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A. NIKNAM AND S. SHADKAM*

Communicated by Fereidoun Ghahramani

ABSTRACT. We extend the study of Chebyshev centers in pre-Hilbert
C*-modules by considering the C*-algebra valued map. defined by
|| = (x,z)'/?. We prove that if T is a remotal subset of a pre-
Hilbert C*-module M, and F C M is star-shaped at-a relative
Chebyshev center ¢ of T with respect to F, then |z — gp(z)]* >
|z —c|* 4+ |c — ¢, (¢)|*(# € F). The uniqueness of Chebyshev center
follows from this inequality. This is a generalization of a well-known
result on Hilbert spaces.

1. Introduction

A normed algebracis an algebra A with a norm ||.|| such that ||zy| <
lz|llyll, =,y € A. A complete normed algebra A is called a Banach
algebra. An involution * on an algebra A is a mapping x — z* from
A onto A such that (A\z+ y)* = \z* + 9%, (zy)* = y*z* and (z*)* = =,
for all z,y € A;\ € C. An involutive Banach algebra is called a Ba-
nach *-algebra. A’ Banach x-algebra A is said to be a C*-algebra if
|lzz*|| = ||z||*. An‘element z in a C*-algebra A with unit e is called pos-
itive if sp(z) C [0, 00), where sp(z) = {X € C; e — z is not invertible};
we write.xz > 0 if x is a positive element.
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Suppose that A is a C*-algebra and F is a linear space, which is a right
A-module and the scalar multiplication satisfies A(za) = z(Aa) = (Az)a
for all x € E,a € A,A € C. The space F is called a pre-Hilbert A-
module if there exists an A-valued map (.,.) : F — A with the following
properties:

(i) (x,z) >0, and (z,z) = 0 if and only if z = 0.

(ii) (z,y + Az) = (z,y) + Nz, 2), =x,y,z€ E,\ € C.

(iii) (z,ya) = (z,y)a, z,y € F and a € A.

(iv) (z,9)" = (y,z), =zy€LEL

Such a map (.,.) : E — A is called an A-valued inner product. FE is
called a (right) Hilbert A-module if it is complete with respect to the
norm ||z|| = ||(z,z)||'/?. We note that Hilbert C*-modules contain both
Hilbert spaces and C*-algebras. In fact, every Hilbert space is a Hilbert
C-module and if A is a C*-algebra, then A is a Hilbert A-module, when-
ever we define (a,b) = a*b, a,be€ A.

We define an A-valued map by |z| = (z,z)"/*. This is not actually an
extension of a norm, in general, since it may happen that the triangle
inequality does not hold [7].

The importance of our approach to the theory of approximation in pre-
Hilbert C*-modules is that we do not use the triangle inequality. This
may motivate us to study the geometry in case the triangle inequality
does not hold.

Hilbert C*-modules were first introduced and investigated by I. Kaplan-
sky [5], M. Rieffel [13] and W. Paschke [11]. They played an essential
role in operator algebras [12], KK-Theory [3], operator spaces [2], quan-
tum group theory [14], Morita equivalence [13] and so on. They are
a generalization of Hilbert spaces, but there are some differences be-
tween the two classes. For example, each operator on a Hilbert space
has an adjoint, but a bounded A-module map on a Hilbert A-module
is not adjointable, in general, ([7], page 8). Throughout this paper, we
assume that (M, (.,.)) is a pre-Hilbert C*-module over a commutative
C*-algebra  A. In particular, the commutative C*-algebras which are
boundedly complete lattices with respect to their natural order struc-
tures, i.e., those having the property that each set of functions that has
an upper bound has a least upper bound, are of special interest. An easy
example is the complex field C. One however shows that if a commu-
tative C*-algebra C'(X) is a boundedly complete lattice with respect to
the natural partial ordering of its real-linear subspace C'(X,R) of con-
tinuous real-valued functions on X, then X is extremely disconnected,
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i.e., its open sets have open closures [4].

