∈ R
and xa ∈ nil(S), for each x ∈ X. Note that X ⊆ R. We have xa ∈
nil(R), for each x ∈ X. Thus a ∈ NR(X) and so NR(X) ⊇ NS(X) ∩R.
Therefore, NR(X) = NS(X) ∩R. �
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Definition 2.5. A ring R is said to be a nilpotent p.p. ring if for any
element p ∈ R with NR(p) 6= R, NR(p) is generated as a right ideal by
a nilpotent element.

Let R be a ring and let

Tn(R) =




a1 a2 a3 · · · an

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

· · · · · · · · · · · · · · ·
0 0 0 · · · a1

 | ai ∈ R


with n ≥ 2. Then, Tn(R) is a ring with the usual matrix addition and
multiplication.

Proposition 2.6. If R is a domain, then Tn(R) is a nilpotent p.p. ring.

Proof. Let p =


a1 a2 a3 · · · an

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

· · · · · · · · · · · · · · ·
0 0 0 · · · a1

 ∈ Tn(R), with NTn(R)(p)

6= Tn(R). If a1 = 0, then NTn(R)(p) = Tn(R). This is contrary to the
fact that NTn(R)(p) 6= Tn(R). Thus, we obtain a1 6= 0. In this case, we
obtain:

NTn(R)(p) =




0 u2 u3 · · · un

0 0 u2 · · · un−1

0 0 0 · · · un−2

· · · · · · · · · · · · · · ·
0 0 0 · · · 0

 | ui ∈ R



=


0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0

 · Tn(R),
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where,


0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0

 is a nilpotent element of Tn(R).

Therefore, Tn(R) is a nilpotent p.p. ring. �

From Proposition 2.6, one may suspect that the n×n upper triangular
matrix ring over a domain is a nilpotent p.p. ring. But, the following
example erases the possibility.

Example 2.7. Let R be a domain and let T3(R) be the 3×3 upper trian-

gular matrix ring over R. Let p =

 0 1 1
0 0 1
0 0 1

 ∈ T3(R). By a routine

computation, we have NT3(R)(p) =


 x11 x12 x13

0 x22 x23

0 0 0

 | xij ∈ R

 = 1 0 0
0 1 0
0 0 0

 · T3(R), where

 1 0 0
0 1 0
0 0 0

 is not a nilpotent element.

Therefore, T3(R) is not a nilpotent p.p. ring.

For the proofs of the next two Lemmas, see [12].

Lemma 2.8. Let R be a semicommutative ring. Then, nil(R) is an
ideal of R.

Lemma 2.9. Let R be a semicommutative ring. Then, f(x) = a0 +
a1x + · · · + anxn ∈ R[x] is a nilpotent element of R[x] if and only if
ai ∈ nil(R), for all 0 ≤ i ≤ n.

Lemma 2.10. Let R be a semicommutative ring. If ab ∈ nil(R), for
a, b ∈ R, then aRbR ⊆ nil(R).

Proof. Suppose ab ∈ nil(R). Then, abs ∈ nil(R) for any s ∈ R, since
nil(R) is an ideal of R. Thus, there exists a positive integer n such that
(abs)n = absabs · · · abs = 0, and so arbsarbs · · · arbs = 0, for any r ∈ R,
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because R is a semicommutative ring. Hence, arbs ∈ nil(R), for each
r ∈ R and s ∈ R. Therefore aRbR ⊆ nil(R). �

Proposition 2.11. Let R be a semicommutative ring. Then, R is a
nilpotent p.p. ring if and only if R[x] is a nilpotent p.p. ring.

Proof. Suppose that R is a nilpotent p.p. ring. Let f(x) = a0 + a1x +
· · ·+ amxm ∈ R[x], with NR[x](f(x)) 6= R[x]. We show that NR[x](f(x))
is generated by a nilpotent element. If g(x) = b0 + b1x + · · · + bnxn ∈
NR[x](f(x)), then we have

f(x)g(x) =

(
m∑

i=0

aix
i

) n∑
j=0

bjx
j

 =
m+n∑
s=0

 ∑
i+j=s

aibj

xs ∈ nil(R[x]).

