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EXTENSIONS OF BAER AND QUASI-BAER MODULES
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Communicated by Freydoon Shahidi

Abstract. We study the relationships between the Baer, quasi-
Baer and p.q.-Baer property of an R-module M and the polynomial
extensions of module M . As a consequence of our results, we obtain
some results of [C.Y. Hong, N.K. Kim and T.K. Kwak, J. Pure Appl.
Algebra 151 (2000) 215-226.] and [E. Hashemi and A. Moussavi,
Acta Math. Hungar. 107 (2005) 207-224.].

1. Introduction

Throughout the paper, R will always denote an associative ring with
identity and MR will stand for a right R-module. Recall from [15] that
R is a Baer ring if the right annihilator of every nonempty subset of R is
generated by an idempotent. In [15], Kaplansky introduced Baer rings
to abstract various properties of von Neumann algebras and complete
∗-regular rings. The class of Baer rings includes the von Neumann alge-
bras. In [9], Clark defines a ring to be quasi-Baer if the left annihilator
of every ideal is generated, as a left ideal, by an idempotent. He then
uses the quasi-Baer concept to characterize when a finite-dimensional
algebra with identity over an algebraically closed field is isomorphic to
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a twisted matrix units semigroup algebra. Every prime ring is a quasi-
Baer ring. Another generalization of Baer rings is the p.p.-rings. A ring
R is called right (resp. left) p.p. if right (resp. left) annihilator of
an element of R is generated by an idempotent. Birkenmeier, et al. in
[6] introduced the concept of principally quasi-Baer rings. A ring R is
called right principally quasi-Baer (or simply right p.q.-Baer) if the right
annihilator of a principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring over
a Baer ring by obtaining the following result: Let R be a reduced ring
(i.e., R has no nonzero nilpotent elements). Then, R[x] is a Baer ring if
and only if R is a Baer ring ([4], Theorem B). Armendariz provided an
example to show that the reduced condition is not superfluous. In [6],
Birkenmeier, et al. showed that the quasi-Baer condition is preserved
by many polynomial extensions. Also, Birkenmeier, et al. [6] showed
that a ring R is right p.q.-Baer if and only if R[x] is right p.q.-Baer.

From now on, we always denote the Ore extension ring (or Ore poly-
nomial ring) by S := R[x;α, δ], where α : R → R is an endomorphism
and δ : R→ R is an α-derivation. Recall that an α-derivation δ is an ad-
ditive operator on R with the property that δ(ab) = δ(a)b+α(a)δ(b), for
all a, b ∈ R. The Ore extension S is then the ring consisting of all (left)
polynomials of the form

∑
aix

i (ai ∈ R), which are multiplied using the
distributive law and the Ore commutation rule xa = α(a)x+δ(a), for all
a ∈ R. From this rule, an inductive argument can be made to calculate
an expression for xja, for all j ∈ N and a ∈ R.

Notation [19]. Let δ be an α-derivation of R. For integers j ≥ i ≥ 0,
write f j

i for the sum of all “words” in α and δ in which there are i

factors of α and j − i factors of δ. For instance, f j
j = αj , f j

0 = δj and
f j

j−1 = αj−1δ + αj−2δα+ · · ·+ δαj−1.

Using recursive formulas for the f j
i and induction, as in [19], one can

show with a routine computation that

(1.1) xja =
j∑

i=0

f j
i (a)xi.

This formula uniquely determines a general product of (left) polyno-
mials in S and will be used freely in what follows.
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Extensions of Baer and quasi-Baer modules 3

Given a right R-module MR, we can make M [x] into a right S-module
by allowing polynomials from S to act on polynomials in M [x] in the ob-
vious way, and applying the above “twist” whenever necessary. The ver-
ification that this defines a valid S-module structure on M [x] is almost
identical to the verification that S is a ring, and it is straightforward.

For a nonempty subset X of M , put annR(X) = {a ∈ R |Xa = 0}.
In [21], Lee and Zhou introduced the notions of Baer, quasi-Baer and
p.p.-modules as follows: (1) MR is called Baer if for any subset X of
M , annR(X) = eR, where e2 = e ∈ R. (2) MR is called quasi-Baer if,
for any submodule X ⊆ M , annR(X) = eR, where e2 = e ∈ R. (3)
MR is called p.p. if for any element m ∈ M , annR(m) = eR, where
e2 = e ∈ R. Clearly, a ring R is Baer (resp. p.p. or quasi-Baer) if and
only if RR is Baer (resp. p.p. or quasi-Baer) module. If R is a Baer
(resp. p.p. or quasi-Baer) ring, then for any right ideal I of R, IR is
Baer (resp. p.p. or quasi-Baer) module.

