CHEBYSHEV CENTERS AND APPROXIMATION IN PRE-HILBERT C^* -MODULES

A. NIKNAM AND S. SHADKAM*

Communicated by Fereidoun Ghahramani

ABSTRACT. We extend the study of Chebyshev centers in pre-Hilbert C^* -modules by considering the C^* -algebra valued map defined by $|x|=\langle x,x\rangle^{1/2}$. We prove that if T is a remotal subset of a pre-Hilbert C^* -module M, and $F\subseteq M$ is star-shaped at a relative Chebyshev center c of T with respect to F, then $|x-q_T(x)|^2\geq |x-c|^2+|c-q_T(c)|^2(x\in F)$. The uniqueness of Chebyshev center follows from this inequality. This is a generalization of a well-known result on Hilbert spaces.

1. Introduction

A normed algebra is an algebra A with a norm $\|.\|$ such that $\|xy\| \le \|x\| \|y\|$, $x,y \in A$. A complete normed algebra A is called a Banach algebra. An involution * on an algebra A is a mapping $x \longrightarrow x^*$ from A onto A such that $(\lambda x + y)^* = \bar{\lambda} x^* + y^*, (xy)^* = y^*x^*$ and $(x^*)^* = x$, for all $x,y \in A, \lambda \in \mathbb{C}$. An involutive Banach algebra is called a Banach *-algebra. A Banach *-algebra A is said to be a C^* -algebra if $\|xx^*\| = \|x\|^2$. An element x in a C^* -algebra A with unit e is called positive if $\operatorname{sp}(x) \subseteq [0,\infty)$, where $\operatorname{sp}(x) = \{\lambda \in \mathbb{C}; \lambda e - x \text{ is not invertible}\}$; we write $x \ge 0$ if x is a positive element.

MSC(2010): Primary: 41A65; Secondary: 46L08, 46B20.

Keywords: Farthest point, chebyshev center, uniquely remotal set, Hilbert C^* -module, A-valued norm.

Received: 25 December 2007, Accepted: 27 September 2009.

209

^{*}Corresponding author

[©] 2010 Iranian Mathematical Society.

Suppose that A is a C^* -algebra and E is a linear space, which is a right A-module and the scalar multiplication satisfies $\lambda(xa) = x(\lambda a) = (\lambda x)a$ for all $x \in E, a \in A, \lambda \in \mathbb{C}$. The space E is called a pre-Hilbert A-module if there exists an A-valued map $\langle ., . \rangle : E \to A$ with the following properties:

- (i) $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if x = 0.
- (ii) $\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle, \quad x, y, z \in E, \lambda \in \mathbb{C}.$
- (iii) $\langle x, ya \rangle = \langle x, y \rangle a$, $x, y \in E$ and $a \in A$.
- (iv) $\langle x, y \rangle^* = \langle y, x \rangle$, $x, y \in E$.

Such a map $\langle .,. \rangle : E \to A$ is called an A-valued inner product. E is called a (right) Hilbert A-module if it is complete with respect to the norm $\|x\| = \|\langle x,x \rangle\|^{1/2}$. We note that Hilbert C^* -modules contain both Hilbert spaces and C^* -algebras. In fact, every Hilbert space is a Hilbert \mathbb{C} -module and if A is a C^* -algebra, then A is a Hilbert A-module, whenever we define $\langle a,b \rangle = a^*b, \quad a,b \in A$.

We define an A-valued map by $|x| = \langle x, x \rangle^{1/2}$. This is not actually an extension of a norm, in general, since it may happen that the triangle inequality does not hold [7].

The importance of our approach to the theory of approximation in pre-Hilbert C^* -modules is that we do not use the triangle inequality. This may motivate us to study the geometry in case the triangle inequality does not hold

Hilbert C^* -modules were first introduced and investigated by I. Kaplansky [5], M. Rieffel [13] and W. Paschke [11]. They played an essential role in operator algebras [12], KK-Theory [3], operator spaces [2], quantum group theory [14], Morita equivalence [13] and so on. They are a generalization of Hilbert spaces, but there are some differences between the two classes. For example, each operator on a Hilbert space has an adjoint, but a bounded A-module map on a Hilbert A-module is not adjointable, in general, ([7], page 8). Throughout this paper, we assume that $(M, \langle ., . \rangle)$ is a pre-Hilbert C^* -module over a commutative C^* -algebra A. In particular, the commutative C^* -algebras which are boundedly complete lattices with respect to their natural order structures, i.e., those having the property that each set of functions that has an upper bound has a least upper bound, are of special interest. An easy example is the complex field \mathbb{C} . One however shows that if a commutative C^* -algebra C(X) is a boundedly complete lattice with respect to the natural partial ordering of its real-linear subspace $C(X,\mathbb{R})$ of continuous real-valued functions on X, then X is extremely disconnected,

i.e., its open sets have open closures [4].

