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Abstract. We extend the study of Chebyshev centers in pre-Hilbert
C∗-modules by considering the C∗-algebra valued map defined by
|x| = 〈x, x〉1/2. We prove that if T is a remotal subset of a pre-
Hilbert C∗-module M , and F ⊆ M is star-shaped at a relative
Chebyshev center c of T with respect to F , then |x − qT (x)|2 ≥
|x− c|2 + |c− qT (c)|2(x ∈ F ). The uniqueness of Chebyshev center
follows from this inequality. This is a generalization of a well-known
result on Hilbert spaces.

1. Introduction

A normed algebra is an algebra A with a norm ‖.‖ such that ‖xy‖ ≤
‖x‖‖y‖, x, y ∈ A. A complete normed algebra A is called a Banach
algebra. An involution ∗ on an algebra A is a mapping x −→ x∗ from
A onto A such that (λx + y)∗ = λ̄x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x,
for all x, y ∈ A, λ ∈ C. An involutive Banach algebra is called a Ba-
nach ∗-algebra. A Banach ∗-algebra A is said to be a C∗-algebra if
‖xx∗‖ = ‖x‖2. An element x in a C∗-algebra A with unit e is called pos-
itive if sp(x) ⊆ [0,∞), where sp(x) = {λ ∈ C;λe − x is not invertible};
we write x ≥ 0 if x is a positive element.
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Suppose that A is a C∗-algebra and E is a linear space, which is a right
A-module and the scalar multiplication satisfies λ(xa) = x(λa) = (λx)a
for all x ∈ E, a ∈ A, λ ∈ C. The space E is called a pre-Hilbert A-
module if there exists an A-valued map 〈., .〉 : E → A with the following
properties:
(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.
(ii) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉, x, y, z ∈ E, λ ∈ C.
(iii) 〈x, ya〉 = 〈x, y〉a, x, y ∈ E and a ∈ A.
(iv) 〈x, y〉∗ = 〈y, x〉, x, y ∈ E.
Such a map 〈., .〉 : E → A is called an A-valued inner product. E is
called a (right) Hilbert A-module if it is complete with respect to the
norm ‖x‖ = ‖〈x, x〉‖1/2. We note that Hilbert C∗-modules contain both
Hilbert spaces and C∗-algebras. In fact, every Hilbert space is a Hilbert
C-module and if A is a C∗-algebra, then A is a Hilbert A-module, when-
ever we define 〈a, b〉 = a∗b, a, b ∈ A.
We define an A-valued map by |x| = 〈x, x〉1/2. This is not actually an
extension of a norm, in general, since it may happen that the triangle
inequality does not hold [7].
The importance of our approach to the theory of approximation in pre-
Hilbert C∗-modules is that we do not use the triangle inequality. This
may motivate us to study the geometry in case the triangle inequality
does not hold.
Hilbert C∗-modules were first introduced and investigated by I. Kaplan-
sky [5], M. Rieffel [13] and W. Paschke [11]. They played an essential
role in operator algebras [12], KK-Theory [3], operator spaces [2], quan-
tum group theory [14], Morita equivalence [13] and so on. They are
a generalization of Hilbert spaces, but there are some differences be-
tween the two classes. For example, each operator on a Hilbert space
has an adjoint, but a bounded A-module map on a Hilbert A-module
is not adjointable, in general, ([7], page 8). Throughout this paper, we
assume that (M, 〈., .〉) is a pre-Hilbert C∗-module over a commutative
C∗-algebra A. In particular, the commutative C∗-algebras which are
boundedly complete lattices with respect to their natural order struc-
tures, i.e., those having the property that each set of functions that has
an upper bound has a least upper bound, are of special interest. An easy
example is the complex field C. One however shows that if a commu-
tative C∗-algebra C(X) is a boundedly complete lattice with respect to
the natural partial ordering of its real-linear subspace C(X, R) of con-
tinuous real-valued functions on X, then X is extremely disconnected,
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i.e., its open sets have open closures [4].
Let T be a non-empty subset of M . The mapping QT : M → 2T defined
by QT (x) = {y ∈ T : |x−y| = max{|x−t| : t ∈ T}} is called the farthest
point map of T . We call T a remotal (uniquely remotal) set, if for each
x ∈ M the set QT (x) is non-empty (is a singleton). The element of
QT (x) is denoted by qT (x) if it is a singleton. A subset F of M is said
to be star-shaped at a vertex s ∈ F if and only if for each x ∈ F the line
segment [s, x] = {λs + (1− λ)x : 0 ≤ λ ≤ 1} lies in F .
A relative Chebyshev center of T ⊆ M in F ⊆ M is an element c in M
that satisfies |c − qT (c)| = min{|x − qT (x)| : x ∈ F} := rF (T ), if the
minimum exists. In the case that F = M , we call c the Chebyshev cen-
ter of T and denote rF (T ) by r(T ). We represent by d(T ), the A-valued
diameter max{|t− s| : t, s ∈ T} of T , if it exists.
One outstanding open problem in the geometry of normed spaces is the
Farthest Point Problem [9]. This problem asks whether every uniquely
remotal set in a normed space is a singleton. There are some cases such
as the finite dimensional spaces and the Banach spaces c0 and c, in which
the problem is solved affirmatively [1]. The problem is related to the
problem of proving the convexity of Chebyshev sets in a Hilbert space
[6](recall that a subset T of a normed space X is called Chebyshev, if for
every x ∈ X there exists a unique best approximation of x in T ). The
reader is referred to [7],[8] and [12] for details on Hilbert C∗-modules,
on commutative C∗-algebras.