The module MR is called principally quasi-Baer (or simply p.q.-Baer)
if for any m ∈M , annR(mR) = eR, where e2 = e ∈ R. It is clear that R
is a right p.q.-Baer ring if and only if RR is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

Here, we impose (α, δ)-compatibility assumption on the module MR

and prove the following results, extending many results on rings to mod-
ules:

(1) The module MR is quasi-Baer (resp. p.q.-Baer) if and only if
M [x]S is quasi-Baer (resp. p.q.-Baer), where S = R[x;α, δ].

(2) If MR is (α, δ)-Armendariz, then MR is Baer (resp. p.p.) if and
only if M [x]S is Baer (resp. p.p.).

Also, we give examples to show that (α, δ)-compatibility assumption
on MR in the preceding results is not superfluous. Among applications,
we obtain some results of [12] and [10] as corollaries of our results.

2. Polynomials over Baer and Quasi-Baer Modules

Definition 2.1. (Annin [3]) Given a module MR, an endomorphism
α : R → R, and an α-derivation δ : R → R, we say that MR is α-
compatible if for each m ∈ M , r ∈ R, we have mr = 0 ⇔ mα(r) = 0.
Moreover, we say that MR is δ-compatible if for each m ∈ M , r ∈ R,
we have mr = 0 ⇒ mδ(r) = 0. If MR is both α-compatible and δ-
compatible, we say that MR is (α, δ)-compatible.
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Recall that an R-module NR is called prime if N 6= 0 and annR(N) =
annR(N

′
), for every nonzero submodule N

′ ⊆ N .
The following example shows that there exists an (α, δ)-compatible

module MR such that MR and M [x]R[x;α,δ] are quasi-Baer.

Example 2.2. [3, Example 4.6] Let R0 be a domain of characteristic
zero, and R := R0[t]. Define α|R0 = Id and α(t) = −t. Now, for
a ∈ R0, set

δ(atl) :=
{
atl−1 if l is odd
0 if l is even.

It is shown in [19] that δ is an α-derivation on R. Let MR := R0⊕R0⊕
R0⊕· · · , where t ∈ R acts on MR as follows: for (m0,m1,m2, · · · ) ∈M ,
we set (m0,m1,m2, · · · )t := (0,m0k0,m1k1,m2k2, · · · ), where the ki (i ∈
N) are fixed nonzero integers. We show that MR is (α, δ)-compatible.
For this, it suffices to show that annR(m) = 0, whenever 0 6= m ∈
M . Suppose that (a0, a1, a2, · · · )(brtr + br+1t

r+1 + “higher terms”) = 0,
where ai, bi ∈ R0, for every i ∈ N and br 6= 0. First, applying tr to
(a0, a1, a2, · · · ) gives:

(0, 0, · · · , 0, a0k0k1 · · · kr−1, a1k1k2 · · · kr, · · · )(br + br+1t + “higher terms”) = 0.

Upon computing this expression, we deduce that a0k0k1 · · · kr−1br = 0.
Since the characteristic is zero, R is a domain, and k0k1 · · · kr−1br 6= 0,
we deduce that a0 = 0. Now, we may proceed inductively to show that
ai = 0, for all i. From this calculation, we deduce at once that MR is
(α, δ)-compatible. Moreover, the calculation implies that MR is prime,
and annR(N) = {0}, for each nonzero submodule N of M . Therefore,
MR is quasi-Baer. Hence, M [x]R[x;α,δ] is quasi-Baer, by Theorem 2.11.

Remark 2.3. (a) If MR is α-compatible (resp. δ-compatible), then so
is any submodule of MR.
(b) If MR is α-compatible (resp. δ-compatible), then MR is αi-compatible
(resp. δi-compatible), for all i ≥ 1.

