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TWO RESULTS ABOUT FIXED POINT OF
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Abstract. We shall establish two fixed point theorems for contrac-
tive multifunctions in a non-empty and closed subset of a complete
metric space with certain assumptions.

1. Introduction

In spite of its simplicity, the Banach fixed point theorem still seems
to be the most important result in metric fixed point theory. As we
know, there are many works in this field. Also, there are some works
about fixed point of multifunctions (see [1], [2], [3], [5], [7] and [9]). In
fact, fixed point theory of multifunctions is generalization of the metric
fixed point theory in a certain sense. Here, we establish two fixed point
theorems for certain multifunctions of contractive type by using some
ideas of the work of Reem, Reich and Zaslavski ([8]).

2. Main results

Let (X, d) be a metric space. Throughout this section, we suppose
that H(X) is the set of all compact subsets of (X, d) and dh stands for
the Hausdorff metric with respect to d.
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Theorem 2.1. Let K be a non-empty closed subset of a complete metric
space(X, d). Assume that T : K → H(X) satisfies

dh(Tx, Ty) ≤ cd(x, y)

for all x, y ∈ X, where c ∈ [0, 1) is a contractive constant. Let K0 be
a bounded subset of K and let {xn}n≥1 be a sequence in K0 such that⋃n

i=1 T ixn ⊆ K, for all n ≥ 1. Then, T has a fixed point in K.

Proof. First, we claim that

(2.1) dh(T i+1x, T i+1y) ≤ cdh(T ix, T iy),

for all i ≥ 1 and all x, y ∈ K with T ix, T iy ⊆ K. This claim is obtained
from a well-known remark of Nadler [6], which states

dh(T (A), T (B)) ≤ dh(A,B),

for all compact subsets A and B of a metric space. Since K0 is bounded,
there exist θ ∈ K and c0 > 0 such that

(2.2) d(θ, z) ≤ c0,

for all z ∈ K0. Now, we continue the proof in several steps.

Step I. For each ε > 0, there exists n0 ≥ 1 such that

(2.3) dh(T ixn, T i+1xn) ≤ ε,

for all n > n0 and n0 ≤ i < n.

Proof of Step I. If (2.3) does not hold, then for each m ≥ 1 there exist
nm and im such that m ≤ im < nm and

(2.4) dh(T imxnm , T im+1xnm) > ε,

for some ε > 0. Choose a natural number m such that

m >
2c0 + dh({θ}, T θ)

(1− c)ε
.

Since c < 1, by (2.1) and (2.4) we have

dh(T ixnm , T i+1xnm) > ε,

for all i = 1, 2, · · · , im. Since

dh(T i+2xnm , T i+1xnm) ≤ cdh(T i+1xnm , T ixnm),
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for all i = 1, 2, · · · , im − 1, by (2.4) we have

dh(T i+2xnm , T i+1xnm)− dh(T i+1xnm , T ixnm)

≤ (c− 1)dh(T i+1xnm , T ixnm) < −(1− c)ε.
On the other hand,

ε < dh(T 2xnm , Txnm) ≤ cdh({xnm}, Txnm) ≤ dh({xnm}, Txnm).

Hence,
dh(T 2xnm , Txnm)− dh({xnm}, Txnm)

≤ (c− 1)dh({xnm}, Txnm) < −(1− c)ε.
Thus,

−dh({xnm}, Txnm) ≤ dh(T im+1xnm , T imxnm)− dh({xnm}, Txnm)

≤
im−1∑
i=1

[dh(T i+2xnm , T i+1xnm)− dh(T i+1xnm , T ixnm)]

+[dh(T 2xnm , Txnm)− dh({xnm}, Txnm)]

(2.5) < −(c− 1)εim ≤ −m(1− c)ε.

Since dh is a metric on H(X), from (2.2) and (2.5) we have

m(1− c)ε ≤ dh({xnm}, Txnm)

≤ dh({xnm}, {θ}) + dh({θ}, T θ) + dh(Tθ, Txnm)

≤ d(xnm , θ) + dh({θ}, T θ) + cd(θ, xnm) ≤ 2c0 + dh({θ}, T θ),
which is a contradiction. Therefore, (2.3) holds.