2. Main results

Let (M, 〈., .〉) be a pre-Hilbert C∗-module over a commutative C∗-
algebra A. We now establish some interesting results similar to those in
[10] about Hilbert C∗-modules. We start our work with an applicable
example of a remotal set.

Example 1. Let X = {a, b}, A = C(X) and E = {f ∈ C(X) : f(a) =
0}. Then, E is a maximal ideal of the C∗-algebra A and so can be
regarded as a Hilbert A-module. Assume that T = {f1, f2} ⊆ E, where
f1(b) = 1 and f2(b) = 2. Then, T is remotal, since for each f ∈ E there
exists a function qT (f) ∈ T such that |f(b) − qT (f)(b)| = max{|f(b) −
1|, |f(b)− 2|}. In fact, a straightforward verification shows that for each
f ∈ E, if Ref(b) > 3

2 , then qT (f) = f1; if Ref(b) = 3
2 , then qT (f) can
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be chosen to be f1 or f2; and if Ref(b) < 3
2 , then qT (f) = f2 and also

d(T ) = |f1(b)− f2(b)| = 1.

Lemma 2.1. Suppose T is a uniquely remotal subset of M and F is a
star-shaped subset of M at a vertex c such that c is a relative center of
T with respect to F . Then, 0 is a relative center of c−T with respect to
c− F .

Proof. We first prove the identity c−qT (x) = qc−T (c−x), for all x ∈ F .
We know

|c− x− qc−T (c− x)| ≥ |c− x− (c− qT (x))|.
Since c− qc−T (c− x) ∈ T , |x− qT (x)| ≥ |x− (c− qc−T (c− x))|. Hence,

|c− x− qc−T (c− x)| = |c− x− (c− qT (x))|.
Therefore, qc−T (c− x) = c− qT (x), since T is a uniquely remotal set.
We now show that |0− qc−T (0)| ≤ |c1 − qc−T (c1)|, for all c1 ∈ c− F.
We know that |c− qT (c)| ≤ |x1 − qT (x1)| for all x1 ∈ F . So,

|qc−T (0)| = |c− (c− qc−T (0))| ≤ |c− x1 − (c− qT (x1))|.
It follows therefore that |0− qc−T (0)| ≤ |c− x1 − qc−T (c− x1)|, and so
|0− qc−T (0)| ≤ |c1 − qc−T (c1)|, for all c1 = c− x1 ∈ c− F . �

Theorem 2.2. Suppose T is a uniquely remotal subset of M and F is a
star-shaped subset of M at a vertex c such that c is also a relative center
of T with respect to F . Then,
(i) Re(〈c− x, c− qT (x)〉) ≤ 0, for all x ∈ F .
(ii) if qT (c) ∈ F is a cluster point of

⋃
{QT (x) : x ∈ [c, qT (c)]}, then

T = {c}.

