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EXTENSIONS OF BAER AND QUASI-BAER MODULES

E. HASHEMI

Communicated by Freydoon Shahidi

ABSTRACT. We study the relationships between the Baer, quasi-
Baer and p.q.-Baer property of an R-module M and the polynomial
extensions of module M. As a consequence of our results, we obtain
some results of [C.Y. Hong, N.K. Kim and T.K. Kwak, J. Pure Appl.
Algebra 151 (2000) 215-226.] and [E. Hashemi and A. Moussavi,
Acta Math. Hungar. 107 (2005) 207-224.].

1. Introduction

Throughout the paper, R will always denote an associative ring with
identity and Mg will stand for a right R-module. Recall from [15] that
R is a Baer ring if the right annihilator of every nonempty subset of R is
generated by an idempotent. In [15], Kaplansky introduced Baer rings
to abstract various properties of von Neumann algebras and complete
x-regular rings. The class of Baer rings includes the von Neumann alge-
bras. In [9], Clark defines a ring to be quasi-Baer if the left annihilator
of every ideal is generated, as a left ideal, by an idempotent. He then
uses the quasi-Baer concept to characterize when a finite-dimensional
algebra with identity over an algebraically closed field is isomorphic to
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a twisted matrix units semigroup algebra. Every prime ring is a quasi-
Baer ring. Another generalization of Baer rings is the p.p.-rings. A ring
R is called right (resp. left) p.p. if right (resp. left) annihilator of
an element of R is generated by an idempotent. Birkenmeier, et al. in
[6] introduced the concept of principally quasi-Baer rings. A ring R is
called right principally quasi-Baer (or simply right p.q.-Baer) if the right
annihilator of a principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring over
a Baer ring by obtaining the following result: Let R be a reduced ring
(i.e., R has no nonzero nilpotent elements). Then, R[x] is a Baer ring if
and only if R is a Baer ring ([4], Theorem B). Armendariz provided an
example to show that the reduced condition is not superfluous. In [6],
Birkenmeier, et al. showed that the quasi-Baer condition is preserved
by many polynomial extensions. Also, Birkenmeier, et al. [6] showed
that a ring R is right p.q.-Baer if and only if R[z] is right p.q.-Baer.

From now on, we always denote the Ore extension ring (or Ore poly-
nomial ring) by S := R[z;q,d], where o : R — R is-an endomorphism
and 0 : R — R is an a-derivation. Recall that an a-derivation § is an ad-
ditive operator on R with the property that é(ab) = é(a)b+«(a)d(b), for
all a,b € R. The Ore extension S is then the ring consisting of all (left)
polynomials of the form Y~ a;2% (a; € R); which are multiplied using the
distributive law and the Ore commutation rule za = a(a)z+d(a), for all
a € R. From this rule, an inductive argument can be made to calculate
an expression for #/a, for all j € N and a € R.

Notatiqn [19]. Let d-be an a-derivation of R. For integers j > i > 0,
write f} for the sum of all “words” in a and ¢ in which there are i
factors of a andj — 7 factors of d. For instance, f]] =al, f = ¢ and

j_l =754 ad 2o+ -+ + Sad L,

Using recursive formulas for the fij and induction, as in [19], one can
show with a routine computation that

(1.1) la = Z ff(a)xz
1=0

This formula uniquely determines a general product of (left) polyno-
mials in S and will be used freely in what follows.
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Given a right R-module Mg, we can make M [z] into a right S-module
by allowing polynomials from S to act on polynomials in M|[z] in the ob-
vious way, and applying the above “twist” whenever necessary. The ver-
ification that this defines a valid S-module structure on M [z] is almost
identical to the verification that S is a ring, and it is straightforward.