Lemma 2.4. Let MR be an (α, δ)-compatible R-module. Let m ∈ M ,
and a, b ∈ R. Then, we have the followings:

(1) If ma = 0, then mαi(δj(a)) = 0 = mδj(αi(a)), for any positive
integers i, j.

(2) If mab = 0, then mαi(a)δj(b) = 0 = mδj(a)αi(b), for any posi-
tive integers i, j.

(3) annR(ma) = annR(mα(a)) ⊆ annR(mδ(a)).
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Proof. (1) It follows from Remark 2.3.
(2) It is enough to show that mα(a)δ(b) = 0 = mδ(a)α(a). Since

MR is δ-compatible, mab = 0 implies that maδ(b) = 0 and mδ(ab) =
mδ(a)b + mα(a)δ(b) = 0. Since MR is α-compatible, mab = 0 implies
that mα(ab) = mα(a)α(b) = 0, and so mα(a)b = 0. Thus, mα(a)δ(b) =
0. Hence, mδ(a)b = 0 and mδ(a)α(a) = 0.

(3) Observe that the α-compatibility of MR yields mα(a)b = 0 ⇔
mα(a)α(b) = 0 ⇔ mα(ab) = 0 ⇔ mab = 0, for each b ∈ R. It is remains
only to show that annR(ma) ⊆ annR(mδ(a)). Letmab = 0, for some b ∈
R. Using δ-compatibility, we get 0 = mδ(ab) = mα(a)δ(b)+mδ(a)b = 0
and hence mδ(a)b = 0, as desired. �

Lemma 2.5. Let MR be an (α, δ)-compatible module, m(x) = m0+· · ·+
mkx

k ∈M [x] and r ∈ R. If m(x)r = 0, then mir = 0, for each i.

Proof. An easy calculation using Eq. (1.1) shows that
0 = m(x)r =

∑k
i=0

∑k
j=imjf

j
i (r)xi and so

(2.1)
k∑

j=i

mjf
j
i (r) = 0 for each i ≤ k.

Starting with i = k, Eq. (2.1) yieldsmkα
k(r) = 0, and so α-compatibility

of MR yields mkr = 0. Now, assume inductively that mjr = 0, for each
j > i. By (α, δ)-compatibility of MR, for j > i we have mjf

j
i (r) = 0.

Using Eq. (2.1) again, we deduce that miα
i(r) = 0, and so mir = 0 as

needed. �

Following Anderson and Camillo [1], a module MR is called Armen-
dariz if whenever m(x)f(x) = 0, where m(x) =

∑s
i=0mix

i ∈ M [x] and
f(x) =

∑t
j=0 ajx

j ∈ R[x], we have miaj = 0, for all i, j.

Definition 2.6. Given a module MR, an endomorphism α : R→ R, and
an α-derivation δ : R→ R, we say MR is (α, δ)-quasi Armendariz (resp.
(α, δ)-Armendariz), if whenever m(x) =

∑k
i=0mix

i ∈M [x] and f(x) =∑n
j=0 bjx

j ∈ R[x;α, δ] satisfy m(x)R[x;α, δ]f(x) = 0 (resp. m(x)f(x) =
0), we have mix

iRbjx
j = 0 (resp. mix

iajx
j = 0), for all i, j.

For a module MR, put

AnnR(sub(M)) = {annR(N) | N is a submodule of M}.
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Clearly, A = annR(N) is an ideal of R for each submodule N of M .

Proposition 2.7. Let MR be an (α, δ)-compatible module and S be the
skew polynomials ring R[x;α, δ]. Then, the following statements are
equivalent:

(1) MR is (α, δ)-quasi Armendariz.
(2) ψ : AnnR(sub(M)) → AnnS(sub(M [x]));A→ AS is bijective.

Proof. (2) ⇒ (1). Let m(x) = m0 + m1x + ... + mkx
k ∈ M [x] and

f(x) = b0 + b1x+ ...+ bmx
m ∈ S satisfy m(x)Sf(x) = 0. Then, f(x) ∈

annS(m(x)S) = AS, where A is an ideal of R. Hence, b0, · · · , bm ∈
A, and so m(x)Rbj = 0, for j = 0, · · · ,m. By lemmas 2.4 and 2.5,
mix

iRbjx
j = 0, for all i, j. Therefore, MR is (α, δ)-quasi Armendariz.