We have the following system of equations by Lemma 2.9:

∆s =
∑

i+j=s

aibj ∈ nil(R), s = 0, 1, · · · ,m + n.

We will show that aibj ∈ nil(R) by induction on i + j.
If i + j = 0, then a0b0 ∈ nil(R), b0a0 ∈ nil(R).
Now, suppose that s is a positive integer such that aibj ∈ nil(R),

when i + j < s. We will show that aibj ∈ nil(R), when i + j = s.
Consider the following equation:

(∗) : ∆s = a0bs + a1bs−1 + · · ·+ asb0 ∈ nil(R).

Multiplying Eq.(∗) by b0 from left, we have b0asb0 = b0∆s − (b0a0)bs −
(b0a1)bs−1−· · ·−(b0as−1)b1. By the induction hypothesis, aib0 ∈ nil(R),
for each i, 0 ≤ i < s, and so b0ai ∈ nil(R), for each i, 0 ≤ i < s.
Thus, b0asb0 ∈ nil(R) and so b0as ∈ nil(R), asb0 ∈ nil(R). Multiplying
Eq.(∗) by b1, b2, · · · , bs−1 from the left side, respectively, yields as−1b1 ∈
nil(R), as−2b2 ∈ nil(R), · · · , a0bs ∈ nil(R), in turn. This means that
aibj ∈ nil(R), when i + j = s. Therefore, by induction we obtain
aibj ∈ nil(R), for each i, j, and so bj ∈ NR(ai), for for each i, 0 ≤ i ≤ m
and j, 0 ≤ j ≤ n. If NR(ai) = R, for each i, 0 ≤ i ≤ m, then
air ∈ nil(R) for each i, 0 ≤ i ≤ m and each r ∈ R. So, for any
u(x) = u0 + u1x + · · · + utx

t ∈ R[x], we have aiuj ∈ nil(R) for each i,
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0 ≤ i ≤ m and each j, 0 ≤ j ≤ t. Thus,

f(x)u(x) =
m+t∑
s=0

 ∑
i+j=s

aiuj

xs ∈ nil(R[x]),

by Lemma 2.9, and so u(x) ∈ NR[x](f(x)). Thus, we obtain NR[x](f(x)) =
R[x]. This is contrary to the fact that NR[x](f(x)) 6= R[x]. Thus, there
exists an i, 0 ≤ i ≤ m, such that NR(ai) 6= R. Since R is a nilpo-
tent p.p. ring, there exists some c ∈ nil(R) with NR(ai) = cR. Now,
we show that NR[x](f(x)) = c · R[x]. Since bj ∈ NR(ai) = cR for
each j, 0 ≤ j ≤ n, there exists rj ∈ R such that bj = crj , and so
g(x) = c(r0 + r1x + · · ·+ rnxn) ∈ c ·R[x]. Hence, NR[x](f(x)) ⊆ c ·R[x].
On the other hand, for h(x) = h0 + h1x + · · ·+ hpx

p ∈ R[x], we have

f(x) · ch(x) =

(
m∑

i=0

aix
i

) p∑
j=0

chjx
j

 =
m+p∑
s=0

 ∑
i+j=s

aichj

xs.

Since nil(R) is an ideal of R and c ∈ nil(R), we obtain aichj ∈ nil(R)
and so f(x) · ch(x) ∈ nil(R[x]), by Lemma 2.9. Hence, NR[x](f(x)) ⊇
c · R[x], and so NR[x](f(x)) = c · R[x], where c ∈ nil(R[x]). Therefore,
R[x] is a nilpotent p.p. ring.

