Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 239-251.

A QUASILINEAR PARABOLIC EQUATION WITH
INHOMOGENEOUS DENSITY AND ABSORPTION

CH. LIU

Communicated by Henrik Shahgholian

ABSTRACT. We deal with the initial-boundary value problem for
a quasilinear degenerate parabolic equation with inhomogeneous
density and absorption, which appears in a number of applications
to describe the evolution of diffusion processes; in particular non-
Newtonian flow in a porous medium. We discuss the extinction of
solution and the finite speed of propagation of perturbations.

1. Introduction

We consider the followingequation,

(1.1) p(m)% = div(|Vul|P2Vu) —ud, (2,t) € Q,
with the initial-boundary conditions,

(1.2) u(z,0) = up(z),

(1.3) u(z,t) =0, x €09,

where, Q@ = Q x (0,00),  C R™ is a bounded smooth domain, p > 1,
qg>p—1,uy(x) € C(Q) N Wol’p(Q) is a nonzero nonnegative function
and p(x) denotes the density. We prefer to consider a typical case of
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p(x), that is, p(z) = (1 + |z[)7,1 > 0 [11]. The equation (1.1) is a
prototype of a certain class of degenerate equations and appears to be
relevant to the theory of non-Newtonian fluids [1]. For the case p(z) = 1,
there have been many results about the existence, uniqueness and the
regularity of the solutions. We refer the readers to the bibliography
given in [4, 9, 13] and the references therein. Eidus [5], and Eidus and
Kamin [6] considered the following problem:

p(x)uy = AG(u), (z,t) € Qr = Q x (0,7),

u(z,0) = uo(x),
ulaq = 0.
They proved that the problem had a unique nonnegative solution, sat-
isfying the condition,

lim R~ ”/ / G(u(z,t))dtde =0,
R—oo S(R)

where, S(R) ={z: z € Q,|z| =
Recently, Tedeev [10] con51dered the equation

p(:n)%: = div(u™ Y Du[* L Du),

where, A > 0,m + A — 2 > 0 and with p(z) being a positive continuous
function. They examined under which conditions on p(z), the corre-
sponding nonnegative solutions of the Cauchy problems possessed the
finite speed of propagations or the interface blow-up phenomena.

The equation (1.1) is degenerate, if p > 2, or singular, if 1 < p <
2. Therefore, problem «(1.1)-(1.3) does not admit classical solutions,
in general. So, we study weak solutions in the sense of the following
definition.

Definition 1.1. A nonnegative function w is said to be a weak solution
of the problem (1.1)-(1.3), if u satisfies following conditions:
u € C(Q x (0,+00)) N L®(0, 00; Wy P(Q)),

(1.4) / /( u—f]VuP’ VuVe — >dmdt:0,

for all p € C§°(Qr), andT € (0,400).
The existense proof for problem (1.1)-(1.3) is similar to the one for
the case p(x) = 1. Here, our interest is to investigate the extinction
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of solutions and the finite speed of propagation of perturbations. As is
well known, one important property of solutions of the porous medium
equation is the finite speed of propagation of perturbations. So, from
the point of view of physical background, it seems to be natural to in-
vestigate this property for the equation (1.1). On the other hand, the
mathematical description of this property is that if supp wug is bounded,
then for any ¢ > 0, supp u(-, t) is also bounded. So, from a mathematical
viewpoint, this problem seems to be quite interesting. The monotonicity
of support of weak solutions for the p-Laplacian equation was obtained
by Yuan[12]. To prove the extinction of solution, here we use some ideas
in [12]. We first construct a supersolution, and then use the compar-
ison principle. Our method is different from the one given in [5] for
the proof of the finite speed of propagation. We adoptthe Bernis en-
ergy approach (see [2], [3]) and the main technical tools are weighted
Nirenberg’s inequality and Hardy’s inequality.

2. Comparison principle

Here, we prove some lemmas.