Proof. (i) By lemma 2.2, we may assume, without loss of generality,
that c = 0. Let 0 < α < 1. By the definition of the farthest point map
qT , we have

|x− qT (x)|2 ≥ |x− qT (αx)|2, |αx− qT (αx)|2 ≥ |αx− qT (x)|2.
Therefore,

〈x− qT (x), x− qT (x)〉 ≥ 〈x− qT (αx), x− qT (αx)〉,

〈αx− qT (αx), αx− qT (αx)〉 ≥ 〈αx− qT (x), αx− qT (x)〉.
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By adding both sides of these inequalities, we obtain

(1− α)[〈x, qT (αx)〉+ 〈qT (αx), x〉] ≥ (1− α)[〈x, qT (x)〉+ 〈qT (x), x〉].
Hence,

Re(〈x, qT (αx)〉) ≥ Re(〈x, qT (x)〉).(2.1)

On the other hand, |αx − qT (αx)| ≥ |0 − qT (0)| ≥ |qT (αx) − 0|, for all
x ∈ F , since 0 is the relative Chebyshev center with respect to F . Hence,

〈αx− qT (αx), αx− qT (αx)〉 = |αx− qT (αx)|2 ≥ |qT (αx)|2

= 〈qT (αx), qT (αx)〉.
We have

〈αx, αx〉 − 〈qT (αx), αx〉 − 〈αx, qT (αx)〉+ 〈qT (αx), qT (αx)〉 ≥
〈qT (αx), qT (αx)〉.

Therefore,
α2|x|2 − 〈qT (αx), αx〉 − 〈αx, qT (αx)〉 ≥ 0.

Dividing by α, we have

α|x|2 ≥ 〈qT (αx), x〉+ 〈x, qT (αx)〉.
Then,

α|x|2 ≥ 2Re(〈x, qT (αx)〉).(2.2)

We have from (2.1) and (2.2) that

α|x|2 ≥ 2Re(〈x, qT (x)〉).(2.3)

Since (2.3) holds for each α(0 < α < 1) and by the Gelfand representa-
tion of A, we get

Re(〈x, qT (x)〉) ≤ 0.

(ii) Suppose that there exists a sequence {λn} in [0, 1] such that yn =
qT (xn) → qT (c), where xn = λnc+(1−λn)qT (c). It follows from (i) that

Re(〈c− xn, c− qT (xn)〉) ≤ 0.

But, 〈c− xn, c− yn〉 = 〈c− (λnc + (1− λn)qT (c)), c− yn〉 = (1− λn)〈c−
qT (c), c−yn〉. Since 1−λn ≥ 0, we infer that Re(〈c−qT (c), c−yn〉) ≤ 0.
Due to c − yn → c − qT (c) and the continuity of the inner product,
we conclude that Re(〈c − qT (c), c − qT (c)〉) ≤ 0. Hence, |c − qT (c)|2 =
Re(〈c−qT (c), c−qT (c)〉) = 0. Thus, |c−qT (c)| = max{|c−t| : t ∈ T} = 0.
It follows that c− t = 0, for all t ∈ T . So, T = {c}. �
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Theorem 2.3. Suppose T is a remotal subset of M , d(T ) exists, F ⊆ M
and c is a relative center of T with respect to F . Then, the followings
hold:
(i) |x− qT (x)|2 ≥ |x− c|2 + rF

2(T ), for all x ∈ F.

(ii) c is unique and if F ∩QT (c) 6= φ, then d(T ) ≥
√

2rF (T ).
(iii) If T is uniquely remotal and Re(〈c− x0, c− qT (x0)〉) = 0, for some
x0 ∈ F , then qT (x0) = qT (c), and therefore, if qT (c) ∈ F , then T is a
singleton if and only if Re(〈c− qT (c), c− qT (qT (c))〉) = 0.

