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ON THE DENSENESS OF THE INVERTIBLE GROUP
IN UNIFORM FRÉCHET ALGEBRAS
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Communicated by Fereidoun Ghahramani

Abstract. We first extend the Arens-Royden theorem to unital,
commutative Fréchet algebras under certain conditions. Then, we
show that if A is a uniform Fréchet algebra on X = MA, where
MA is the continuous character space of A, then A does not have
dense invertible group, if we impose some conditions on X. On
the other hand, if A has dense invertible group, then it is shown
that A = C(X), with certain conditions on X. Thus, the results
of Dawson and Feinstein on denseness of the invertible group in
Banach algebras are extended to uniform Fréchet algebras.

1. Introduction

Here, we assume that all algebras are unital and commutative.
Let B be a unital commutative Banach algebra (B-algebra) with the

character space (maximal ideal space) MB = X, and let G(B) denote
the group of invertible elements in B and exp(B) = {ex : x ∈ B}. The
multiplicative group G(B)/ exp(B) is denoted by H1(B). The Arens-
Royden theorem asserts that H1(B) and H1(C(X)) are isomorphic [8,
p. 413 ], or in other words, for every f in C(X), which does not vanish
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16 Ghasemi Honary and Najafi Tavani

on X, there exists g ∈ G(B) such that f/ĝ has a continuous logarithm
on X [5, III. Theorem 7.2].

Here, we obtain a result similar to the Arens-Royden theorem, for
certain unital commutative Fréchet algebras, and then we extend some
results of Dawson and Feinstein on denseness of the invertible group [3]
to uniform Fréchet algebras.

Definition 1.1. Let A be a topological algebra. Then, A is a locally
multiplicatively convex algebra or an LMC algebra if there is a base of
neighbourhoods (Vα) of the origin consisting of sets which are absolutely
convex and multiplicative, i.e., Vα · Vα ⊆ Vα. Equivalently, an LMC
algebra is a topological algebra whose topology is defined by a separating
family (pα) of submultiplicative seminorms, i.e., pα(fg) ≤ pα(f)pα(g),
for all f, g ∈ A.

A Fréchet algebra (F -algebra) A is an LMC-algebra which is also a
complete metrizable space. Its topology can be defined by an increasing
sequence (pn) of submultiplicative seminorms. Without loss of gener-
ality, we may assume that pn(1) = 1, for all n ∈ N, if A has a unit.
A uniform Fréchet algebra (uF-algebra) is a Fréchet algebra A with the
defining sequence (pn) of seminorms such that, for all f ∈ A and n ∈ N,
pn(f2) = (pn(f))2 [6, Definition 4.1.2]. For those terms concerning topo-
logical algebras or Fréchet algebras, which are not defined here, one may
refer, for example, to [2], [6] and [7].

Definition 1.2. The weak* topology on the dual space A∗ is denoted by
σ = σ(A∗, A), so that ϕν → ϕ in (A∗, σ) if and only if ϕν(f) → ϕ(f),
for all f ∈ A. The continuous character space of an F -algebra (A, (pn)),
denoted by MA, is the set of all non-zero continuous complex-valued
homomorphisms on A. The space MA is taken to have the related weak*
topology from A∗, which is called the Gelfand topology. We always endow
MA with the Gelfand topology.

The Gelfand transform of an element f ∈ A is defined by f̂(ϕ) = ϕ(f),
for all ϕ ∈ A∗. The definition of the weak* topology shows immediately
that f̂ is continuous on (A∗, σ). We also take Â to be the set of all
Gelfand transforms f̂ of elements f in A, see, for example, [2, Section
4.10].

Definition 1.3. A Hausdorff space X is hemicompact if there exists
a sequence (Kn) of compact subsets of X such that, for all n ∈ N,
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On the denseness of the invertible group in uniform Fréchet algebras 17

Kn ⊆ Kn+1, and each compact subset K of X is contained in some Kn.
The sequence (Kn) is called an admissible exhaustion of X.

A Hausdorff space is a k-space if every subset intersecting each com-
pact subset in a closed set is itself closed.