For a nonempty subset X of M, put anng(X) = {a € R| Xa = 0}.
In [21], Lee and Zhou introduced the notions of Baer, quasi-Baer and
p.p.-modules as follows: (1) Mg is called Baer if for any subset X of
M, annr(X) = eR, where e = ¢ € R. (2) Mgy is called quasi-Baer if,
for any submodule X C M, anng(X) = eR, where ¢2 = e € R. (3)
Mp is called p.p. if for any element m € M, anng(m) = eR, where
e? = e € R. Clearly, a ring R is Baer (resp. p.p. or quasi-Baer) if and
only if Rp is Baer (resp. p.p. or quasi-Baer) module. If R is a Baer
(resp. p.p. or quasi-Baer) ring, then for any right ideal I of R, Ig is
Baer (resp. p.p. or quasi-Baer) module.

The module Mp, is called principally quasi-Baer (or simply p.q.-Baer)
if for any m € M, anng(mR) = eR, where e? ='e € R. Tt is clear that R
is a right p.q.-Baer ring if and only if Rgr-is a p.q.-Baer'module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

Here, we impose («, d)-compatibility assumption on the module Mp
and prove the following results, extending many results on rings to mod-
ules:

(1) The module Mpg is quasi-Baer (resp. p.q.-Baer) if and only if
M]z]g is quasi-Baer (resp. p.q.-Baer), where S = R[z; «, d].

(2) If MR is (o, d)-Armendariz, then Mg is Baer (resp. p.p.) if and
only if M[x]s is Baer (resp. p.p.).

Also, we give examples to show that («, d)-compatibility assumption
on Mg in the preceding results is not superfluous. Among applications,
we obtain some results of [12] and [10] as corollaries of our results.

2. Polynomials over Baer and Quasi-Baer Modules

Definition 2.1. (Annin [3]) Given a module Mg, an endomorphism
a 'R — R, and an a-derivation 0 : R — R, we say that Mg is «-
compatible if for each m € M, r € R, we have mr = 0 < ma(r) = 0.
Moreover, we say that Mg is §-compatible if for each m € M, r € R,
we have mr = 0 = mé(r) = 0. If Mg is both a-compatible and §-
compatible, we say that Mp is («, §)-compatible.
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Recall that an R-module Ng is called prime if N # 0 and anng(N) =
anng(N' ), for every nonzero submodule N' C N.

The following example shows that there exists an («a,d)-compatible
module Mg such that Mg and M[z]g[.qa,5 are quasi-Baer.

Example 2.2. [3, Example 4.6] Let Ry be a domain of characteristic
zero, and R := Ry[t]. Define a|g, = Id and a(t) = —t. Now, for

a € Ry, set
-1 p s
. ) at it 1 is odd
0at’) = { 0 if 1is even.
It is shown in [19] that § is an a-derivation on R. Let My := Ry® Ry @
Ry®---, wheret € R acts on Mg as follows: for (mg,my, mas+--) €M,
we set (mg, my, ma, - - )t := (0, moko, mi ki, maka, -+ ), where the k; (i €
N) are fized nonzero integers. We show that Mg is (o, §)-compatible.
For this, it suffices to show that anng(m) = 0, whenever 0 #m €
M. Suppose that (ag, a1, az, -+ )(bet" + b 1t" 1 + Phigher terms”) = 0,
where a;,b; € Ry, for every i € N and b # 0. First, applying t" to
(ap,ar,ag,---) gives:
(0,0,---,0,a0koks - kr—1,a1kika - kr, - )(br' & bpp1t + “higher terms”) = 0.

Upon computing this expression, we deduce that agkoky - - - k.—1b, = 0.
Since the characteristic is zero, R is a domain, and koky - - - k.—1b, # 0,
we deduce that ag = 0. Now, we may proceed inductively to show that
a; = 0, for all i. From this calculation, we deduce at once that Mg is
(a, §)-compatible. Moreover, the calculation implies that Mg is prime,
and anng(N) = {0}, for each nonzero submodule N of M. Therefore,
Mp is quasi-Baer. Hence, M[CU]R[x;aﬁ] 1$ quasi-Baer, by Theorem 2.11.

Remark 2.3. (a) If Mg is a-compatible (resp. d-compatible), then so
is any submodule of Mpg.