Step II. For each δ > 0, there exists n0 ≥ 1 such that

(2.6) dh(T ixn, T jxn) ≤ δ,

for all n > n0 and n0 ≤ i, j < n.

Proof of Step II. Let ε < 1
4δ(1− c) and choose n0 ≥ 1 such that (2.3)

holds, for all n > n0 and n0 ≤ i < n. Let i, j and n be natural numbers
so that n0 ≤ i, j < n. We claim that (2.6) holds. If dh(T ixn, T jxn) > δ,
then

dh(T ixn, T jxn)

≤ dh(T ixn, T i+1xn) + dh(T i+1xn, T j+1xn) + dh(T j+1xn, T jxn)

≤ 2ε + dh(T i+1xn, T j+1xn) ≤ 2ε + cdh(T ixn, T jxn).
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Hence,

δ < dh(T ixn, T jxn) ≤ 2ε

1− c
,

which is a contradiction.

Step III. For each ε > 0, there exists n0 ≥ 1 such that

(2.7) dh(Tn0xn1 , T
n0xn2) ≤ ε,

for all n1, n2 > n0.

Proof of Step III. Choose a natural number m such that m > 4c0
ε(1−c)

and let n1, n2 > m. We claim that

(2.8) dh(Tmxn1 , T
mxn2) ≤ ε.

If (2.8) does not hold, then dh(T ixn1 , T
ixn2) > ε, for all i = 1, 2, · · · ,m,

because c < 1. Note that

ε < dh(Txn1 , Txn2) ≤ cd(xn1 , xn2) ≤ d(xn1 , xn2).

So, −d(xn1 , xn2) < −ε. Since

dh(T i+1xn1 , T
i+1xn2) ≤ cdh(T ixn1 , T

ixn2),

for all i = 1, 2, · · · ,m− 1,

dh(T i+1xn1 , T
i+1xn2)− dh(T ixn1 , T

ixn2)

≤ (c− 1)dh(T ixn1 , T
ixn2) < −(1− c)ε,

for all i = 1, 2, · · · ,m− 1. This implies that

−d(xn1 , xn2) ≤ dh(Tmxn1 , T
mxn2)− d(xn1 , xn2)

≤
m−1∑
i=1

[dh(T i+1xn1 , T
i+1xn2)− dh(T ixn1 , T

ixn2)]

+[dh(Txn1 , Txn2)− d(xn1 , xn2)] ≤ −m(1− c)ε.
Hence,

m(1− c)ε ≤ d(xn1 , xn2) ≤ d(xn1 , θ) + d(θ, xn2) ≤ 2c0,

and so,

m ≤ 2c0

ε(1− c)
.

This contradiction shows that (2.8) holds.
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Step IV. For each ε > 0, there exists m(ε) ≥ 1 such that

dh(T ixn1 , T
jxn2) ≤ ε,

for all n1, n2 > m(ε) and all natural numbers i ∈ [m(ε), n1) and
j ∈ [m(ε), n2).

Proof of Step IV. Let ε > 0 be given. By using (2.7), choose m1 ≥ 1
such that

dh(Tm1xn1 , T
m1xn2) ≤

ε

4
,

for all n1, n2 > m1. Also, by using (2.6), choose m2 ≥ 1 such that

dh(T ixn, T jxn) ≤ ε

4
,

for all n > m2 and m2 ≤ i, j < n. Now, let n1, n2 > m(ε) := m1 + m2,
i ∈ [m(ε), n1) and j ∈ [m(ε), n2). Then, we have

dh(Tm(ε)xn1 , T
m(ε)xn2) ≤ dh(Tm1xn1 , T

m1xn2) ≤
ε

4
.

Also,

dh(Tm(ε)xn1 , T
ixn1) ≤

ε

4
, dh(Tm(ε)xn2 , T

jxn2) ≤
ε

4
.

Thus,
dh(T ixn1 , T

jxn2) ≤ dh(Tm(ε)xn1 , T
ixn1)

+dh(Tm(ε)xn1 , T
m(ε)xn2) + dh(Tm(ε)xn2 , T

jxn2) < ε.