Conversely, assume that R[x] is a nilpotent p.p. ring. Let p ∈ R,
with NR(p) 6= R. If NR[x](p) = R[x], then we have NR(p) = NR[x](p) ∩
R = R, by Lemma 2.4, which is a contradiction. Thus, we obtain
NR[x](p) 6= R[x]. Since R[x] is a nilpotent p.p. ring, there exists u(x) =
u0 +u1x+ · · ·+usx

s ∈ nil(R[x]) such that NR[x](p) = u(x) ·R[x]. Since
u(x) = u0 +u1x+ · · ·+usx

s ∈ nil(R[x]), we obtain ui ∈ nil(R) for each
i, 0 ≤ i ≤ s, by Lemma 2.9. Now, we show that NR(p) = u0 · R. Since
u0 ∈ nil(R) and nil(R) is an ideal of R, we have pu0r ∈ nil(R) for each
r ∈ R. Thus, u0r ∈ NR(p), for each r ∈ R, and so NR(p) ⊇ u0 · R.
Suppose that m ∈ NR(p). Then, m ∈ NR[x](p), and so there exists
p(x) = p0 + p1x + · · · + pqx

q ∈ R[x] such that m = u(x)p(x). Hence,
m = u0p0 ∈ u0 · R, and so NR(p) ⊆ u0 · R. Therefore, NR(p) = u0 · R,
and so R is a nilpotent p.p. ring. �

The ring of Laurent polynomial in x, with coefficient in R, consists
of all formal sums

∑n
i=k mix

i with obvious addition and multiplication,
where mi ∈ R and k, n are (possibly negative) integers. We denote this
ring by R[x;x−1]. If f(x) is a nilpotent element of R[x;x−1], then we
say that f(x) ∈ nil(R[x;x−1]).
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Lemma 2.12. Let R be a semicommutative ring. Then, f(x) =
∑n

i=k aix
i

∈ R[x;x−1] is a nilpotent element of R[x;x−1] if and only if ai ∈ nil(R),
for each i, k ≤ i ≤ n.

Proof. There exists a positive integer t such that f(x) ·xt ∈ R[x]. Note
that (f(x))k = 0 if and only if (f(x) · xt)k = 0, where k is a positive
integer. Then, we complete the proof by Lemma 2.9. �

Lemma 2.13. Let R be a semicommutative ring, f(x) =
∑m

i=k aix
i ∈

R[x;x−1] and g(x) =
∑n

j=l bjx
j ∈ R[x;x−1]. Then, we have f(x)g(x) ∈

nil(R[x;x−1]) if and only if aibj ∈ nil(R), for each i, k ≤ i ≤ m and
for each j, l ≤ j ≤ n.

Proof. Suppose that aibj ∈ nil(R), for each i, k ≤ i ≤ m and each j,
l ≤ j ≤ n. Then,

f(x)g(x) =
m+n∑
s=k+l

 ∑
i+j=s

aibj

xs ∈ nil(R[x;x−1]),

by Lemma 2.12. So it suffices to show that aibj ∈ nil(R) for each i, j,
when f(x)g(x) ∈ nil(R[x;x−1]. There exist positive integers u and v
such that f(x)xu ∈ R[x] and g(x)xv ∈ R[x]. Since (f(x)g(x))k = 0 if
and only if (f(x)xug(x)xv)k = 0, where k is a positive integer, same as
the proof of Proposition 2.11, we obtain that aibj ∈ nil(R), for each
i, j. �

Proposition 2.14. Let R be a semicommutative ring. If R is a nilpotent
p.p. ring, then so is R[x;x−1].

Proof. Let f(x) =
∑m

i=k aix
i ∈ R[x;x−1], with NR[x;x−1](f(x)) 6=

R[x;x−1]. We show that NR[x;x−1](f(x)) is generated by a nilpotent ele-
ment. If g(x) =

∑n
j=l bjx

j ∈ NR[x;x−1](f(x)), then f(x)g(x) ∈
nil(R[x;x−1]). Then, we obtain aibj ∈ nil(R), for each i, j, by lemma
2.13, and so bj ∈ NR(ai) for each j, l ≤ j ≤ n and each i, k ≤ i ≤ m. If
NR(ai) = R, for each i, k ≤ i ≤ m, then for each h(x) =