Proof. (i) By lemma 2.2, we can assume that c = 0. By Theorem
2.3(i), we have
Re(〈x, qT (x)〉) ≤ 0, for all x ∈ F . Since F is star-shaped,
〈αx, qT (αx)〉+ 〈qT (αx), αx〉 ≤ 0, for all x ∈ F, 0 ≤ α ≤ 1.
It follows that Re(〈x, qT (αx)〉) ≤ 0. We thus obtain:

rF

2(T ) ≤ |αx− qT (αx)|2

= 〈αx− qT (αx), αx− qT (αx)〉
= 〈αx− x + x− qT (αx), αx− x + x− qT (αx)〉
= (α− 1)2〈x, x〉+ 〈(α− 1)x, x− qT (αx)〉

+〈x− qT (αx), (α− 1)x〉+ 〈x− qT (αx), x− qT (αx)〉
= (α− 1)2|x|2 + 2(α− 1)〈x, x〉+ (1− α)[〈x, qT (αx)〉

+〈qT (αx), x〉] + |x− qT (αx)|2

≤ (α2 − 1)|x|2 + |x− qT (αx)|2

≤ (α2 − 1)|x|2 + |x− qT (x)|2.

Therefore, we have |x−qT (x)|2 ≥ (1−α2)|x|2 +rF
2(T ), for all α ∈ [0, 1].

Therefore, |x− qT (x)|2 ≥ |x|2 + rF
2(T ).

(ii) If c′ is another Chebyshev center with respect to F , then by (i),

|c− qT (c)|2 = |c′ − qT (c′)|2 ≥ |c′ − c|2 + rF

2(T ).

Hence, |c′ − c| = 0. So, c′ = c. This proves the uniqueness assertion.
Let x = qT (c) ∈ F ∩ QT (c). We have |qT (c) − qT (qT (c))|2 ≥ |qT (c) −
c|2 + rF

2(T ), and so |qT (c) − qT (qT (c))|2 ≥ 2rF
2(T ). Hence, d(T )2 ≥

|qT (c)− qT (qT (c))|2 ≥ 2rF
2(T ).

(iii) By (i) with x = x0, we have |c− qT (c)|2 + |x0− c|2 ≤ |x0− qT (x0)|2.
Hence,

|c− qT (c)|2 ≤ |x0 − qT (x0)|2 − |x0 − c|2.(2.4)
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But,

〈c− x0 − (c− qT (x0)), c− x0 − (c− qT (x0))〉 = |qT (x0)− x0|2.
Therefore,

〈c− x0, c− x0〉+ 〈c− qT (x0), c− qT (x0)〉+ 〈c− x0, c− qT (x0)〉

+〈c− qT (x0), c− x0〉 = |x0 − qT (x0)|2.
Using our assumption on x0, we obtain:

〈c− x0, c− x0〉+ 〈c− qT (x0), c− qT (x0)〉 = |x0 − qT (x0)|2.
Therefore, |c− qT (x0)|2 + |x0− c|2 = |x0− qT (x0)|2. It follows from (2.4)
that

|c− qT (c)|2 ≤ |x0 − qT (x0)|2 − |x0 − c|2 = |c− qT (x0)|2 ≤ |c− qT (c)|2.
Hence, |c − qT (c)| = |c − qT (x0)|. Due to the fact that T is uniquely
remotal, qT (c) = qT (x0).
If qT (c) ∈ F and 〈c−qT (c), c−qT (qT (c))〉+〈c−qT (qT (c)), c−qT (c)〉 = 0,
then by the first part of (iii) with x0 = qT (c), we have qT (c) = qT (qT (c)).
Hence, T = {x0}. Conversely, if T is a singleton set, then qT (c) =
qT (qT (c)) and |c− qT (c)| ≤ |qT (c)− qT (qT (c))| = 0. So
c − qT (c) = 0, i.e., T = {c}. Therefore, c = qT (qT (c)) and we conclude
that 〈c− qT (c), c− qT (qT (c))〉 = 0.

Corollary 2.4. Let T be a uniquely remotal subset M such that d(T )
exists, and let c be a Chebyshev center of T . Then, the following asser-
tions are satisfied:
(i) |x− qT (x)|2 ≥ |x− c|2 + r2(T ).
(ii) If T is not a singleton, then d(T ) ≥

√
2r(T ).

Proof. (i) This part follows immediately from assertion (i) of Theorem
2.4 with F = M .
(ii) We know that d(T )2 ≥ |qT (c)− qT (qT (c))|2. We infer therefore that
|qT (c)−qT (qT (c))|2 ≥ 2rF

2(T ) ≥ 2r2(T ), by part (i) of Theorem 2.4. �
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