This completes the proof of the step.
Now, we complete the proof of the theorem. Consider the sequences

{Tn−2xn}n≥3 and {Tn−1xn}n≥2. For each ε > 0, take N = m(ε)+2. Let
m,n ≥ N , i = m−2, j = n−2, n1 = m and n2 = n. Then, i ∈ [m(ε), n1)
and j ∈ [m(ε), n2). Hence, by Step IV, dh(Tm−2xm, Tn−2xn) < ε. Thus,
{Tn−2xn}n≥3 is a Cauchy sequence. A similar argument shows that
{Tn−1xn}n≥2 is a Cauchy sequence and

lim
n→∞

dh(Tn−2xn, Tn−1xn) = 0.

Note that the sequences {Tn−2xn}n≥3 and {Tn−1xn}n≥2 lie in K and
(H(K), dh) is a complete metric space. Hence, there exists A ∈ H(K)
such that

lim
n→∞

dh(Tn−2xn, A) = lim
n→∞

dh(A, Tn−1xn) = 0.

Since
dh(Tn−1xn, T (A))
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= max{ sup
a∈T n−2xn,a1∈Ta

inf
b∈A,b1∈Tb

d(a1, b1), sup
d1∈Td,d∈A

inf
c1∈Tc,c∈T n−2xn

d(c1, d1)}

= max{ sup
a∈T n−2xn

inf
b∈A

sup
a1∈Ta

inf
b1∈Tb

d(a1, b1),sup
d∈A

inf
c∈T n−2xn

sup
d1∈Td

inf
c1∈Tc

d(c1, d1)}

≤ max{ sup
a∈T n−2xn

inf
b∈A

dh(Ta, T b), sup
d∈A

inf
c∈T n−2xn

dh(Tc, Td)}

≤ c max{ sup
a∈T n−2xn

inf
b∈A

d(a, b), sup
d∈A

inf
c∈T n−2xn

d(c, d)}

= cdh(Tn−2xn, A) → 0,

we obtain that A = T (A). Thus, T |A : A → H(A) is a contraction mul-
tifunction and (A, d|A×A) is a complete metric space. Therefore, by [4;
Theorem 6], T |A has a fixed point in A, that is, there exists x0 ∈ A ⊆ K
such that x0 ∈ Tx0. �

Now, for clarity of the matter, we give two examples concerning The-
orem 2.1.

Example 2.2. Let X = [0,∞) with the Euclidean norm, m ≥ 4 a fixed
natural number, K = {1

2 , 1
3 , 1

4 , · · · } ∪ {0, 1} and K0 = {1
2 , 1

3 , 1
4 , · · · }.

Define T : K → H(X) by

Tx = {x

2
,
x

3
, · · · ,

x

m
},

for all x ∈ K. Note that the values of T are compact and

dh(Tx, Ty) ≤ 1
2
|x− y|,

for all x, y ∈ K. Since Tx ⊆ K, for all x ∈ K0, it is easy to see that if
{xn}n≥1 is a sequence in K0, then

⋃n
i=1 T ixn ⊆ K, for all n ≥ 1. Thus,

T satisfies the conditions of Theorem 2.1. Finally, x0 = 0 is the unique
fixed point of T .

Example 2.3. Let X = C[0, 1] with the supremum norm, K = {f ∈
X : f ≥ 0} and K0 = {f ∈ K : 0 < ‖f‖∞ < 1}. Define T : K → H(X)
by

T (f)(t) =
∞⋃

n=1

{1− 1
2

∫ 1

t
n

f(x)dx}
⋃
{1− 1

2

∫ 1

0
f(x)dx},

for all t ∈ [0, 1]. Note that the values of T are compact and

dh(T (f), T (g)) ≤ 1
2
‖f − g‖∞,
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for all f, g ∈ K. If f ∈ K0, then 0 ≤ f(x) < 1 and so

0 < 1− 1
2

∫ 1

t
n

f(x)dx <
1
2
,

for all t ∈ [0, 1] and n ≥ 1. Hence, Tf ⊆ K, for all f ∈ K0. Thus,
if {fn}n≥1 is a sequence in K0, then

⋃n
i=1 T ifn ⊆ K, for all n ≥ 1.