(b) If My, is a-compatible (resp. §-compatible), then Mg is o -compatible
(resp. &6'-compatible), for all i > 1.

Lemma 2.4. Let My be an («,d)-compatible R-module. Let m € M,
and a,b € R. Then, we have the followings:
(1) If ma = 0, then ma'(67(a)) = 0 = md’(a’(a)), for any positive
integers i, j.
(2) If mab = 0, then ma'(a)d’ (b) = 0 = md’(a)a’(b), for any posi-
tive integers i, j.
(3) anng(ma) = anngr(ma(a)) C anng(mo(a)).
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Proof. (1) It follows from Remark 2.3.

(2) It is enough to show that ma(a)d(b) = 0 = md(a)a(a). Since
Mp is §-compatible, mab = 0 implies that mad(b) = 0 and md(adb) =
md(a)b + ma(a)d(b) = 0. Since Mg is a-compatible, mab = 0 implies
that ma(ab) = ma(a)a(b) = 0, and so ma(a)b = 0. Thus, ma(a)d(b) =
0. Hence, md(a)b = 0 and md(a)a(a) = 0.

(3) Observe that the a-compatibility of Mp yields ma(a)b = 0 <
ma(a)a(b) =0 < ma(ab) = 0 < mab = 0, for each b € R. It is remains
only to show that anng(ma) C anng(md(a)). Let mab = 0, for some b €
R. Using §-compatibility, we get 0 = md(ab) = ma(a)d(b) +md(a)b =0
and hence mé(a)b = 0, as desired. O

Lemma 2.5. Let Mg be an («, §)-compatible module, m(x) = mo—+-- -+
mpx® € M[z] and r € R. If m(x)r = 0, then myr = 0, for each i.

Proof. An easy calculation using Eq. (1.1) shows that
0 =m@)r = Y5y Y5, my f(r)a and so

k
(2.1) ijff(r) = 0 for each i < k.
j=i

Starting with i = k, Eq. (2.1) yields mpa*(r) = 0, and so a-compatibility
of Mp yields myr = 0. Now, assume inductively that m;r = 0, for each
j > i. By («,d)-compatibility of Mg, for j > i we have mjfij(r) = 0.
Using Eq. (2.1) again, we deduce that m;a’(r) = 0, and so m;r = 0 as
needed. O

Following Anderson and Camillo [1], a module Mpg is called Armen-

dariz if whenever m(z) f(x) = 0, where m(z) = >_;_,m;z’ € M[z] and
f(z) = Z;:O ajr’? € R[z], we have m;a; = 0, for all i, j.
Definition 2.6. Given a module Mg, an endomorphism o : R — R, and
an-a-derivation § : R — R, we say Mg is (a, 0)-quasi Armendariz (resp.
(v, 0)-Armendariz), if whenever m(x) = Zf:o mzt € M(x] and f(z) =
> 720 bjz) € R[z;«, ] satisfy m(z)R[z; o, 8] f(z) = 0 (resp. m(z)f(x) =
0), we have m;x'Rbjz’ = 0 (resp. m;z'a;x’ =0), for alli,j.

For a module Mg, put
Anng(sub(M)) = {anng(N) | N is a submodule of M}.
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Clearly, A = anng(N) is an ideal of R for each submodule N of M.

Proposition 2.7. Let Mg be an (a, )-compatible module and S be the
skew polynomials ring R[z;c,d]. Then, the following statements are
equivalent:

(1) Mg is (o, 0)-quasi Armendariz.

(2) ¥ : Anng(sub(M)) — Anng(sub(M|x])); A — AS is bijective.