Let T be a non-empty subset of M. The mapping $Q_T: M \to 2^T$ defined by $Q_T(x) = \{y \in T: |x-y| = \max\{|x-t|: t \in T\}\}$ is called the farthest point map of T. We call T a remotal (uniquely remotal) set, if for each $x \in M$ the set $Q_T(x)$ is non-empty (is a singleton). The element of $Q_T(x)$ is denoted by $q_T(x)$ if it is a singleton. A subset F of M is said to be star-shaped at a vertex $s \in F$ if and only if for each $x \in F$ the line segment $[s, x] = \{\lambda s + (1 - \lambda)x : 0 \le \lambda \le 1\}$ lies in F.

A relative Chebyshev center of $T\subseteq M$ in $F\subseteq M$ is an element c in M that satisfies $|c-q_T(c)|=\min\{|x-q_T(x)|:x\in F\}:=r_F(T),$ if the minimum exists. In the case that F=M, we call c the Chebyshev center of T and denote $r_F(T)$ by r(T). We represent by d(T), the A-valued diameter $\max\{|t-s|:t,s\in T\}$ of T, if it exists.

One outstanding open problem in the geometry of normed spaces is the Farthest Point Problem [9]. This problem asks whether every uniquely remotal set in a normed space is a singleton. There are some cases such as the finite dimensional spaces and the Banach spaces c_0 and c, in which the problem is solved affirmatively [1]. The problem is related to the problem of proving the convexity of Chebyshev sets in a Hilbert space [6](recall that a subset T of a normed space X is called Chebyshev, if for every $x \in X$ there exists a unique best approximation of x in T). The reader is referred to [7],[8] and [12] for details on Hilbert C^* -modules, on commutative C^* -algebras.

2. Main results

Let $(M, \langle ., . \rangle)$ be a pre-Hilbert C^* -module over a commutative C^* -algebra A. We now establish some interesting results similar to those in [10] about Hilbert C^* -modules. We start our work with an applicable example of a remotal set.

Example 1. Let $X = \{a,b\}, A = C(X)$ and $E = \{f \in C(X) : f(a) = 0\}$. Then, E is a maximal ideal of the C^* -algebra A and so can be regarded as a Hilbert A-module. Assume that $T = \{f_1, f_2\} \subseteq E$, where $f_1(b) = 1$ and $f_2(b) = 2$. Then, T is remotal, since for each $f \in E$ there exists a function $q_T(f) \in T$ such that $|f(b) - q_T(f)(b)| = \max\{|f(b) - 1|, |f(b) - 2|\}$. In fact, a straightforward verification shows that for each $f \in E$, if $Ref(b) > \frac{3}{2}$, then $q_T(f) = f_1$; if $Ref(b) = \frac{3}{2}$, then $q_T(f)$ can

be chosen to be f_1 or f_2 ; and if $Ref(b) < \frac{3}{2}$, then $q_T(f) = f_2$ and also $d(T) = |f_1(b) - f_2(b)| = 1$.

Lemma 2.1. Suppose T is a uniquely remotal subset of M and F is a star-shaped subset of M at a vertex c such that c is a relative center of T with respect to F. Then, 0 is a relative center of c-T with respect to c-F.

Proof. We first prove the identity $c-q_{\scriptscriptstyle T}(x)=q_{\scriptscriptstyle c-T}(c-x),$ for all $x\in F.$ We know

$$|c - x - q_{c-T}(c - x)| \ge |c - x - (c - q_T(x))|.$$

Since
$$c - q_{c-T}(c-x) \in T$$
, $|x - q_T(x)| \ge |x - (c - q_{c-T}(c-x))|$. Hence, $|c - x - q_{c-T}(c-x)| = |c - x - (c - q_T(x))|$.

Therefore, $q_{c-T}(c-x)=c-q_T(x)$, since T is a uniquely remotal set. We now show that $|0-q_{c-T}(0)|\leq |c_1-q_{c-T}(c_1)|$, for all $c_1\in c-F$. We know that $|c-q_T(c)|\leq |x_1-q_T(x_1)|$ for all $x_1\in F$. So,

$$|q_{c-T}(0)| = |c - (c - q_{c-T}(0))| \le |c - x_1 - (c - q_T(x_1))|.$$

It follows therefore that
$$|0-q_{c-T}(0)| \le |c-x_1-q_{c-T}(c-x_1)|$$
, and so $|0-q_{c-T}(0)| \le |c_1-q_{c-T}(c_1)|$, for all $c_1=c-x_1 \in c-F$.