Examples of k-spaces are locally compact spaces and first countable
spaces [4, p. 248]. It is also known that if X is a σ-compact and locally
compact space then it is hemicompact. Moreover, if X is a hemicompact
k-space, then C(X) is a Fréchet algebra with respect to the compact
open topology [6, Remark 3.1.10]. Note that a complex-valued function
f on a k-space X is continuous if and only if it is continuous on each
compact subset of X. Hence, whenever X is a hemicompact k-space
with the admissible exhaustion (Xn), a necessary and sufficient condition
for the continuity of a complex-valued function f on X is that f is
continuous on each Xn.

For an F -algebra (A, (pn)), let An be the completion of A/ ker pn with
respect to the norm p′n(f + ker pn) = pn(f) (f ∈ A). It is known that
A = lim←−An, the projective limit of the sequence (An) of B-algebras.
Furthermore, MA =

⋃∞
n=1MAn , as sets, in a natural way. In fact, MA is

a hemicompact space with the admissible exhaustion (MAn). For further
information, see, for example, [6, pp. 77-80] or [2, pp. 581-582 ].

We now give examples of hemicompact k-spaces and uniform algebras
on them.

Example 1.4. (i) Let U be an open subset of the complex plane. Then,
U is the union of a sequence Kn of compact subsets of U such that for
all n ∈ N, Kn ⊆ Kn+1, and each compact subset K of U is contained
in some Kn [10, Theorem 13.3]. Hence, U is a hemicompact space.
Since U is locally compact, it is also a k-space. Now, let C(U) denote
the algebra of continuous functions on U . If we define pn(f) = ‖f‖Kn

(f ∈ C(U)), then (pn) is an increasing sequence of submultiplicative
seminorms on C(U), which defines the compact-open topology on C(U)
and with respect to this topology, C(U) is a uniform Fréchet algebra.
Also, C(U) = lim←−C(Kn), the projective limit of the sequence (C(Kn))
of B-algebras.

(ii) Let A(U) denote the algebra of analytic functions on U . Then,
A(U) is a closed subalgebra of C(U), and so it is a uniform Fréchet
algebra.

Definition 1.5. Let X be a non-empty topological space, and let A be
an algebra of complex functions on X. Then, A is a function algebra on
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18 Ghasemi Honary and Najafi Tavani

X if A separates the points of X and contains the constants and if the A-
topology on X is the given topology. The algebra A is a Fréchet function
algebra (Ff-algebra) or a Banach function algebra (Bf-algebra) on X
if A is a function algebra which is also an F -algebra or a B-algebra,
respectively, with respect to some topology [2, Definition 4.1.1].

It is interesting to note that if there is a function algebra on a topo-
logical space X, then X must be Hausdorff and completely regular.

Definition 1.6. Let A be an Ff-algebra (Bf-algebra) on X such that
the evaluation homomorphisms ϕx : A −→ C are all continuous, where
ϕx(f) = f(x), for f ∈ A and x ∈ X. Obviously, the map x −→ ϕx from
X into MA is continuous and injective. If this map is also surjective,
then it is in fact a homeomorphism from X onto MA, since the topology
on X is the A-topology. In this case, we say that A is a natural Ff-
algebra (Bf-algebra) on X, and we identify X with MA.

Note that evaluation homomorphisms are always continuous in Bf -
algebras.

2. Continuous Functions of Exponential Type

In this section, we impose some conditions on the elements ofG(C(X))
to guarantee that they are in exp(C(X)), when X is a hemicompact
space.

First, we need the following elementary lemma, which can be proved
by a classical argument.

Lemma 2.1. Let X be a connected, Hausdorff space. If f, g ∈ C(X)
such that exp f = exp g on X, then there exists an integer k such that
f = g + 2kπi on X.

Theorem 2.2. Let X be a hemicompact k-space with an admissible
exhaustion (Xn) such that each Xn is connected. If f ∈ C(X) and
f |Xn ∈ exp(C(Xn)), for all n ∈ N, then f ∈ exp(C(X)).