Let T be a non-empty subset of M. The mapping Qr : M — 2T defined
by Qr(z) ={y € T: |z —y| = max{|z—t|: t € T}} is called the farthest
point map of 7. We call T" a remotal (uniquely remotal) set, if for each
x € M the set Qr(z) is non-empty (is a singleton). The element of
Q7 (z) is denoted by ¢, (x) if it is a singleton. A subset F' of M is said
to be star-shaped at a vertex s € F' if and only if for each € F' the line
segment [s,z] = {As+ (1 =Nz :0< X <1} liesin F.

A relative Chebyshev center of ' C M in F' C M is an element ¢ in M
that satisfies |¢ — ¢, (¢)| = min{|z — ¢, (x)| : * € F} := r(T), if the
minimum exists. In the case that F' = M, we call ¢ the Chebyshev cen-
ter of T and denote 7, (T") by 7(T"). We represent by d(T), the A-valued
diameter max{|t — s| : t,s € T} of T, if it exists.

One outstanding open problem in the geometry of normed spaces is the
Farthest Point Problem [9]. This problem asks whether every uniquely
remotal set in a normed space is a singleton. There are some cases such
as the finite dimensional spaces and the Banach spaces ¢q and ¢, in which
the problem is solved affirmatively [1]. The problem is related to the
problem of proving the convexity of Chebyshev sets in a Hilbert space
[6](recall that a subset T" of a normed space X is called Chebyshev, if for
every z € X there exists a unique best approximation of z in 7'). The
reader is referred to [7],[8] and [12] for details on Hilbert C*-modules,
on commutative C*-algebras.

2. Main results

Let (M,({.,.)) be-a pre-Hilbert C*-module over a commutative C*-
algebra A. We now establish some interesting results similar to those in
[10] about Hilbert C*-modules. We start our work with an applicable
example of a remotal set.

Example 1. Let X = {a,b},A=C(X) and E = {f € C(X) : f(a) =
0}. Then, E is a maximal ideal of the C*-algebra A and so can be
regarded as a Hilbert A-module. Assume that T'= {f1, fo} C E, where
f1(b) =1 and f2(b) = 2. Then, T is remotal, since for each f € E there
exists a function g, (f) € T such that |f(b) — ¢, (f)(b)| = max{|f(b) —
1],]f(b) —2|}. In fact, a straightforward verification shows that for each
f € E, if Ref(b) > 3, then q,(f) = fi; if Ref(b) = 3, then ¢,.(f) can
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be chosen to be fi or fa; and if Ref(b) < %, then ¢, (f) = f2 and also
d(T) = |f1(b) — f2(b)] = 1.

Lemma 2.1. Suppose T is a uniquely remotal subset of M and F is a
star-shaped subset of M at a vertex ¢ such that c is a relative center of
T with respect to F'. Then, 0 is a relative center of c — T with respect to
c—F.

Proof. We first prove the identity c—q,(z) =¢q,_,(c—z), forall x € F.
We know

lc—z—q,_,(c—2)[ > ]c—2—(c—q(2))]
Since c—q,_,(c—z) €T, |z —q,(x)| > |z — (¢ —q._,(c —x))|. Hence,

lc—2—q. r(c— )| =c— 2z —(c—gp(@))].
Therefore, ¢q,_, (¢ —x) = ¢ — q,(z), since T is a uniquely remotal set.
We now show that [0 —q__,.(0)] <|c1 —¢q._,(c1)|, forall ¢; € ¢ — F.
We know that |c¢ — ¢, (¢)| < |x1 — ¢, (x1)| for all z; € F.-So,

9.2 (0)] = [e = (¢ = ¢, (0))] < |e =21 — (¢ — gz (x1))]-
It follows therefore that |0 —¢,_,.(0)] </c— 21 —q._,(c —z1)|, and so
0—gq._ (0) <|c1 —q,_,(c1)], forall c; =c—x; €c— F. O

Theorem 2.2. Suppose T' is a.-uniquely remotal subset of M and F is a
star-shaped subset of M at a vertex c such that c is also a relative center
of T' with respect to F'. Then,

(i) Re({(c —x,c — q,(x))) <0, forallz € F.