(1) ⇒ (2). Let A ∈ AnnR(sub(M)). Then, there exists a submodule
N of M such that A = annR(N), and hence annS(N [x]) = AS, by
Lemmas 2.4 and 2.5. Thus, ψ is a well defined map. Assume that B ∈
AnnS(sub(M [x])). Then, there exists a submodule N of M [x] such that
B = annS(N). Let B1 denote the set of all coefficients of elements of B
in R and N1 denote the set of all coefficients of elements of N in M . We
claim that annR(N1R) = B1R. Let m(x) = m0 +m1x+ ...+mkx

k ∈ N
and f(x) = b0 + b1x + ... + bmx

m ∈ B. Then, m(x)Sg(x) = 0. Since
MR is (α, δ)-quasi Armendariz and (α, δ)-compatible, miRbj = 0, for all
i, j. Thus, (N1R)(B1R) = 0, and so B1R ⊆ annR(N1R). Since MR is
(α, δ)-compatible, annR(N1R) ⊆ B1R. Thus, annR(N1R) = B1R, and
so annS(N) = (B1R)S. �

Following Tominaga [25], an ideal I of R is said to be left s-unital if
for each a ∈ I there is an x ∈ I such that xa = a. If an ideal I of R is
left s-unital, then, for any finite subset F of I, there exists an element
e ∈ I such that ex = x, for each x ∈ F . A submodule N of a right
R-module M is called a pure submodule if N ⊗R L −→ M ⊗R L is a
monomorphism for every left R-module L. By [25, Proposition 11.3.13],
an ideal I is left s-unital if and only if R/I is flat as a right R-module if
and only if I is pure as a right ideal of R.

Proposition 2.8. Let MR be an (α, δ)-compatible module and S =
R[x;α, δ]. Then, the followings are equivalent:

(1) annR(mR) is left s-unital for any element m ∈M .
(2) annS(m(x)S) is left s-unital for any element m(x) ∈ M [x]. In

this case, MR is (α, δ)-quasi Armendariz.
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Proof. (1) ⇒ (2). First, we prove that MR is (α, δ)-quasi Armendariz.
Suppose that (m0 +m1x+ ...+mkx

k)S(b0 + b1x+ ...+ bnx
n) = 0, with

mi ∈M and bj ∈ R. Then,

(2.2) (m0 +m1x+ ...+mkx
k)R(b0 + b1x+ ...+ bnx

n) = 0.

Since MR is α-compatible, mkRbn = 0. Then, bn ∈ annR(mkR), and so
mkx

kRbnx
n = 0, by Lemma 2.4. Since annR(mkR) is left s-unital,

there exists ek ∈ annR(mkR) such that ekbn = bn. Replacing R by
Rek in Eq. (2.2), and using Lemma 2.4, we obtain (m0 + m1x + ... +
mk−1x

k−1)Rek(b0+b1x+...+bnxn) = 0. Hence, mk−1Rbn = 0, since MR

is α-compatible. Then, bn ∈ annR(mk−1R), and so mk−1x
k−1Rbnx

n =
0, by Lemma 2.4. Hence, bn ∈ annR(mkR) ∩ annR(mk−1R). Since
annR(mk−1R) is left s-unital, there exists f ∈ annR(mk−1R) such that
fbn = bn. If we put ek−1 = emf , then ek−1bn = bn and ek−1 ∈
annR(mkR) ∩ annR(mk−1R). Next, replacing R by Rek−1 in Eq. (2.2),
and using Lemma 2.4, we obtain (m0+m1x+ ...+mk−2x

k−2)Rek−1(b0+
b1x + ... + bnx

n) = 0. Hence, we have bn ∈ annR(mk−2R), and so
mk−2x

k−2Rbnx
n = 0, by Lemma 2.4. Continuing this process, we get

mix
iRbnx

n = 0, for i = 0, · · · , k. Using induction on k + n, we ob-
tain mix

iRbjx
j = 0, for all i, j. Therefore, MR is (α, δ)-quasi Ar-

mendariz. Let m(x) = m0 + m1x + ... + mkx
k ∈ M [x] and f(x) =

b0 + b1x + ... + bmx
m ∈ annS(m(x)S). Then, miRbj = 0, for all i, j.