Proof. By the hypothesis, for each n ∈ N, there exists gn ∈ C(Xn) such
that f = exp gn on Xn. Since exp gn+1 = exp gn on Xn, by Lemma
2.1, there exists an integer kn ∈ Z such that gn+1 = gn + 2knπi on Xn.
Taking k0 = 0 and defining g on each Xn by g = gn − 2(

∑n−1
j=0 kj)πi,
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On the denseness of the invertible group in uniform Fréchet algebras 19

we observe that g is a well-defined continuous function on X. It is then
clear that f = exp g on X. �

Theorem 2.3. Let X be a hemicompact k-space with an admissible
exhaustion (Xn) such that each Xn has finitely many components. If
f ∈ C(X) and f |Xn ∈ exp(C(Xn)), for all n ∈ N, then f ∈ exp(C(X)).

Proof. Let x ∈ X and n ∈ N. If x ∈ Xn, take Cn(x) to be the
component of Xn containing x; otherwise, take Cn(x) = φ. Clearly,
each Cn(x) is compact and Cn(x) ⊆ Cn+1(x). For each x ∈ X, take
C(x) =

⋃∞
n=1Cn(x). We will show that C(x) is a hemicompact k-space

with the admissible exhaustion (Cn(x)).
Obviously, any closed subset of a hemicompact k-space is again a

hemicompact k-space. So, it is enough to show that C(x) is closed. Let
K be an arbitrary compact subset of X having nonempty intersection
with C(x). Since X is hemicompact, K ⊆ Xn, for some n ∈ N. Let
Y1, Y2, . . . , Ym be components of Xn which have nonempty intersection
with C(x). For each i, 1 ≤ i ≤ m, there exists a large enough ki ∈ N
such that ki ≥ n and Yi ∩ Cki

(x) 6= φ. Since Yi is connected and Cki
(x)

is a component of Xki
, it follows that Yi ⊆ Cki

(x) (1 ≤ i ≤ m). Hence,⋃m
i=1 Yi ⊆ Ck(x), where k = max{k1, k2, . . . , km}, and so
K ∩ C(x) ⊆ C(x) ∩Xn = C(x) ∩ (∪m

i=1Yi) ⊆ C(x) ∩ Ck(x) = Ck(x).
Therefore, K ∩ C(x) = K ∩ Ck(x), which implies that K ∩ C(x) is a

closed subset of X. Since X is a k-space, we conclude that C(x) is a
closed subset of X.

Now, let K be a compact subset of C(x). By following a similar
argument as in the above paragraph, we haveK = K∩C(x) = K∩Ck(x),
for some k ∈ N, and hence (Cn(x)) is an admissible exhaustion of C(x).

It is easy to see that for every x, y ∈ X, either C(x) = C(y) or
C(x) ∩ C(y) = φ. Therefore, the family {C(x) : x ∈ X} is, in fact, a
partition of X. We may choose Y to be a subset of X such that X is
disjoint union of the C(x), when x runs over Y .

Now, let f ∈ C(X) and f |Xn ∈ exp(C(Xn)), for each n ∈ N. Since
f |Cn(x) ∈ exp(C(Cn(x))), for each x ∈ Y and n ∈ N when Cn(x) 6= φ,
then by Theorem 2.2, for every x ∈ Y , there exists a continuous function
gx on C(x) such that f = exp gx on C(x). Let g be a function defined on
X by g = gx on C(x), for each x ∈ Y . Clearly, g is well-defined. Since
for every x ∈ Y , each component of Xn having nonempty intersection
with C(x), is contained in some Ck(x), we conclude that g is continuous
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20 Ghasemi Honary and Najafi Tavani

on each component of Xn, and so it is continuous on Xn. Therefore, g
is continuous on X. Clearly, f = exp g, which completes the proof of
the theorem. �

In general, when Xn has infinitely many components, we do not know
whether the above theorem is still valid. However, the following exam-
ple shows that the result may be true even if Xn has infinitely many
components.

Example 2.4. Let M = { 1
n : n ∈ N} ∪ {0}, and X = R×M . For each

n ∈ N, take Xn = [−n, n]×M . Then, (Xn) is an admissible exhaustion
of X, i.e., X is a hemicompact space. Moreover, X is a k-space [4, p.
249]. Since for each n ∈ N, C \Xn is connected, H1(C(Xn)) is trivial,
for all n ∈ N ([1] and [3]). Now, it is clear from Theorem 2.2 that the
group H1(C(X)) = G(C(X))/ exp(C(X)) is also trivial.