Proof. (2) = (1). Let m(x) = mo + mz + ... + mpz® € M[z] and
f(z) =bo + bz + ... + bpa™ € § satisfy m(x)Sf(x) = 0. Then, f(z) €
anng(m(z)S) = AS, where A is an ideal of R. Hence, by, ,by €
A, and so m(x)Rb; = 0, for j = 0,---,m. By lemmas 2.4 and 2.5,
mixinj:z:j =0, for all i, j. Therefore, Mp is («, d)-quasi Armendariz.
(1) = (2). Let A € Anng(sub(M)). Then, there exists a submodule
N of M such that A = anng(N), and hence anng(Nz]) = AS, by
Lemmas 2.4 and 2.5. Thus, % is a well defined map. Assume that B €
Anng(sub(M[z])). Then, there exists a submodule N of M|[z]| such that
B = anng(N). Let B; denote the set of all coefficients of elements of B
in R and N; denote the set of all coefficients of elements of N in M. We
claim that annr(N1R) = B1R. Let m(x) =mp+miz+ ...+ mpak € N
and f(x) = by + bix + ... + byx™ € B. Then, m(x)Sg(x) = 0. Since
MR is (o, §)-quasi Armendariz and (o, )-compatible, m;Rb; = 0, for all
i,7. Thus, (N1R)(B1R) = 0, and so B1R Canng(N1R). Since Mg is
(a, §)-compatible, anng(N1R) < BiR. Thus, anng(N1R) = B1 R, and
so anng(N) = (B1R)S. O

Following Tominaga [25], an'ideal I of R is said to be left s-unital if
for each a € I there is-an & € I such that xa = a. If an ideal I of R is
left s-unital, then, for any finite subset F' of I, there exists an element
e € I such thater = z, for each x € F. A submodule N of a right
R-module M is called a pure submodule if N @ g L — M ®pr L is a
monomorphism for every left R-module L. By [25, Proposition 11.3.13],
an ideal I is left s-unital if and only if R/I is flat as a right R-module if
and onlyif I is pure as a right ideal of R.

Proposition 2.8. Let Mp be an («,d)-compatible module and S =
R[z;;6]. Then, the followings are equivalent:
(1) annr(mR) is left s-unital for any element m € M.
(2) anng(m(z)S) is left s-unital for any element m(z) € M[z]. In
this case, Mg is («,d)-quasi Armendariz.
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Proof. (1) = (2). First, we prove that Mp is («,d)-quasi Armendariz.
Suppose that (mg 4+ miz + ... + mpa®)S(bg + bix + ... + b,z™) = 0, with
m; € M and b; € R. Then,

(2.2) (mo + mix + ... + mpa®)R(bg + b1 + ... 4+ bpa™) = 0.

Since Mg is a-compatible, myRb, = 0. Then, b,, € anng(myR), and so
mpa®Rb,z" = 0, by Lemma 2.4. Since annp(miR) is left s-unital,
there exists ex € anng(mgR) such that exb, = b,. Replacing R by
Rey, in Eq. (2.2), and using Lemma 2.4, we obtain (mg + mix + ... +
mp_12* ) Rey(bo+brz+...+b,2™) = 0. Hence, my_1 Rb,, = Oysince My
is a-compatible. Then, b, € anng(my_1R), and so my_12* ' Rba" =
0, by Lemma 2.4. Hence, b, € anng(miR) N anng(mp=1R). Since
annp(mg_1R) is left s-unital, there exists f € anng(my_1R) such that
fon = b,. If we put ex_1 = enf, then ex_1b, = b, and ep_1 €
anng(miR) Nanng(mg_1R). Next, replacing R by Rej—; in Eq. (2.2),
and using Lemma 2.4, we obtain (mg+miz+...+my_ox* ) Rep_1 (bo+
biz + ... + bpa™) = 0. Hence, we have b, € anng(my_2R), and so
mp_ox*2Rb,x™ = 0, by Lemma 2.4. Continuing this process, we get
miz'Rbyz™ = 0, for i = 0,--- , k. Using induction on k + n, we ob-
tain miw"ijxj = 0, for all 7,j. Therefore, Mp is («,d)-quasi Ar-
mendariz. Let m(x) = mqo + miz + ..omya® € M[z] and f(x) =
bo + bz + ... + bpa™ € anng(m(x)S). Then, m;Rb; = 0, for all 4, j.
Since anngr(m;R) is left s-unital, there exists e; € anng(m;R) such that
bj = e;bj, for j = 0,1,.-- ,m. Put e = eger---e;. Then, b; = ebj,
for j = 0,1,--- ,m, and so ef(x) = f(z). Clearly, e € anng(m(x)S).
Therefore, anng(m(a)S) is left s-unital.