∑t
j=s hjx

j ∈
R[x;x−1], we have aihj ∈ nil(R), for each i, k ≤ i ≤ m and s ≤ j ≤
t. Thus, f(x)h(x) ∈ nil(R[x;x−1]), by Lemma 2.13, and so h(x) ∈
NR[x;x−1](f(x)). Hence, we obtain NR[x;x−1](f(x)) = R[x;x−1], which is
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a contradiction. Thus, there exists an i, k ≤ i ≤ m, such that NR(ai) 6=
R. Since R is a nilpotent p.p. ring, there exists some c ∈ nil(R), with
NR(ai) = cR. Now, we show that NR[x;x−1](f(x)) = c · R[x;x−1]. Since
bj ∈ NR(ai), for each j, l ≤ j ≤ n, there exists rj ∈ R such that
bj = c·rj . Thus, g(x) =

∑n
j=l bjx

j = c(
∑n

j=l rjx
j) ∈ c·R[x;x−1]. Hence,

NR[x;x−1](f(x)) ⊆ c ·R[x;x−1]. Let q(x) =
∑t

j=v qjx
j ∈ R[x;x−1]. Since

c ∈ nil(R) and nil(R) is an ideal of R, we obtain aicqj ∈ nil(R), for
each i, j, and so f(x) · cq(x) ∈ nil(R[x;x−1]), by Lemma 2.13. Thus,
NR[x;x−1](f(x)) ⊇ c · R[x;x−1]. Hence, NR[x;x−1](f(x)) = c · R[x;x−1],
where c ∈ nil(R[x;x−1]). Therefore, R[x;x−1] is a nilpotent p.p. ring. �

3. The Ore extensions over nilpotent p.p. rings

Let α be an endomorphism of R and δ : R −→ R an additive map
of R. The application δ is said to be an α−derivation if δ(ab) =
δ(a)b + α(a)δ(b). The Ore extension S = R[x;α, δ] is the set of poly-
nomials

∑m
i=0 aix

i with the usual sum, and the multiplication rule as
xa = α(a)x + δ(a). Let f(x) = a0 + a1x + · · · + anxn ∈ R[x;α, δ]. We
say that f(x) ∈ nil(R)[x;α, δ] if and only if ai ∈ nil(R), for each i,
0 ≤ i ≤ n. If f(x) ∈ R[x;α, δ] is a nilpotent element of R[x;α, δ],
then we say f(x) ∈ nil(R[x;α, δ]). For f(x) = a0 + a1x + · · · + anxn ∈
R[x;α, δ], we denote by {a0, a1, · · · , an} the set of coefficients of f(x).
Let ai ∈ R, 1 ≤ i ≤ n, and denote by a1a2 · · · an the product of all
ai, 1 ≤ i ≤ n.

Let δ be an α-derivation of R. For integers i, j, with 0 ≤ i ≤ j,
f j

i ∈ End(R,+) will denote the map which is the sum of all possible
words in α, δ built with i letters α and j − i letters δ. For instance,
f0
0 = 1, f j

j = αj , f j
0 = δj and f j

j−1 = αj−1δ + αj−2δα + · · ·+ δαj−1. The
next two lemmas appear in [11] and [6], respectively.

Lemma 3.1. For any positive integer n and r ∈ R, we have xnr =
n∑

i=0
fn

i (r)xi in the ring R[x;α, δ].

Lemma 3.2. Let R be an (α, δ)-compatible ring. Then, we have the
followings:

(1) If ab = 0, then aαn(b) = αn(a)b = 0, for every positive integer n.
(2) If αk(a)b = 0, for a positive integer k, then ab = 0.
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(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b), for every positive
integers m,n.

Lemma 3.3. Let δ be an α-derivation of R. If R is an (α, δ)-compatible
ring, then ab = 0 implies af j

i (b) = 0, for each i, j, j ≥ i ≥ 0 and
a, b ∈ R.

Proof. If ab = 0, then aαi(b) = aδj(b) = 0, for each i ≥ 0 and each
j ≥ 0, because R is (α, δ)-compatible. Then, af j

i (b) = 0 for each i, j. �

Lemma 3.4. Let δ be an α-derivation of R. If R is (α, δ)-compatible
and reversible, then ab ∈ nil(R) implies af j

i (b) ∈ nil(R), for each i, j,
j ≥ i ≥ 0 and a, b ∈ R.