Theorem 2.2. Suppose T is a uniquely remotal subset of M and F is a star-shaped subset of M at a vertex c such that c is also a relative center of T with respect to F. Then,

(i) $Re(\langle c-x, c-q_T(x)\rangle) \leq 0$, for all $x \in F$.

(ii) if
$$q_T(c) \in F$$
 is a cluster point of $\bigcup \{Q_T(x) : x \in [c, q_T(c)]\}$, then $T = \{c\}$.

Proof. (i) By lemma 2.2, we may assume, without loss of generality, that c=0. Let $0<\alpha<1$. By the definition of the farthest point map q_T , we have

$$|x - q_T(x)|^2 \ge |x - q_T(\alpha x)|^2, |\alpha x - q_T(\alpha x)|^2 \ge |\alpha x - q_T(x)|^2.$$

Therefore,

$$\langle x - q_{\tau}(x), x - q_{\tau}(x) \rangle \ge \langle x - q_{\tau}(\alpha x), x - q_{\tau}(\alpha x) \rangle,$$

$$\langle \alpha x - q_{\tau}(\alpha x), \alpha x - q_{\tau}(\alpha x) \rangle \ge \langle \alpha x - q_{\tau}(x), \alpha x - q_{\tau}(x) \rangle.$$

By adding both sides of these inequalities, we obtain

$$(1-\alpha)[\langle x, q_T(\alpha x)\rangle + \langle q_T(\alpha x), x\rangle] \ge (1-\alpha)[\langle x, q_T(x)\rangle + \langle q_T(x), x\rangle].$$

Hence,

$$(2.1) Re(\langle x, q_T(\alpha x) \rangle) \ge Re(\langle x, q_T(x) \rangle).$$

On the other hand, $|\alpha x - q_T(\alpha x)| \ge |0 - q_T(0)| \ge |q_T(\alpha x) - 0|$, for all $x \in F$, since 0 is the relative Chebyshev center with respect to F. Hence,

$$\langle \alpha x - q_T(\alpha x), \alpha x - q_T(\alpha x) \rangle = |\alpha x - q_T(\alpha x)|^2 \ge |q_T(\alpha x)|^2$$
$$= \langle q_T(\alpha x), q_T(\alpha x) \rangle.$$

We have

$$\begin{split} \langle \alpha x, \alpha x \rangle - \langle q_T(\alpha x), \alpha x \rangle - \langle \alpha x, q_T(\alpha x) \rangle + \langle q_T(\alpha x), q_T(\alpha x) \rangle \geq \\ \langle q_T(\alpha x), q_T(\alpha x) \rangle. \end{split}$$

Therefore,

$$\alpha^2|x|^2-\langle q_{_T}(\alpha x),\alpha x\rangle-\langle \alpha x,q_{_T}(\alpha x)\rangle\geq 0.$$
 , we have

Dividing by α , we have

$$|\alpha|x|^2 \ge \langle q_T(\alpha x), x \rangle + \langle x, q_T(\alpha x) \rangle.$$

Then,

(2.2)
$$\alpha |x|^2 \ge 2Re(\langle x, q_T(\alpha x) \rangle)$$

We have from (2.1) and (2.2) that

$$(2.3) \alpha |x|^2 \ge 2Re(\langle x, q_{_T}(x) \rangle).$$

Since (2.3) holds for each $\alpha(0 < \alpha < 1)$ and by the Gelfand representation of A, we get

$$Re(\langle x, q_T(x) \rangle) \leq 0.$$

(ii) Suppose that there exists a sequence $\{\lambda_n\}$ in [0,1] such that $y_n=q_T(x_n)\to q_T(c)$, where $x_n=\lambda_n c+(1-\lambda_n)q_T(c)$. It follows from (i) that

$$Re(\langle c - x_n, c - q_T(x_n) \rangle) \le 0.$$

But, $\langle c-x_n,c-y_n\rangle=\langle c-(\lambda_nc+(1-\lambda_n)q_T(c)),c-y_n\rangle=(1-\lambda_n)\langle c-q_T(c),c-y_n\rangle.$ Since $1-\lambda_n\geq 0$, we infer that $Re(\langle c-q_T(c),c-y_n\rangle)\leq 0$. Due to $c-y_n\to c-q_T(c)$ and the continuity of the inner product, we conclude that $Re(\langle c-q_T(c),c-q_T(c)\rangle)\leq 0$. Hence, $|c-q_T(c)|^2=Re(\langle c-q_T(c),c-q_T(c)\rangle)=0$. Thus, $|c-q_T(c)|=\max\{|c-t|:t\in T\}=0$. It follows that c-t=0, for all $t\in T$. So, $T=\{c\}$.