Since annR(miR) is left s-unital, there exists ei ∈ annR(miR) such that
bj = eibj , for j = 0, 1, · · · ,m. Put e = e0e1 · · · ek. Then, bj = ebj ,
for j = 0, 1, · · · ,m, and so ef(x) = f(x). Clearly, e ∈ annS(m(x)S).
Therefore, annS(m(x)S) is left s-unital.

(2) ⇒ (1). Let m ∈ M . By using Lemma 2.4, annR(mR) ⊆
annS(mS). Hence, for any b ∈ annR(mR), there exists a polynomial
f(x) ∈ S such that f(x)b = b. Let a0 be the constant term of f(x).
Then, a0b = b, by (α, δ)-compatibility of MR. Clearly, a0 ∈ annR(mR).
Therefore, annR(mR) is left s-unital. �

By Proposition 2.8, if annR(mR) is left s-unital for any element m ∈
M , then MR is α-quasi Armendariz. But the converse is not true, in
general. The following example shows that there exists an α-compatible
ring R such that RR is α-quasi Armendariz, but annR(mR) is not left
s-unital for some m ∈ R.
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Example 2.9. [26, Example 2.4] For a given field F , let

S = {(an)∞n=1 ∈
∏

F | an is eventually constant},

which is a subring of the countably infinite direct product
∏
F . Then,

S is a commutative ring. Let R = S[[x]]. Clearly S is a reduced ring.
Suppose that f(x) = a0 + a1x + · · · and g(x) = b0 + b1x + · · · ∈ S[[x]]
are such that f(x)g(x) = 0. Then, from [1, p. 2269], it follows that
aibj = 0, for all i, j. Thus, R is a reduced ring. Let α be the S-
automorphism of R such that α(x) = −x. Clearly, RR is α-compatible.
Hence R is α-quasi Armendariz, by [12, Proposition 6], and [10, Lemma
2.2]. We show that there exists m ∈ R such that annR(mR) is not left
s-unital. Let m = m0 + m1x + · · · , where m0 = (0, 1, 0, 0, · · · ),m1 =
(0, 1, 0, 1, 0, 0, · · · ),m2 = (0, 1, 0, 1, 0, 1, 0, 0, · · · ), · · · . We show that
annR(mR) is not left s-unital. Suppose that annR(mR) is left s-unital.
Let f = f0 + f1x+ · · · ∈ R, where

f0 = (1, 0, 0, 0, · · · ), f1 = (1, 0, 1, 0, 0, 0, · · · ), f2 = (1, 0, 1, 0, 1, 0, 0, 0, · · · ), · · · .

Then, mf = 0, and so mRf = 0, since R is reduced. Hence, f ∈
annR(mR). Thus, there exists h ∈ annR(mR) such that hf = f . Sup-
pose that h = h0 + h1x + · · · . Now, mh = 0 and from [1, p. 2269],
it follows that mihj = 0, for all i, j, and so there exists nj ∈ N such
that hj has the form (bj1, 0, b

j
3, 0, · · · , b

j
2nj+1, 0, 0, 0, · · · ), where bjk ∈ F ,

j = 0, 1, 2, · · · . From (h − 1)f = 0, it follows that (h0 − 1)fi = 0
and hjfi = 0, for all i and j ≥ 1, and so there exists mj ∈ N such
that hj has the form (0, bj2, 0, b

j
4, 0, · · · , b

j
2mj

, 0, 0, 0, · · · ), where bjk ∈ F ,
j = 1, 2, · · · . Thus, h1 = h2 = · · · = 0, and so h = h0. This contradicts
with h0fi = fi, i = 0, 1, · · · . Thus, annR(mR) is not left s-unital.

Clearly, if MR is quasi-Baer, then annR(mR) is left s-unital for each
m ∈M . But the converse is not true, in general. The following example
shows that there exists a ring R such that annR(mR) is left s-unital for
each m ∈ R, but R is not quasi-Baer. Recall that a ring R is called
a right Bezout ring if every finitely generated right ideal of R is prin-
cipal. Recall that the weak global dimension of a ring R is defined as
sup{fd(A)|A is a rightR-module}. Note that the weak global dimen-
sion ≤ 1 if and only if every right ideal of R is flat.