(2) = (1). Let m € M. By using Lemma 2.4, anng(mR) C
anng(mS). Hence, for any b € anng(mR), there exists a polynomial
f(x) € S such that f(x)b = b. Let ag be the constant term of f(x).
Then, agb = b, by (e, §)-compatibility of Mg. Clearly, ag € anng(mR).
Therefore, anng(mR) is left s-unital. O

By Proposition 2.8, if anng(mR) is left s-unital for any element m €
M, then Mg is a-quasi Armendariz. But the converse is not true, in
general. The following example shows that there exists an a-compatible
ring R such that Rp is a-quasi Armendariz, but anng(mR) is not left
s-unital for some m € R.
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Example 2.9. [26, Example 2.4] For a given field F', let
S={(an)o>, € HF| an is eventually constant},

which is a subring of the countably infinite direct product [[F. Then,
S is a commutative ring. Let R = S|[z]]. Clearly S is a reduced ring.
Suppose that f(x) = ap + a1z + -+ and g(x) = by + biz + --- € S[[z]]
are such that f(x)g(x) = 0. Then, from [1, p. 2269], it follows that
a;bj = 0, for all i,j. Thus, R is a reduced ring. Let o be the S-
automorphism of R such that a(x) = —x. Clearly, Rr is a-compatible.
Hence R is a-quasi Armendariz, by [12, Proposition 6], and [10, Lemma
2.2]. We show that there exists m € R such that annr(mR) is not left
s-unital. Let m = mgy + mix + - -+, where mg = (0,1,0,0,- -+ )ym; =
(0,1,0,1,0,0,---),my =(0,1,0,1,0,1,0,0,---),---. We show that
annr(mR) is not left s-unital. Suppose that anng(mR) is left s-unital.
Let f = fo+ fix+--- € R, where
fo=1(1,0,0,0,---), f1 =(1,0,1,0,0,0,---), f2 = (1,0,1,0,1,0,0,0,- - - ), -~ .

Then, mf = 0, and so mRf = 0, since R is reduced. Hence, f €
annrg(mR). Thus, there exists h € anng(mR) such that hf = f. Sup-
pose that h = hg + hixz + ---. Now, mh'=.0 and from [1, p. 2269],
it follows that m;h; = 0, for all i,j, and so there exists n; € N such
that h; has the form (b],0,b%,0,- - ,bénﬁl,0,0,0,--'), where b), € F,
j=0,12---. From (h—1)f = 0, 4t follows that (ho — 1)f; = 0
and hjf; = 0, for all i and j > 1, and so there exists m; € N such
that hj has the form (0,b3,0,05,0,:+- b 0,0,0,---), where b € F,

2m;>
3=1,2---. Thus, hy = ho = --- =0; and]so h = hg. This contradicts
with hofi = fi, 1 = 0,1, - Thus, anng(mR) is not left s-unital.

Clearly, if Mp is quasi-Baer, then annr(mR) is left s-unital for each
m € M. But the converse is not true, in general. The following example
shows that there exists a ring R such that anng(mR) is left s-unital for
each m € R, but R is not quasi-Baer. Recall that a ring R is called
a right Bezout ring if every finitely generated right ideal of R is prin-
cipal: Recall that the weak global dimension of a ring R is defined as
sup{fd(A)|A is a right R-module}. Note that the weak global dimen-
sion <1 if and only if every right ideal of R is flat.