Theorem 2.3. Suppose T is a remotal subset of M, d(T) exists, $F \subseteq M$ and c is a relative center of T with respect to F. Then, the followings

- (i) $|x-q_T(x)|^2 \ge |x-c|^2 + r_F^2(T)$, for all $x \in F$. (ii) c is unique and if $F \cap Q_T(c) \ne \phi$, then $d(T) \ge \sqrt{2}r_F(T)$.
- (iii) If T is uniquely remotal and $\operatorname{Re}(\langle c-x_0,c-q_{_T}(x_0)\rangle)=0,$ for some $x_0 \in F$, then $q_T(x_0) = q_T(c)$, and therefore, if $q_T(c) \in F$, then T is a singleton if and only if $Re(\langle c - q_T(c), c - q_T(q_T(c)) \rangle) = 0$.

Proof. (i) By lemma 2.2, we can assume that c = 0. By Theorem 2.3(i), we have

 $Re(\langle x, q_T(x) \rangle) \leq 0$, for all $x \in F$. Since F is star-shaped, $\langle \alpha x, q_T(\alpha x) \rangle + \langle q_T(\alpha x), \alpha x \rangle \leq 0$, for all $x \in F, 0 \leq \alpha \leq 1$. It follows that $Re(\langle x, q_{\tau}(\alpha x) \rangle) \leq 0$. We thus obtain:

$$\begin{split} r_F^{\;2}(T) & \leq & |\alpha x - q_T(\alpha x)|^2 \\ & = & \langle \alpha x - q_T(\alpha x), \alpha x - q_T(\alpha x) \rangle \\ & = & \langle \alpha x - x + x - q_T(\alpha x), \alpha x - x + x - q_T(\alpha x) \rangle \\ & = & (\alpha - 1)^2 \langle x, x \rangle + \langle (\alpha - 1)x, x - q_T(\alpha x) \rangle \\ & + \langle x - q_T(\alpha x), (\alpha - 1)x \rangle + \langle x - q_T(\alpha x), x - q_T(\alpha x) \rangle \\ & = & (\alpha - 1)^2 |x|^2 + 2(\alpha - 1)\langle x, x \rangle + (1 - \alpha)[\langle x, q_T(\alpha x) \rangle \\ & + \langle q_T(\alpha x), x \rangle] + |x - q_T(\alpha x)|^2 \\ & \leq & (\alpha^2 - 1)|x|^2 + |x - q_T(\alpha x)|^2 \\ & \leq & (\alpha^2 - 1)|x|^2 + |x - q_T(\alpha x)|^2. \end{split}$$

Therefore, we have $|x-q_{_T}(x)|^2 \geq (1-\alpha^2)|x|^2 + r_{_F}{}^2(T)$, for all $\alpha \in [0,1]$. Therefore, $|x-q_{_T}(x)|^2 \geq |x|^2 + r_{_F}{}^2(T)$. (ii) If c' is another Chebyshev center with respect to F, then by (i),

$$|c - q_T(c)|^2 = |c' - q_T(c')|^2 \ge |c' - c|^2 + r_F^2(T).$$

Hence, |c'-c|=0. So, c'=c. This proves the uniqueness assertion. Let $x = q_T(c) \in F \cap Q_T(c)$. We have $|q_T(c) - q_T(q_T(c))|^2 \ge |q_T(c) - c|^2 + r_F^2(T)$, and so $|q_T(c) - q_T(q_T(c))|^2 \ge 2r_F^2(T)$. Hence, $d(T)^2 \ge r_F^2(T)$. $|q_T(c) - q_T(q_T(c))|^2 \ge 2r_F^2(T).$

(iii) By (i) with $x = x_0$, we have $|c - q_T(c)|^2 + |x_0 - c|^2 \le |x_0 - q_T(x_0)|^2$. Hence,

$$(2.4) |c - q_T(c)|^2 \le |x_0 - q_T(x_0)|^2 - |x_0 - c|^2.$$

But,

$$\langle c - x_0 - (c - q_T(x_0)), c - x_0 - (c - q_T(x_0)) \rangle = |q_T(x_0) - x_0|^2.$$

Therefore,

$$\langle c - x_0, c - x_0 \rangle + \langle c - q_T(x_0), c - q_T(x_0) \rangle + \langle c - x_0, c - q_T(x_0) \rangle + \langle c - q_T(x_0), c - x_0 \rangle = |x_0 - q_T(x_0)|^2.$$

Using our assumption on x_0 , we obtain:

$$\langle c - x_0, c - x_0 \rangle + \langle c - q_T(x_0), c - q_T(x_0) \rangle = |x_0 - q_T(x_0)|^2$$
.