Example 2.10. [26, Example 2.5] Let Z be the ring of integers and let

S = (
∞∏
i=1

Z/2Z)/(
∞⊕
i=1

Z/2Z).
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Then, S is clearly a Boolean ring and by [8, p. 64], the weak global
dimension of S[[x]] is one and S[[x]] is not semihereditary. Let R =
S[[x]]. Then, every principal ideal of R is flat, and so R/annR(aR) =
R/annR(a) ∼= aR is flat. Thus, annR(aR) is pure as a right ideal of
R, for every a ∈ R. In [8, Theorem 43], it was shown that the power
series ring A[[x]] over a von Neumann regular ring A is semihereditary
if and only if A[[x]] is a Bezout ring, in which all principal ideals are
projective. On the other hand, by [8, Theorem 42], S[[x]] is a Bezout
ring since the weak global dimension of S[[x]] is one. Thus, R is not
p.q.-Baer.

Since quasi-Baer (p.q.-Baer) modules satisfy the hypotheses of Propo-
sition 2.8, by using Proposition 2.7 we have the following results.

Theorem 2.11. Let MR be an (α, δ)-compatible module. Then, MR is
quasi-Baer (resp. p.q.-Baer) if and only if M [x]S is quasi-Baer (resp.
p.q.-Baer); in this case, MR is an (α, δ)-quasi Armendariz module.

The following examples show that the α-compatibility condition on
MR in Theorem 2.11 is not superfluous.

Example 2.12. [3, Example 2.7] Let F be any field of characteristic
zero, and set R := F [t]. Let α be the F -automorphism of R such that
α(t) = t+ 1, and set S := R[x;α]. Consider the right R-module MR :=
F [t]
(t2)

and the right S-module PS := M [x]S. Using “− ” to mean “modulo
(t2)”, note that since t.t = 0 but t.(t + 1) 6= 0 , the α-compatibility
condition fails here. We show that PS is prime. It suffices to show that,
for any nonzero submodule P ′S ⊆ PS, we have annS(P ′) = 0. Choose
any 0 6= p′ ∈ P ′. We may write

p′ = gk(t)xk + gk+1(t)xk+1 + · · · ∈ P,

where gk(t) 6= 0 in MR. It suffices to show that ann(p′SS) = 0. Suppose
there exists s ∈ S with (p′S)s = 0. Write s = f0(t) + f1(t)x + · · · ∈ S
with fj(t) ∈ R, for each j. Now, for each i ≥ 0, we have

0 = (gk(t)xk+i + “higher terms”)(f0(t) + “higher terms”)

= gk(t)f0(t+ k + i)xk+i + “higher terms.”

Hence, we have gk(t)f0(t + k + i) = 0 in MR. So, for each i ≥ 0,
we have gk(t)f0(t + k + i) ∈ (t2) in R. But gk(t) 6= 0 implies that
gk(t) /∈ (t2). From this, we conclude that t divides f0(t + k + i), for
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each i ≥ 0. Putting t = 0, we have that f0(k + i) = 0, for each i ≥ 0.
Since F has characteristic zero, we conclude that f0(t) = 0. Now, we
may go back and repeat this argument for f1, f2, · · · , in turn, eventually
concluding that s = 0. Thus, as desired, we have annS(p′S) = 0. Hence,
PS is prime with annS(P ) = 0. Thus, M [x]S is quasi-Baer. Since
annR(M) = (t2) and (t2) does not have any idempotents, MR is not
quasi-Baer.

Example 2.13. Let R0 denote any domain and let R := R0[t]. Let
α : R→ R be defined by α(t) = 0 and α|R0 = Id. Next, let M := R and
S = R[x;α]. Observe that α-compatibility evidently fails in this case.
Since R is a domain, it is quasi-Baer. Now, consider the S-submodule
Q = xS. Then, annS(Q) = tS and tS does not have any idempotents.
Hence, M [x]S is not quasi-Baer.

The following example shows that δ-compatibility condition on RR in
Theorem 2.11 is not superfluous.