Clearly, if f ∈ C(X) and f |Xn ∈ exp(C(Xn)), for each n ∈ N, then
f(x) 6= 0, for every x ∈ X, and hence f ∈ G(C(X)) = exp(C(X)). So,
Theorem 2.3 is valid, although, for each n ∈ N, Xn has infinitely many
components.

To present the main result of this section, we need the following pre-
liminaries.

If A is a uF -algebra, then Â is a natural Ff-algebra on X = MA.
Since the Gelfand map is a topological and algebraical isomorphism on
a uF -algebra, we can consider each uF-algebra A, as a pointseparating
complete unital subalgebra of C(X), endowed with the compact-open
topology, where X = MA is a hemicompact space [6, Theorem 4.1.3].
On the other hand, if we take Xn = MAn then Â = lim←− ÂXn , the projec-
tive limit of the dense projective system . . . −→ ÂXn−1

rn−→ ÂXn −→ . . . ,
where (Xn) is the admissible exhaustion of X = MA, and ÂXn is the
completion of Â|Xn with respect to the supremum norm ‖ · ‖Xn , and the
rn are the restriction mappings. Since ÂXn is algebraically and topolog-
ically isomorphic with An (n ∈ N), it is then a natural uniform (Banach)
algebra on Xn. Hence, identifying A with Â, each uF -algebra A is the
projective limit of a sequence of natural uniform Banach algebras. In
this case, we say that A is a uF -algebra on X = MA.

Theorem 2.5. Let A be a uF-algebra on X = MA, where X is a k-
space, and for each n ∈ N, Xn = MAn has finitely many components. If
f ∈ A and f |Xn ∈ exp(AXn), for all n ∈ N, then f ∈ exp(A).
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On the denseness of the invertible group in uniform Fréchet algebras 21

Proof. By the hypothesis, for each n ∈ N, there exists gn ∈ AXn such
that f |Xn = exp gn. By Theorem 2.3, there exists an element g ∈ C(X)
such that f = exp g. Since f |Xn ∈ AXn , and AXn is a natural Bf -
algebra on Xn, we can apply the Implicit Function Theorem [8, Theorem
3.5.12] to the function F (w, z) = ew − z, to obtain hn ∈ AXn such
that f |Xn = exphn and moreover, hn = g|Xn , for each n ∈ N. Since
A = lim←−AXn and g|Xn ∈ AXn , it follows that g ∈ A, and this completes
the proof of the theorem. �

3. Extension of the Arens-Royden Theorem to
Fréchet Algebras

Let X be a topological space, and let T be the unit circle in the plane.
The group of homotopy classes of maps X −→ T , which is denoted by
π1(X), is called the first cohomotopy group of X. If X is a compact
Hausdorff space, then it is known that H1(C(X)) = G(C(X))/ exp(C(X))
is isomorphic with π1(X). See, for example, [8, p. 411]. Following the
same technique as in [8, p. 411], we apply Theorem 2.3 to extend the
above result.

Theorem 3.1. Let X be a hemicompact k-space with an admissible
exhaustion (Xn) such that each Xn has finitely many components. Then,
π1(X) is isomorphic with H1(C(X)).

Proof. Let L denote the set of all continuous functions from X into the
unit circle T . For an element g ∈ L, the homotopy class of g is denoted
by [g]. Let θ : G(C(X)) −→ π1(X) be the group homomorphism, defined
by θ(f) = [ f

|f | ]. Obviously, θ is surjective. Now, we show that ker θ =
exp(C(X)).

If g ∈ C(X), then exp g/| exp g| = exp(iImg). Hence, the function
G(x, t) = exp(i(1− t)Img(x)), for x ∈ X and t ∈ [0, 1], defines a homo-
topy between 1 and exp(iImg) so that θ(exp g) is the identity element
in π1(X). Hence, exp(C(X)) ⊆ ker θ.