Proof. Since ab ∈ nil(R), there exists a positive integer k such that
(ab)k = 0. 0 = (ab)k = abab · · · ab ⇒ abab · · · abaf j

i (b) = 0 ⇒
af j

i (b)ab · · · ab = 0 ⇒ af j
i (b)ab · · · abaf j

i (b) = 0 ⇒ af j
i (b)af j

i (b)ab · · · ab

= 0 ⇒ · · · ⇒ af j
i (b) ∈ nil(R). �

Lemma 3.5. Let R be an (α, δ)−compatible ring. If aαm(b) ∈ nil(R)
for a, b ∈ R, and m is a positive integer, then ab ∈ nil(R).

Proof. Since aαm(b) ∈ nil(R), there exists some positive integer n such
that (aαm(b))n = 0. In the following computations, we use freely the
condition that R is (α, δ)−compatible:

(aαm(b))n = aαm(b)aαm(b) · · · aαm(b)︸ ︷︷ ︸
n

= 0

⇒ aαm(b)aαm(b) · · · aαm(b)ab = 0
⇒ aαm(b)aαm(b) · · · aαm(b)αm(ab) = 0
⇒ aαm(b)aαm(b) · · · aαm(b)aαm(bab) = 0
⇒ aαm(b)aαm(b) · · · aαm(b)abab = 0
⇒ · · · ⇒ ab ∈ nil(R).

�

Proposition 3.6. Let R be a reversible and (α, δ)−compatible ring and
f(x) = a0 + a1x + · · ·+ anxn ∈ R[x;α, δ]. Then, f(x) ∈ nil(R[x;α, δ]) if
and only if ai ∈ nil(R) for each i, 0 ≤ i ≤ n.
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Proof.(=⇒) Suppose f(x) ∈ nil(R[x;α, δ]). There exists a positive
integer k such that f(x)k = (a0 + a1x + · · ·+ anxn)k = 0. Then,

f(x)k = “lower terms” + anαn(an)α2n(an) · · ·α(k−1)n(an)xnk.

Hence, anαn(an)α2n(an) · · ·α(k−1)n(an) = 0, and α−compatibility and
reversibility of R gives an ∈ nil(R). So by Lemma 3.4, an = 1 · an ∈
nil(R) implies 1 · f t

s(an) = f t
s(an) ∈ nil(R), for each s, 0 ≤ s ≤ t. Let

Q = a0 + a1x + · · ·+ an−1x
n−1. Then, we have

0 = (Q + anxn)k

= (Q + anxn)(Q + anxn) · · · (Q + anxn)
= (Q2 + Q · anxn + anxn ·Q + anxn · anxn)

·(Q + anxn) · · · (Q + anxn) = · · · = Qk + ∆,

where, ∆ ∈ R[x;α, δ]. Note that the coefficients of ∆ can be written
as sums of monomials in ai and fv

u(aj), where ai, aj ∈ {a0, a1, · · · , an}
and v ≥ u ≥ 0 are positive integers, and each monomial has an or
f t

s(an). Since nil(R) of a reversible ring R is an ideal, we obtain that
each monomial is in nil(R), and so ∆ ∈ nil(R)[x;α, δ]. Thus, we obtain:

(a0 + a1x + · · ·+ an−1x
n−1)k

= “lower terms” + an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1)x(n−1)k

∈ nil(R)[x;α, δ].

Hence, an−1α
n−1(an−1) · · ·α(k−1)(n−1)(an−1) ∈ nil(R), and so an−1 ∈

nil(R), by Lemma 3.5. Using induction on n, we obtain ai ∈ nil(R), for
each i, 0 ≤ i ≤ n.