Therefore, $|c - q_T(x_0)|^2 + |x_0 - c|^2 = |x_0 - q_T(x_0)|^2$. It follows from (2.4) that

$$|c - q_T(c)|^2 \le |x_0 - q_T(x_0)|^2 - |x_0 - c|^2 = |c - q_T(x_0)|^2 \le |c - q_T(c)|^2.$$

Hence, $|c - q_T(c)| = |c - q_T(x_0)|$. Due to the fact that T is uniquely remotal, $q_T(c) = q_T(x_0)$.

If $q_T(c) \in F$ and $\langle c - q_T(c), c - q_T(q_T(c)) \rangle + \langle c - q_T(q_T(c)), c - q_T(c) \rangle = 0$, then by the first part of (iii) with $x_0 = q_T(c)$, we have $q_T(c) = q_T(q_T(c))$. Hence, $T = \{x_0\}$. Conversely, if T is a singleton set, then $q_T(c) = q_T(q_T(c))$ and $|c - q_T(c)| \le |q_T(c) - q_T(q_T(c))| = 0$. So $c - q_T(c) = 0$, i.e., $T = \{c\}$. Therefore, $c = q_T(q_T(c))$ and we conclude that $\langle c - q_T(c), c - q_T(q_T(c)) \rangle = 0$.

Corollary 2.4. Let T be a uniquely remotal subset M such that d(T) exists, and let c be a Chebyshev center of T. Then, the following assertions are satisfied:

- (i) $|x q_T(x)|^2 \ge |x c|^2 + r^2(T)$.
- (ii) If T is not a singleton, then $d(T) \ge \sqrt{2}r(T)$.

Proof. (i) This part follows immediately from assertion (i) of Theorem 2.4 with F = M.

(ii) We know that $d(T)^2 \ge |q_T(c) - q_T(q_T(c))|^2$. We infer therefore that $|q_T(c) - q_T(q_T(c))|^2 \ge 2r_F^2(T) \ge 2r^2(T)$, by part (i) of Theorem 2.4. \square

References

- [1] A. P. Bosznay, A remark on uniquely remotal sets in C(K, X), Period. Math. Mungar. 12 (1981) 11-14.
- [2] E. G. Effros and Z. J. Ruan, Operator Spaces, London Mathematical Society Monographs, New Series, The Clarendon Press, Oxford Univ. Press, New York, 2000.

[3] K. K. Jensen and K. Tomsen, Elements of KK-Theory, Birkhauser, Boston-Basel-Berlin, 1991.

- [4] R. V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Acad. Press, 1983.
- [5] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839-853.
- [6] V. Klee, Convexity of Chebyshev sets, Math. Annal. 142 (1961) 292-304.
- [7] E. C. Lance, Hilbert C^* -Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [8] G. J. Murphy, C^* -Algebras and Operator Theory, Academic Press, 1990.
- [9] T. D. Narang, A study of farthest points, Nieuw Arch. Wisk. 25 (1977) 54-79.
- [10] A. Niknam, A norm inequality for Chebyshev centres, J. Sci. Islam. Repub. Iran 6 (1995) 52-56.
- [11] W. L. Paschke, Inner product modules over B^* -algebras, Trans Amer. Math. Soc. **182** (1973) 443-468.
- [12] I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C^* -Algebras, Mathematical Surveys and Monographs AMS , 1998.
- [13] M. A. Rieffel, Morita equivalence representations of C^* -algebras, Adv. in Math. 13 (1974) 176-257.
- [14] S. L. Woronowicz, Compact quantum groups, symetries quantiques (Les Houches, 1995) 845-884, North Holland, Amsterdum, 1998.

A. Niknam and S. Shadkam

Department of Mathematics and Center of Excellence of Analysis on Algebraic Structure, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran.

Email: niknam@math.um.ac.ir Email: shadkam.s@wali.um.ac.ir