Lemma 2.1. For ¢ € L(ty, ty; WyB(Q)) with ¢, € L2((t1,t2) x Q),
the weak solutions w of the problem (1.1)-(1.3) on Q1 satisfies

to
/p(x)u(a:,tl)go(x,tl)dx—i-/ / (P(m)uaaf — ]Vu\p_QVchp> dxdt
Q t1 Q
to
:/ /quodxdtJr/p(x)u(x,tg)gp(:n,tg)daz.
t1 Q Q

In particular, for o € Wol’p(Q), we have

/ Pl (e, 1) — u(e, t2))pde
Q

to t2
(2:1) —/ / \Vu|p_2VuV<pda:dt—/ /qupda?dt =0.
t1 Q t1 Q

Proof. From ¢ € L"O(tl,tg;Wol’p(Q)) and ¢y € L?((t1,t2) x Q), it
follows that there exists a sequence of functions {py}, for fixed t €
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(t17t2)790k:('7t) € CSO(Q)a and as k — o0,
lort — SDtHLQ((tl,tg)xQ) — 0, |lpx — gDHLOO(tl,tQ;WOl’p(Q)) — 0.

Choose a function j(s) € C5°(R) such that j(s) > 0, for s € R; j(s) =0,
V|s| > 1, and [, j(s)ds = 1. For h > 0, define jj(s) = +5(%) and

t—t1—2h
nr (1) :/t Jn(s)ds.

—to+2h

Clearly, n(t) € Cg°(t1,t2), and limy,_g+ np(t) = 1, for all t € (t1,t2). In
the definition of weak solutions, choose ¢ = pg(z,t)n,(t). We have

to to
/ / p(x)uprjn(t —t1 — 2h)dzdt — / / |Vu|P~2VuN giny, dadt
t1 Q t1 Q

to to
[ [ otayupmdadt — [ [ playuointt ~ tag 2n)dade
t1 Q t1 Q
to
:/ /quknhdxdt.
t1 Q

Observe that

/t 2 / o) upign(t — by — 2h)dedi= /Q (o()uion) i,

t1+3h
/ x)upkjp(t =ty — 2h)dzdt

t1+h
t1+3h
/ T)upp) [e=¢, Jn (b= t1 — 2h)da:dt‘
ti+h
sup o Mowyuen)l — (loyugul|ds
t1+h<t<t1+3h

and u € C(Q). We see that the right hand side tends to zero, as h — 0.
Similarly,

to
I / /ﬂp(m)ucpkjh(t —ty + 2h)dxdt — /Q(p(:c)ugok)|tt2d:z:’ — 0.
t1

Letting A — 0 and k — oo, we obtain:

[3)
/p( Yu(z, t1)e(x, t dZL‘+/ / — [VulP™ QVquo)dxdt
t1

to
:/ /quodxdt—i—/p(x)u(a:,tg)go(x,tg)da:.
t1 Q Q
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In particular, for ¢ € W, ?(Q2), we have

/ o) (e, 1) — u(z, 1)) pda
Q

to to
— / / \VulP2VuV pdzdt — / / ulpdxdt =0,
t1 Q t1 Q

which completes the proof. Il
For a fixed 7 € (0,7, set h satisfying 0 <7 <7+ h <T. Let t; =T,
to = 7 + h, and then multiply (2.1) by %, for p € Wol’p(Q), to obtain:

2.2 p(x)(up(z, 7)) rodx + VulP~2Vu), Vedr + | uleds =0,
h
Q Q Q
where,

1 rt+h . A
() = 4 1 u(-,7)dr, te€ (07— h),
0, t>T — h

Lemma 2.2. (Comparison principle) Let u be_a weak solution of

(1.1)-(1.8). If v satisfies

v
> ds p—2 I}
p(x) 5 2 div (|VU| Vv) v,
in the sense of distributions, and
v(z,0) > u(z,0),
v(z, ty > u(x,t), z €0,

then we have

v(a,t) > u(x,t), forall (z,t) € Q.

Proof. By (2.2),we have for ¢ € W,7(),

/ p(a)(u(z, ) — v(z, 7)) pre(x)dx + / (u? — v)p(z, T)pdx
Q

Q
+ / (|VulP~2Vu — |[Vu|P~2Vv),(z, 7)Vedz < 0.
Q

For a fixed 7, we take ¢(x) = [(u — v)p]+. By the property of the
Steklov mean value and noting that v(z,t) > u(x,t),z € 0N, we see
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that o(z) = [(u — v)p]+ € ng’p(Q). Substituting this function into the
above integral equality, we obtain:

/Q p() (e, 7) — 0, 7))hr (0 — V)]

< - / (Va2 Vu — [ToP~2Vo)) (2, )V (4 — v}y da
Q
- /Q [(u? — o)) (@, 7)[(1 — )]

Integrating the above equality with respect to 7 over (0,t), we have

/ p()[(u = )3 (2, t)dz — / p()[(u — v)p]3 (210)dz
Q

Q

<- / Va2V — [VolP~2Vo)] (2, )V [(w= 8] da
Q

- [ (= o7 = o,
It is easily seen that

im [ pl@)](u— )] b, 0)d = 0.