Example 2.10. [26, Example 2.5] Let Z be the ring of integers and let

S=(]z/2z)/(EPz/2z).
=1 =1
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Then, S is clearly a Boolean ring and by [8, p. 64], the weak global
dimension of S[[z]] is one and S[[z]] is not semihereditary. Let R =
S[lz]]. Then, every principal ideal of R is flat, and so R/anng(aR) =
R/anng(a) = aR is flat. Thus, anng(aR) is pure as a right ideal of
R, for every a € R. In [8, Theorem 43], it was shown that the power
series ring A[[z]] over a von Neumann reqular ring A is semihereditary
if and only if A[[x]] is a Bezout ring, in which all principal ideals are
projective. On the other hand, by [8, Theorem 42], S[[z]] is a Bezout
ring since the weak global dimension of S[[z]] is one. Thus, R is not
p.q.-Baer.

Since quasi-Baer (p.q.-Baer) modules satisfy the hypotheses of Propo-
sition 2.8, by using Proposition 2.7 we have the following results.

Theorem 2.11. Let My be an («,§)-compatible module. Then, Mp is
quasi-Baer (resp. p.q.-Baer) if and only if M|x]g is quasi-Baer (resp.
p.q.-Baer); in this case, Mg is an («,0)-quasi Armendariz module.

The following examples show that the a-compatibility condition on
Mp in Theorem 2.11 is not superfluous.

Example 2.12. [3, Example 2.7] Let F' be any field of characteristic
zero, and set R := F[t|. Let a be the F-automorphism of R such that
a(t) =t+1, and set S := R[x; a].. Consider the right R-module Mp :=

Ff[t)] and the right S-module Ps :=M|z|s. Using “—" to mean “modulo

(t2

(t?)”, mote that since t.t = 0 but-#.(t + 1) # 0 , the a-compatibility
condition fails here.” We show that Ps is prime. It suffices to show that,
for any nonzero submodule P C Ps, we have anng(P') = 0. Choose
any 0 # p' € P'. We may write

=gtz + g+ e P,

where g (t) #0 in Mp. It suffices to show that ann(p’'Ss) = 0. Suppose
there exists s € S with (p'S)s = 0. Write s = fo(t) + filt)r+--- € S
with. f;(t) € R, for each j. Now, for each i > 0, we have

0 = (gr(t)z*** + “higher terms”)(fo(t) + “higher terms”)

= ge(t) fot + k + 0)z* + “higher terms.”

Hence, we have gi(t)fo(t + k + i) = 0 in Mg. So, for each i > 0,
we have gp(t)fo(t + k +14) € (t?) in R. But gi(t) # 0 implies that
gr(t) ¢ (t2). From this, we conclude that t divides fo(t + k + i), for
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each i > 0. Putting t = 0, we have that fo(k + i) = 0, for each i > 0.
Since F' has characteristic zero, we conclude that fo(t) = 0. Now, we
may go back and repeat this argument for fi, fo, -+, in turn, eventually
concluding that s = 0. Thus, as desired, we have anng(p'S) = 0. Hence,
Ps is prime with anng(P) = 0. Thus, M|x]s is quasi-Baer. Since
annr(M) = (%) and (t?) does not have any idempotents, Mp is not
quasi-Baer.

Example 2.13. Let Ry denote any domain and let R := Ry[t]. Let
a: R — R be defined by a(t) =0 and a|gr, = Id. Next, let M := R and
S = Rlz;al. Observe that a-compatibility evidently fails in this case.
Since R is a domain, it is quasi-Baer. Now, consider the S-submodule
Q = xS. Then, anng(Q) = tS and tS does not have any. idempotents.
Hence, M|z|g is not quasi-Baer.

The following example shows that §-compatibility condition on Ry in
Theorem 2.11 is not superfluous.

Example 2.14. [4, Example 11] There is a ring R and_a derivation 0
of R such that R[x;0] is a Baer (hence a quasi-Baer) ring, but R is not
quasi-Baer. In fact, let R = Zs[t]/(t?) with the derivation § such that
§(t) = 1, where t = t+(t2) in R and Zs[t] is the polynomial ring over the
field Zs of two elements. Consider the Ore extension R[x;d]. If we set
e11 = tx, e1n = 1, e91 = ta?+x, andesy = 14Tz in R[x; 6], then they form
a system of matriz units in R[x;d]. Now, the centralizer of these matriz
units in R[x; 0] is Za[z?). Therefore, R[z; ] = Ma(Zo[z?]) = Mo (Zs)[y],
where Ma(Z2)[y] is the polynomial ring over Ma(Zsa). So, R[z;d] is a
Baer ring, but R is not quasi-Baer.