(i) if q,(c) € F.is a cluster point of | J{Qr(z) : € [c,q,(c)]}, then
T = {c}.

Proof. (i) By lemma 2.2, we may assume, without loss of generality,
that ¢ = 0. Let 0 < a < 1. By the definition of the farthest point map
4, we have

2

> > |z = g, (a2), Jaz — g, (ax)* > |az — g, ().

&= g¢r(2)
Therefore,
<fL‘ - QT('T)’x - (:IT(x)> 2 <$ - qT(OzJ,‘),JU - QT(O‘J:»?

(ax —gp(ax), ax — gz (ax)) > (ax — g, (), ax — ¢, (2)).
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By adding both sides of these inequalities, we obtain

(1 = a)[{z, g, (ax)) + (g, (ax),2)] = (1 — a)[(z, ¢, (2)) + (¢, (2), z)].
Hence,
(2.1) Re((z, 4, (aw))) = Re((x, ¢, (x))).

On the other hand, |az — ¢, (ax)| > |0 — ¢, (0)| > |g, (ax) — 0], for all
x € F, since 0 is the relative Chebyshev center with respect to F'. Hence,
k k

(ax — g (), ax — g (ax)) = |ax — ¢, (ax)|” = |g, ()

= <qT(am)7 qT(ax)>'
We have

<O‘xa O‘x> - <QT(O‘x)aO‘x> - <O‘vaT(O‘x)> + <QT(O‘$)7QT(O‘$)> 2
(gr(ax), ¢ (o).

Therefore,
o?laf? = (¢, (ax), ax) — (az, ¢, (aw)) > 0.

Dividing by «, we have

ofal® > (g, (o), 2) 4 (#3g,(0)).

Then,

(2:2) ofal* > 2Re((2; 4, (ax))).
We have from (2.1) and (2.2) that

(2.3 ol 22 2Re((z, 4, (2).

Since (2.3) holds for each a(0 < o < 1) and by the Gelfand representa-
tion of A, we get
Re((z,q,(x))) < 0.

(7) Suppose that there exists a sequence {\,} in [0, 1] such that y, =
g, (xn) = q,(¢)y where z, = A\yc+ (1 —\,)gq, (c). It follows from (4) that
Re((c — xp,c — g (xy))) < 0.

But, <C’— Ly, C — yn> = <C - ()‘nc+ (1 - An)QT(C))v c— yn> = (1 - )‘n)<c -
q,(€), c—yyn). Since 1 — A, > 0, we infer that Re({c—q,(c),c—yn)) < 0.
Due to ¢ — yp, — ¢ — g, (c) and the continuity of the inner product,
we conclude that Re({c — q,(c),c — q,(c))) < 0. Hence, |c — q,(c)]* =
Re({c—q,(c),c—q,(c))) = 0. Thus, |c—q,(c)| = max{|c—t| : t € T} = 0.
It follows that ¢ —t =0, for all t € T. So, T' = {c}. O
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Theorem 2.3. Suppose T is a remotal subset of M, d(T) exists, F C M
and c is a relative center of T with respect to F. Then, the followings
hold:

(i) |x — q,(z)|? > |x — c|> +7,.2(T), forallz € F.

(i) c is unique and if F 0 Qr(c) # ¢, then d(T) > v/2r,(T).

(i53) If T is uniquely remotal and Re({c — zo,c — q,(z0))) = 0, for some
xg € F, then q,(x0) = q,(c), and therefore, if q,(c) € F, then T is a
singleton if and only if Re({c — q,(c),c—q,(q,(c)))) = 0.

Proof. (i) By lemma 2.2, we can assume that ¢ = 0. By Theorem
2.3(¢), we have

Re({z,q,(x))) <0, for all x € F. Since F is star-shaped,

(azx,q,(ax)) + (g, (az),ax) <0, forall z € F,0 < a < 1.