(⇐=) Let k > 1 such that ak
i = 0, for each i, 0 ≤ i ≤ n. We claim

that f(x)(n+1)k+1 = (a0 + a1x + · · ·+ anxn)(n+1)k+1 = 0. From

(
n∑

i=0
aix

i)2 = (
n∑

i=0
aix

i) (
n∑

i=0
aix

i)

= (
n∑

i=0
aix

i)a0 + (
n∑

i=0
aix

i)a1x + · · ·

+(
n∑

i=0
aix

i)asx
s + · · · + (

n∑
i=0

aix
i)anxn

=
n∑

i=0
aif

i
0(a0) +

(
n∑

i=1
aif

i
1(a0) +

n∑
i=0

aif
i
0(a1)

)
x

+
(

n∑
i=2

aif
i
2(a0) +

n∑
i=1

aif
i
1(a1) +

n∑
i=0

aif
i
0(a2)

)
x2 + · · ·

+

( ∑
s+t=k

(
n∑

i=s
aif

i
s(at))

)
xk + · · ·+ anαn(an)x2n,
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it is easy to check that the coefficients of (
n∑

i=0
aix

i)(n+1)k+1 can be writ-

ten as sums of monomials of length (n + 1)k + 1 in ai and fv
u(aj),

where ai, aj ∈ {a0, a1, · · · , an} and v ≥ u ≥ 0 are positive integers.
Consider each monomial ai1f

t2
s2

(ai2) · · · f
tp
sp (aip)︸ ︷︷ ︸

(n+1)k+1

where, ai1 , ai2 , · · · aip ∈

{a0, a1, · · · , an}, and tj , sj(tj ≥ sj , 2 ≤ j ≤ p) are nonnegative in-
tegers. We will show that ai1f

t2
s2

(ai2) · · · f
tp
sp (aip) = 0. If the num-

ber of a0 in ai1f
t2
s2

(ai2) · · · f
tp
sp (aip) is greater than k, then we write

ai1f
t2
s2

(ai2) · · · f
tp
sp (aip) as:

b1(f t01
s01

(a0))j1b2(f t02
s02

(a0))j2 · · · bv(f t0v
s0v

(a0))jvbv+1,

where, j1 + j2 + · · · jv > k, 1 ≤ j1, j2 · · · , jv and bq(q = 1, 2, · · · , v + 1) is
a product of some elements chosen from {ai1, f

t2
s2

(ai2), · · · f
tp
sp (aip)} or is

equal to 1. Since aj1+j2+···jv
0 = 0 and R is reversible and (α, δ)−compati–

ble, we have 0 = aj1+j2+···+jv
0 = a0a0 · · · a0︸ ︷︷ ︸

j1+j2+···+jv

=⇒ a0a0 · · · (f t01
s01

(a0)) =

0 =⇒ (f t01
s01

(a0))a0 · · · a0 = 0 =⇒ (f t01
s01

(a0))j1a0 · · · a0 = 0 ⇒ · · · ⇒
(f t01

s01
(a0))j1(f t02

s02
(a0))j2 · · · (f t0v

s0v
(a0))jv = 0 =⇒ b1(f t01

s01
(a0))j1b2(f t02

s02
(a0))j2

· · · bv(f t0v
s0v

(a0))jvbv+1 = 0. Thus, ai1f
t2
s2

(ai2) · · · f
tp
sp (aip) = 0. If the num-

ber of ai in ai1f
t2
s2

(ai2) · · · f
tp
sp (aip) is greater than k, then similar dis-

cussion yields ai1f
t2
s2

(ai2) · · · f
tp
sp (aip) = 0. Thus, each term appearing in

(
n∑

i=0
aix

i)(n+1)k+1 equals 0. Therefore,
∑n

i=0 aix
i ∈ R[x;α, δ] is a nilpo-

tent element. �

Corollary 3.7. Let R be a reversible and α−compatible ring, and f(x) =
a0 + a1x + · · ·+ anxn ∈ R[x;α]. Then, f(x) = a0 + a1x + · · ·+ anxn ∈
nil(R[x;α]) if and only if ai ∈ nil(R), for each i, 0 ≤ i ≤ n.