Therefore, T satisfies the conditions of Theorem 2.1. Now, consider the
function g0(t) = e

1
2
(t−1) in X. Since

1− 1
2

∫ 1

t
1

g0(x)dx = g0(t),

for all t ∈ [0, 1], g0 ∈ T (g0), that is, g0 is a fixed point of T .

We will use the following result of Lassonde ([4]) in our second result.

Lemma 2.4. Let E be a locally convex topological vector space, X a
convex subset of E and T ∈ Kc(X, X) a compact multifunction. Then,
T has a fixed point in X.

Theorem 2.5. Let G be a non-empty subset of a normed space (Y, ‖.‖)
such that 0 ∈ IntG, where IntG is the interior of G. Assume that
T : G → Y is a nonexpansive and compact multifunction which satisfies
the condition

(2.9) Tx ∩ {λx : λ > 1} = ∅,

for all x ∈ ∂G, where ∂G is the boundary of G. Also, let Tx be a closed
convex subset of Y , for all x ∈ X. Then, T has a fixed point in IntG.

Proof. Suppose that U = IntG and put T1 = T |U : U → Y . We
show that T1 is upper semi-continuous. Let x0 be an element of U , V
an open set in Y with T1x0 ⊆ V and T1x0 = {zi : i ∈ I}. For each
i ∈ I, there exists ri > 0 such that Nri(zi) ⊆ V . Clearly, T1x0 ⊆⋃

i∈I N ri
2
(zi), T1x0 is closed and T is compact. Hence, T1x0 is compact

and so there exist zi1 , · · · , zin ∈ T1x0 such that T1x0 ⊆
⋃n

k=1 N rik
2

(zik).

Put ε = min{ ri1
2 , · · · ,

rin
2 }. Now, let d be the metric induced by the

norm, dh the metric induced by d, ‖x0 − y‖ < ε and z ∈ T1y. Then,
dh(T1x0, T1y) ≤ ‖x0 − y‖ < ε and there exists t0 ∈ T1x0 such that
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‖t0 − z‖ < ε. Take j ∈ {1, · · · , n} such that t0 ∈ N rij
2

(zij ). Then,

‖t0− zij‖ <
rij

2 and ‖z− zij‖ ≤ ‖z− t0‖+‖t0− zij‖ < rij . Hence, z ∈ V
and so T1y ⊆ V . Thus T1 is upper semi-continuous.

Now, let p be the Minkowski semi-norm of U . Define r : Y → U by

r(x) =
{

x x ∈ U
x

p(x) x /∈ U.

Then, r is continuous because p(x) = 1, whenever x ∈ U . Put

f = r|co(TU) .

Note that f is continuous and if F = T1f , then F is upper semi-
continuous, compact, convex-valued and compact-valued multifunction.
Thus, F is a Kakutani multifunction. Hence, F ∈ Kc(co(TU), co(TU))
and by Lemma 2.4, F has a fixed point, say z0, in co(TU). We show
that z0 ∈ U . If z0 ∈ Y \U , then z0 ∈ T1( z0

p(z0)) and p(z0) > 1. Hence,

z0 ∈ T1(
z0

p(z0)
) ∩ {λ(

z0

p(z0)
) : λ > 1}.

Since p( z0
p(z0)) = 1, z0

p(z0) ∈ ∂U . This contradicts (2.9) and so
z0 ∈ U . Since f(z0) = z0, z0 ∈ Tz0. This completes the proof. �

Now, we give the following example for Theorem 2.5.

Example 2.6. Let Y = R with the usual norm and G = (−π, π). Define
T : G → Y by

Tx = [min{sinx, cos x},max{sin x, cos x}],

for all x ∈ G. Note that T is nonexpansive and compact multifunction
and the values of T are convex and compact. Since

T (−π) ∩ {−λπ, λ > 1} = ∅ and T (π) ∩ {λπ, λ > 1} = ∅,

T satisfies in the condition (12). Also, note that x0 = 0 is a fixed point
of T .
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