It follows that Re((z,q,(ax))) < 0. We thus obtain:

TFQ(T) < |O‘x - QT(Oéx)’2

(ax — gp(ax), ax — g (ax))
(ax —x +x — qp(ax),ax = 2.+ x — gp(ax))
= (a—1)*z,2) +{(a — 1),z =g, (az))

(= gp(ax), (@ = D) + (= ¢p(ax), = ¢, (ax))
= (a— 1%z +2(a — 1)(zea) + (1 - a)[{z, ¢, (ax))
+ar (az), 2)] + v a4, (ax)]”

(0 = D]zl + |a = gplaz)?

(0 =1)|z[*Hlz =~ ¢z ().

Therefore, we have |z =g¢, (%)|*> > (1—a?)|z|?+7r,%(T), for all a € [0, 1].
Therefore, |z — q,.(z)* > |z|> + r.2(T).

(#) If ¢ is another Chebyshev center with respect to F, then by (i),

e ar(@)]* = 1 = ap ()P = | = e + 1, X(T).

IAIA

Hence, |¢ —¢| = 0. So, ¢ = ¢. This proves the uniqueness assertion.
Let'z = qT(C) € Fn QT(C)' We have ’qT(C) - QT(qT(C))P > |qT(c -
c|?> +7,2(T), and so |q,(c) — q,(q-(c))|? > 2r.2(T). Hence, d(T)* >
10,(0) = (g, () = 2r, 2(T).

(iii) By (i) with = x9, we have |c — q,.(c)|* +|zo — c|? < |xo — ¢, (z0)
Hence,

(2.4) e = a:()” < |20 — gz (w0)* — |wo — cf.

2.
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But,

(¢ =20 — (¢ = ap(20)), ¢ — 20 — (¢ = 45 (20))) = laz (wo) — wo|*.

Therefore,

<C — o, C— $0> + <C - QT(xO)7 Cc— QT(x0)> + <C — Z0,C — QT(x0)>

+(c — gz (z0), ¢ — o) = |20 — ¢ (20)|*.

Using our assumption on xg, we obtain:

(¢ —mo,c—x0) + (€ — QT(xO)a c— qT(x0)> = |20 — (:IT(:EO)|2‘
Therefore, |c — g, (20)|> + |zo — c|* = |z0 — ¢, (70)|?. It follows from (2.4)
that
e = ar(0)* < lzo = ap (20)* = o — c|* = e = g (20)|* < e — ¢, ().
Hence, |c¢ — ¢, (¢)| = |¢c — g, (x0)|]. Due to the fact that 7" is uniquely
remotal, ¢, (c) = ¢, (xo).

I QT(C) € F and <C*qT (C)v C—dqr (QT (C))> + <C*qT (QT (C))7 C_qT(C)> =
then by the first part of (i) with zo = ¢,.(c), we have ¢, (¢) = ¢, (¢, (¢
Hence, T = {zo}. Conversely, if T is @ singleton set, then g, (c)
QT(QT(C)) and |C_ QT(C)’ < |(:IT(C) - QT(QT(C))‘ =0. So

c—q;(c) =0, ie., T = {c}. Therefore, ¢ = g;(q,(c)) and we conclude
that (c — 4r (c),c— 4r (QT (c))) =0.

Corollary 2.4. Let T be a uniquely remotal subset M such that d(T')
exists, and let ¢ be a Chebyshev center of T'. Then, the following asser-
tions are satisfied:

(i) |2 — gr (@) > o' Pu2(T).

(ii) If T is not a singleton, then d(T) > /2r(T).

0,
)

Proof. (i) This part follows immediately from assertion (i) of Theorem
2.4 with F'= M.

(ii) We know that'd(T)? > |q,(c) — ¢, (g, (c))|?. We infer therefore that
\gz(c) — g, (g, (c)|> > 2r.2(T) > 2r*(T), by part (i) of Theorem 2.4. [
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