Example 2.14. [4, Example 11] There is a ring R and a derivation δ
of R such that R[x; δ] is a Baer (hence a quasi-Baer) ring, but R is not
quasi-Baer. In fact, let R = Z2[t]/(t2) with the derivation δ such that
δ(t̄) = 1, where t̄ = t+(t2) in R and Z2[t] is the polynomial ring over the
field Z2 of two elements. Consider the Ore extension R[x; δ]. If we set
e11 = tx, e12 = t, e21 = tx2+x, and e22 = 1+tx in R[x; δ], then they form
a system of matrix units in R[x; δ]. Now, the centralizer of these matrix
units in R[x; δ] is Z2[x2]. Therefore, R[x; δ] ∼= M2(Z2[x2]) ∼= M2(Z2)[y],
where M2(Z2)[y] is the polynomial ring over M2(Z2). So, R[x; δ] is a
Baer ring, but R is not quasi-Baer.

Corollary 2.15. [7, Corollary 2.8] Let R be a ring. Then, R is quasi-
Baer (resp. right p.q.-Baer) if and only if R[x] is quasi-Baer (resp. right
p.q.-Baer).

Corollary 2.16. [10, Corollary 2.8] Let R be an (α, δ)-compatible ring.
Then, R is quasi-Baer (resp. right p.q.-Baer) if and only if R[x;α, δ] is
quasi-Baer (resp. right p.q.-Baer).

According to Lee-Zhou [21], a module MR is called reduced if for any
m ∈ M and any a ∈ R, ma = 0 implies mR ∩Ma = 0. It is clear that
R is a reduced ring if an only if RR is reduced. If MR is reduced, then
MR is p.p. if and only if MR is p.q.-Baer.
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Lemma 2.17. The followings are equivalent for a module MR.

(1) MR is reduced and (α, δ)-compatible.
(2) The following conditions hold: for any m ∈M and a ∈ R,

(a) ma = 0 implies mRa = 0 = mRα(a).
(b) mα(a) = 0 implies ma = 0.
(c) ma = 0 implies mδ(a) = 0.
(d) ma2 = 0 implies ma = 0.

Proof. The proof is straightforward. �

Lemma 2.18. Let MR be a reduced (α, δ)-compatible module. Then,
MR is (α, δ)-Armendariz.

Proof. Let m(x) = m0+· · ·+mkx
k ∈M [x], and f(x) = a0+· · ·+anx

n ∈
R[x;α, δ] such that m(x)f(x) = 0. Hence, mkRan = 0, by Lemmas 2.4
and 2.17. Thus, the coefficient of xk+n−1 in equation m(x)f(x) = 0 is
mkα

k(an−1)+mk−1α
k−1(an) = 0. Multiplying this equation by an from

the right-hand side, we obtain mk−1α
k−1(an)an = 0. Hence, mk−1a

2
n =

0, and so mk−1an = 0, by Lemma 2.17. Therefore, mkan−1 = 0, and so
mkx

kan−1x
n−1 = mk−1x

k−1anx
n = 0, by Lemma 2.4. Continuing this

process, we can prove mix
iajx

j = 0, for each i, j. �

For a moduleMR, put AnnR(2M ) = {annR(N) | N is a subset of M}.
In a similar way as in the proof of Proposition 2.7, we can prove the
following.

Proposition 2.19. Let MR be an (α, δ)-compatible module and S be
the skew polynomial ring R[x;α, δ]. Then, the following statements are
equivalent.

(1) MR is (α, δ)-Armendariz.
(2) ψ : AnnR(2M ) → AnnS(2M [x]);A→ AS is bijective.

Theorem 2.20. Let MR be an (α, δ)-compatible module and S = R[x;α, δ].
If MR is (α, δ)-Armendariz, then MR is Baer (resp. p.p.) if and only if
M [x]S is Baer (resp. p.p.).

Proof. It follows from Lemma 2.18 and Proposition 2.19. �
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According to Krempa [18], an endomorphism α of a ring R is called
rigid if aα(a) = 0 implies a = 0, for a ∈ R. A ring R is said to be α-rigid
if there exists a rigid endomorphism α of R.

Corollary 2.21. [12, Theorem 14] Let R be an α-rigid ring. Then, R
is Baer (resp. p.p.) if and only if R[x;α, δ] is Baer (resp. p.p.).

Proof. Since α-rigid rings are reduced and (α, δ)-compatible, the proof
follows from Lemma 2.18 and Theorem 2.20. �

Corollary 2.22. [4, Theorem B] Let R be a reduced ring. Then, R is
Baer (resp. p.p.) if and only if R[x] is Baer (resp. p.p.).
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