Proposition 3.8. Let R be a reversible and (α, δ)−compatible ring.
Then for f =

∑m
i=0 aix

i, g =
∑n

j=0 bjx
j ∈ R[x;α, δ], fg ∈ nil(R[x;α, δ])

if and only if aibj ∈ nil(R), for each i, j, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Proof. (⇒) Let f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j ∈ R[x;α, δ] be such that
fg ∈ nil(R[x;α, δ]). Then,
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fg = (
m∑

i=0
aix

i)(
n∑

j=0
bjx

j)

= (
m∑

i=0
aix

i)b0 + (
m∑

i=0
aix

i)b1x + · · ·+ (
m∑

i=0
aix

i)bnxn

=
m∑

i=0
aif

i
0(b0) +

(
m∑

i=1
aif

i
1(b0) +

m∑
i=0

aif
i
0(b1)

)
x + · · ·

+

( ∑
s+t=k

(
m∑

i=s
aif

i
s(bt))

)
xk + · · ·+ amαm(bn)xm+n ∈ nil(R[x;α, δ]).

Then, we have the following system of equations, by Proposition 3.6:

(1) ∆m+n = amαm(bn) ∈ nil(R),
(2) ∆m+n−1 = amαm(bn−1) + am−1α

m−1(bn) + amfm
m−1(bn) ∈ nil(R),

(3) ∆m+n−2 = amαm(bn−2) +
m∑

i=m−1
aif

i
m−1(bn−1)

+
m∑

i=m−2
aif

i
m−2(bn) ∈ nil(R),

...

(4) ∆k =
∑

s+t=k

(
m∑

i=s
aif

i
s(bt)) ∈ nil(R).

From Eq. (1), ambn ∈ nil(R). Now, we show that aibn ∈ nil(R),
for each i, 0 ≤ i ≤ m. If we multiply Eq. (2) on the left side by bn,
then bnam−1α

m−1(bn) = bn∆m+n−1−(bnamαm(bn−1)+bnamfm
m−1(bn)) ∈

nil(R), since nil(R) of a semicommutative ring is an ideal. Thus, by
Lemma 3.5, we obtain bnam−1bn ∈ nil(R), and so we have bnam−1 ∈
nil(R), am−1bn ∈ nil(R). If we multiply Eq. (3) on the left side by
bn, then we obtain bnam−2f

m−2
m−2 (bn) = bnam−2α

m−2(bn) = bn∆m+n−2 −
bnamαm(bn−2)−bnam−1f

m−1
m−1 (bn−1)−bnamfm

m−1(bn−1)−bnam−1f
m−1
m−2 (bn)

−bnamfm
m−2(bn) = bn∆m+n−2− (bnam)αm(bn−2)− (bnam−1)fm−1

m−1 (bn−1)
−(bnam)fm

m−1(bn−1) − (bnam−1) fm−1
m−2 (bn)− (bnam) fm

m−2(bn) ∈ nil(R),
since nil(R) is an ideal of R. Thus, we obtain am−2bn ∈ nil(R) and
bnam−2 ∈ nil(R). Continuing this procedure yields that aibn ∈ nil(R),
for each i, 0 ≤ i ≤ m, and so aif

t
s(bn) ∈ nil(R), for any t ≥ s ≥ 0

and any i, 0 ≤ i ≤ m, by Lemma 3.4. Thus, it is easy to verify
that (

∑m
i=0 aix

i)(
∑n−1

j=0 bjx
j) ∈ nil(R)[x;α, δ]. Applying the preced-

ing argument repeatedly, we obtain that aibj ∈ nil(R), for each i,
0 ≤ i ≤ m, 0 ≤ j ≤ n. �
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(⇐) Suppose that aibj ∈ nil(R), for each i, j. Then, aif
i
s(bj) ∈ nil(R),

for each i, j and each positive integers, i ≥ s ≥ 0, by Lemma 3.4. Thus,

∑
s+t=k

(
m∑

i=s

aif
i
s(bt)) ∈ nil(R), k = 0, 1, 2, · · ·m + n.

Hence, fg =
m+n∑
k=0

(
∑

s+t=k

(
m∑

i=s
aif

i
s(bt)))xk ∈ nil(R[x;α, δ]), by Proposition

3.6.