Letting h — 0, we have
Joptl S o), o <
Q

that is, [, [(u—v)4|?de= 0. Therefore, v > u, and the proof is complete.
U

3. Extinction and monotonicity of support

We now to prove the following theorem.

Theorem 3.1. Let u be a nonnegative weak solution of the problem
(1.1)-(1.8), and p > 2. Then,

suppu(-, s) C suppu(-,t),

for all s,t with 0 < s < t.
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Lemma 3.2. Let u be a nonnegative weak solution of the problem (1.1)-
(1.3) If p > 2, then
ou U

- Z ,
ot (p—2)t
in the sense of distributions.

Proof. Denote:
up(z,t) = ru(z,7P%t), for all (z,t) €Q, r> 1.

Byp—1<gqandr>1, we have

Ouy . _

pla) S > div(| Va2 Vu,) — uf,
(3.1) ur(x,0) = rugp(z),
(3.2) ur(z,t) =0, x € .
Noting that » > 1, and using (1.2), (3.1), and (3.2), we get
(33 ur(2,0) > o ()}
(3.4) ur(z,t) = u(z,t), z €.
Applying the comparison principle, we have
(3.5) up(®,t) > u(x,t).

For p > 2, by (3.5), we obtain:
[, )P = [u(z, P2 (/A = Dlu(, )P~
At — ¢ - At —t ’

where, A = rP=2. Letting A — 17, we get

gt[u(x’t)]p—Q > —%[U(.I,t)}p_zv

in‘the distribution, which implies that lemma holds. Thus the proof is
now complete. U

Proof of Theorem 3.1. For p > 2, from Lemma 3.2 we obtain:

1/(p—2)
ot /P~y -0
ot -
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Theorem 3.3. Let u be a weak solution of (1.1)-(1.3). If1 < p < 2,
then there exists a time T such that

u(z,t) =0,
for all (z,t) € Q x (T, 00).

Proof. Denote s = max{s,0}, for all s € (—o0, +00).
Define an auxiliary function,

(3.6) (@, t) = k(T — )Y In(m + 21 + - + ),
where,
1/(2—p) -

T L R D e

’ (2m)P In(2m) ’ kIn2 ’
and
(3.8) m = sup{|z1| + - + |za|} + 2.

€

Compute

' ot 2—p * "o

div (ywyp—Q w)
=div{kP~ (T — t)PTEP) plp=2)/2
((m + +"'+xn)1_p7"' ,(m+ 21 +---+$n)1_p)}
(3.10) =— (p— VPN T - t)(f_l)/@_p).
P D2 4y 4+ an) 7,

and
V= kT — )Y PP W (m 4 2y 4 - + ).
By p(x) = (1+ |z|)~%,1 > 0, and using (3.6)-(3.10), we get

()@>2 avp—Q@ o
PAT - ox v

ox
v(z,0) > u(z,0),
v(x,t) > u(z,t) =0, x € 0N

and
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Applying Lemma 2.2, we obtain:
u(z,t) <wv(x,t),
for all (z,t) € Q. By the definition of v(z,t), we have
u(z,t) <wv(z,t) =0,
for all (z,t) € Q x (T,400). Thus, the proof is complete. O

4. Finite speed of propagation of perturbations

Here, we study the property of finite speed of perturbations.

Theorem 4.1. Assume p > 2, [£,(0)] < a, |6,(0)| < b, and u s the
weak solution of the problem (1.1)-(1.3). Then, for any fized t > 0, we

have
T B
on(t) —on(0) < C1t# (/ / |Vu|pd$dt> \
o Jao

£a(t) — £(0) = —Cot ( /0 ' /Q \Vu|pda:dt)ﬁ,

where, C1,Cy are constants depending on n,p, a,b, uo(x), on(t) = sup{z;z €
suppu(-,t)}, & (t) = inf{z;x € suppu(yt)}, 2 = xn, B> 0,u > 0, and
a,b > 0 are constants independent of t.