Corollary 2.15. [7, Corollary 2.8] Let R be a ring. Then, R is quasi-
Baer (resp. right p.q.-Baer) if and only if R[z] is quasi-Baer (resp. right
p.q.-Baer).

Corollary 2.16. [10, Corollary 2.8] Let R be an («,d)-compatible ring.
Then, R is quasi-Baer (resp. right p.q.-Baer) if and only if R[x;«, 6] is
quasi-Baer (resp. right p.q.-Baer).

According to Lee-Zhou [21], a module Mp, is called reduced if for any
m € M and any a € R, ma = 0 implies mR N Ma = 0. It is clear that
R is a reduced ring if an only if Ry is reduced. If Mp is reduced, then
Mp is p.p. if and only if Mg is p.q.-Baer.
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Lemma 2.17. The followings are equivalent for a module Mpg.

(1) Mg is reduced and (c, d)-compatible.

(2) The following conditions hold: for any m € M and a € R,
(a) ma = 0 implies mRa = 0 = mRa(a).

(b) ma(a) = 0 implies ma = 0.

(¢) ma = 0 implies md(a) = 0.

(

2

d) ma* = 0 implies ma = 0.

Proof. The proof is straightforward. O

Lemma 2.18. Let Mg be a reduced (o, d)-compatible module.  Then,
Mpg is (a, 9)-Armendariz.

Proof. Let m(z) = mo+---+mya® € M[z], and f(7) = ap+- - -+an2z™ €
R[z; a, 6] such that m(z)f(x) = 0. Hence, myRa, =0, by Lemmas 2.4
and 2.17. Thus, the coefficient of z¥*"~! in equation m(z)f(z) = 0 is
mpak(an,_1) +my_1a* 1 (a,) = 0. Multiplying this equation by a,, from
the right-hand side, we obtain my_1a*"!(ay)a, = 0. Hence, my_1a2 =
0, and so mg_1a, = 0, by Lemma 2.17: Therefore, mga,—1 = 0, and so
mkxkan,lx”_l = mk_lxk_lanx" = 0, by Lemma 2.4. Continuing this
process, we can prove mmiajxj = 0, for each 1, j. O

For a module Mg, put Anng(2") = {anng(N) | N is a subset of M}.
In a similar way asn the proof of Proposition 2.7, we can prove the
following.

Proposition 2.19. Let Mg be an (a,0)-compatible module and S be
the skew polynemial ring R[z;a,d]. Then, the following statements are
equivalent.

(1) Mg is (ay0)-Armendariz.

(2) ¥ s Anng(2M) — Anng(2M[#); A — AS is bijective.

Theorem 2.20. Let Mg be an (a, §)-compatible module and S = R[zx; «, d].
If My is («, 6)-Armendariz, then Mpg is Baer (resp. p.p.) if and only if
M]zx]s is Baer (resp. p.p.).

Proof. Tt follows from Lemma 2.18 and Proposition 2.19. g
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According to Krempa [18], an endomorphism « of a ring R is called
rigid if ac(a) = 0 implies a = 0, for a € R. A ring R is said to be a-rigid
if there exists a rigid endomorphism « of R.

Corollary 2.21. [12, Theorem 14| Let R be an «-rigid ring. Then, R
is Baer (resp. p.p.) if and only if Rlx;«, ] is Baer (resp. p.p.).

Proof. Since a-rigid rings are reduced and («, §)-compatible, the proof
follows from Lemma 2.18 and Theorem 2.20. O

Corollary 2.22. [4, Theorem B] Let R be a reduced ring. Then, R is
Baer (resp. p.p.) if and only if R[x| is Baer (resp. p.p.).
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