Proposition 3.9. Let R be an (α, δ)−compatible and reversible ring. If
R is a nilpotent p.p. ring, then so is S = R[x;α, δ].

Proof. Let f(x) = a0 + a1x + · · · + amxm ∈ S = R[x;α, δ], with
NS(f(x)) 6= S. If g(x) = b0 + b1x + · · · + bnxn ∈ NS(f(x)), then
f(x)g(x) ∈ nil(S). Thus, we have aibj ∈ nil(R) for each i, j, by
Proposition 3.8, and so bj ∈ NR(ai), for each i, j, 0 ≤ i ≤ m and
0 ≤ j ≤ n. If NR(ai) = R, for each i, 0 ≤ i ≤ m, then for any
h(x) = h0 + h1x + · · · + hlx

l ∈ S = R[x;α, δ], we have aihj ∈ nil(R),
for each i, j, and so f(x)h(x) ∈ nil(S), by Proposition 3.8. Thus,
NS(f(x)) = S, which is a contradiction. So, there exists an i, 0 ≤ i ≤ m
such that NR(ai) 6= R. Since R is a nilpotent p.p. ring, there exists a
c ∈ nil(R), with NR(ai) = cR. Now, we show that NS(f(x)) = c · S.
Since bj ∈ NR(ai) = cR, for each j, 0 ≤ j ≤ n, there exists rj ∈ R such
that bj = crj for each j, 0 ≤ j ≤ n. Hence g(x) = b0 +b1x+ · · ·+bnxn =
c(r0 + r1x + · · · + rnxn) ∈ c · S. Thus, NS(f(x)) ⊆ c · S. On the
other hand, any u(x) = u0 + u1x + · · · + uqx

q ∈ S = R[x;α, δ]. Since
c ∈ nil(R) and nil(R) is an ideal of R, we obtain aicuj ∈ nil(R), for
each i, j, and so f(x) · cu(x) ∈ nil(S), by Proposition 3.8. Thus, we
obtain NS(f(x)) ⊇ c · S. Hence, NS(f(x)) = c · S, where c ∈ nil(S).
Therefore, S = R[x;α, δ] is a nilpotent p.p. ring. �

Corollary 3.10. Let R be an α−compatible and reversible ring. If R is
a nilpotent p.p.ring, then so is R[x;α].

Proposition 3.11. Let R be an α−compatible and reversible ring. Then,
R is a nilpotent p.p. ring if and only if R[x;α] is a nilpotent p.p. ring.
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Proof. Suppose that R is a nilpotent p.p. ring. Then, so is R[x;α],
by Corollary 3.10. So it suffices to show that R is a nilpotent p.p. ring,
when R[x;α] is a nilpotent p.p. ring. Let p ∈ R, with NR(p) 6= R. If
NR[x;α](p) = R[x;α], then NR(p) = NR[x;α](p) ∩ R = R, by Lemma 2.4,
which is a contradiction. Thus, we have NR[x;α](p) 6= R[x;α]. Since
R[x;α] is a nilpotent p.p. ring, there exists f(x) = a0 + a1x + · · · +
amxm ∈ nil(R[x;α]) such that NR[x;α](p) = f(x) ·R[x;α]. Since f(x) =
a0 + a1x + · · · + amxm ∈ nil(R[x;α]), we have ai ∈ nil(R), for each i,
0 ≤ i ≤ m, by Corollary 3.7. Now, we show that NR(p) = a0R. Since
a0 ∈ nil(R) and nil(R) is an ideal of R, we obtain p · a0R ⊆ nil(R), and
so NR(p) ⊇ a0R. If m ∈ NR(p), then m ∈ NR[x;α](p). Thus, there exists
h(x) = h0 + h1x + · · ·+ hqx

q ∈ R[x;α] such that

m = f(x)h(x) =
m+q∑
s=0

 ∑
i+j=s

aiα
i(hj)

xs.

Thus, we have m = a0h0 ∈ a0R, and so NR(p) ⊆ a0R. Hence, NR(p) =
a0R, where a0 ∈ nil(R). Therefore, R is a nilpotent p.p. ring. �
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