Proof. First, we discuss the following Dirichlet problem,

ou

(4.1) p(w)a = d1v((\Vu|2 +e)7 Vu) —ul,

(4.2) u(z,t) = x € 09,

(4.3) u(z,0) = UOs( ).

It is well known that (4.1)-(4.3) has a nonnegative classical solution u,

8]
Multiplying (4.1) by (2 — y)3ue(x), s > 2p, y > 0,(0), and letting
¢ — 0, we have,

1_;/ p(2)(z — )\uwt!dm—i—// STt drdr

—/ /\Vu]p_QVuV((z—y)iu)dxdT.
0 JQ
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Then, we have,

=— t ulP2VuV ((z — v)* u)dadr
== [ ] [wup2vus (= gy udrd

t
:—/ /(z—y)i\VuV’dxdT
0 JQ

t
—/ /V[(Z—y)i]u|Vu]p2VudxdT.
0 JQ

Using Holder inequality,

t 1 t
IS—/ /(z—y)i\VuV’dde—i—/ /(x—y)i]VuV’da:dT

0 Ja 2Jo Ja

t
+C’1/ /(z—y)i_p\uV’dxdT

0 JQ

1 t t

§—/ /(x—y)i]VuP’dwdT—i—C’l/ /(z—y)j__plu|pdxd7'.
2Jo Ja 0 Ja

Applying Hardy inequality [7], we obtain:

p
. p ]
/Q(Z — )3 Pluffde < <3_1H1> /Q(z = y)}|Duffda.

Hence,
1 s 2 1 ‘ s p
s | p(@)(z —y)ilulde+ 5 (z — )3 VulPdedr
2 Ja 2'Jo Ja
t
SC’/ /(z—y)j_p|u|pd$d7'.
0 JQ
Thus,
@) sw [ @G- ptlPde<C [[ ()T updods,
0<T<t JQ Q¢
and

(4.5) // (z —y)5 |VulPdrdr < C// (z — y)¥ PluPdadr.
Q: Q¢

For (4.4), using Hardy inequality, again we have

(4.6) sup /Qp(w)(z —y)5 Jul?dz < C//Q (z —y)5 | VulPdxdr.

0<r<t
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Set
// z — )5 |VulPdxdr, foly / / |VulPdzdr.
{zeQ,zn>y}

From (4.5) and weighted Nirenberg inequality, we have

f2p+1

<Ci // p+1|u\pd1:d7'
t
(—a)p

<C / < / p“|vu|f’dx>a < /Q (z—y)ﬁ“m?dx) “dr,

L)+ (1 —a)3. Therefore,

where, X i a(g =,

Using (4.6) we obtain:

f2p+1

t a
<C ( / / p“\vuv’da:dT) / ( / (z—y)ﬁ“yvuwda;) dr
t 0 Q
<Clp) =2 [ [ s WPz ) e

Scfp+1(y)(1—a)p/2+at1—a‘
Denote A\ = l'=a and g = a + (1 — a)p/2. Then, A > 0 and 1 < u.
Applying Hélder’s inequality, we have

(1—a)p
2

f2p+1

o
<Ct [ / / p+1]Vu|pd:rds}
t
<ctt [//Q (z — y)?f+1|Vu|pdxds]

(p+D)p pu

<CPfopr1 ()] 27 [foly)] 7.

(p+ )/

U/MMH%
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Therefore,

Do +1
fopt1(y) < Ct s [fo(y)] @rt+De o=1_ p

Using Holder’s inequality again, we get

A1) < o) [fapia (1)]F7 < CE[fo(y)] ™,

where,

A - pU 1
(2p+1)o’ 2p+1)20 2p+1
Noticing that f{(y) = —fo(y), we obtain:

Y= > 0.

fily) < —Ct= Y OFD[ £ ()] O+

If fi(0,(0)) = 0, then o,(t) < b. If fi(0,(0)) > 0, then there exists a
maximal interval (o,,(0),x*), in which fi(y) > 0, and

[f1( )0/(9“)} ail [f1(y )]( 29+1) < —CD.

Integrating the above inequality over (o,,(0), "), we have
i@ O — f1(00(0)) 0D, < @O (27 — 0, (0)),
which implies that
&* <'an(0)+ O (foly)’,

noticing that fo(y) can be controlled by a constant C' independent of y.
Similarly, we have

Enlt) > €,(0) — Cyt* ( /0 ' /Q |Vu\pdxdt>6.

The proof is now complete. O
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