For the reverse inclusion, let g ∈ G(C(X)) and θ(g) = 1. Then,
there exists a homotopy F : X × [0, 1] −→ T with F (x, 0) = g(x)

|g(x)| and
F (x, 1) = 1. For each n ∈ N, take Fn = F |Xn×[0,1] and gn = g|Xn .
Clearly, t −→ Fn(·, t) is a continuous path from 1 to gn

|gn| in G(C(Xn)),
and exp(C(Xn)) is the principal component of G(C(Xn)). Therefore,
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gn

|gn| ∈ exp(C(Xn)). On the other hand, the function I(x, t) = g(x)
1−t+t|g(x)|

defines a homotopy between g and g
|g| . If we take In = I|Xn×[0,1],

then t −→ In(., t) is a continuous path connecting gn to gn

|gn| . Thus,
gn ∈ exp(C(Xn)), for each n ∈ N. Now, Theorem 2.3 implies that
g ∈ exp(C(X)). Therefore, ker θ = exp(C(X)), that is, θ induces a
group isomorphism between H1(C(X)) and π1(X). �

Before presenting next results, let us recall some elementary notions,
which can be found in [6]. Let (A, (pn)) be a unital, commutative F -
algebra, and let An denote the completion of A/ ker pn with respect
to the norm p′n(f + ker pn) = pn(f). For each n ∈ N, let πn+1,n :
An+1 −→ An be the extension of the norm decreasing homomorphism
A/ker pn+1 −→ A/ker pn, x + ker pn+1 7→ x + ker pn. Then, πn+1,n is a
continuous, dense range homomorphism. Therefore, π∗n+1,n is a homeo-
morphism between MAn and π∗n+1,n(MAn) ⊆ MAn+1 . Identifying MAn

with π∗n+1,n(MAn), for each x ∈ An+1, we have x̂|MAn
= π̂n+1,n(x) ∈

Ân. Now, by considering the function θn : H1(An+1) −→ H1(An),
x · exp(An+1) 7→ πn+1,n(x) · exp(An) (x ∈ G(An+1)), one can easily show
that {H1(An), θn} is a projective system of groups so that lim←−H

1(An)
is a subgroup of

∏∞
n=1H

1(An).
In particular, whenever A is a uF-algebra on X, we can define θn

by f · exp(An+1) 7→ rn(f) · exp(An) (f ∈ G(An+1)), where rn is the
restriction map An+1 −→ An, f 7→ f |Xn (f ∈ An+1).

Theorem 3.2. Let X be a hemicompact k-space with an admissible
exhaustion (Xn) such that each Xn has finitely many components. Then,
H1(C(X)) is isomorphic with lim←−H

1(C(Xn)).

Proof. Define the function ϕ : H1(C(X)) −→ lim←−H
1(C(Xn)), by

ϕ(f · exp(C(X)) = (f |Xn · exp(C(Xn)))n ; (f ∈ G(C(X))).

Clearly, ϕ is a group homomorphism. If f ∈ G(C(X)) such that f |Xn ∈
exp(C(Xn)), for all n ∈ N, then f ∈ exp(C(X)), by Theorem 2.3.
Hence, ϕ is injective. For the surjectivity of ϕ, let (fn · exp(C(Xn)))n ∈
lim←−H

1(C(Xn)). For each n ∈ N, there exists gn ∈ C(Xn) such that
fn+1|Xn = fn · exp gn. Since X is a normal space [6, Remarks 3.1.10],
each gn has a continuous extension to X, which is again denoted by gn.
Adopting a similar method as in the proof of Theorem 2.2, set g0 = 0
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On the denseness of the invertible group in uniform Fréchet algebras 23

and hn = fn · exp(−
∑n−1

i=0 gi) on Xn. Since fn+1|Xn = fn · exp gn, we
conclude that hn+1|Xn = hn. This shows that the function h, defined
by hn on each Xn, is well-defined, and since X is a k-space, h ∈ C(X).
In fact, h ∈ G(C(X)). Moreover, ϕ(h · expC(X)) = (fn · exp(C(Xn)))n,
and hence ϕ is surjective. �

Theorem 3.3. Let A be a unital commutative F -algebra. Then lim←−H
1An)

is isomorphic with lim←−H
1(C(MAn)).

Proof. Let (xn · exp(An))n ∈ lim←−H
1(An). For each n ∈ N, there exists

an element yn in An such that πn+1,n(xn+1) = xn · exp yn, and hence
x̂n+1|MAn

= ̂πn+1,n(xn+1) = x̂n·exp ŷn. Therefore, (x̂n·exp(C(MAn)))n ∈
lim←−H

1(C(MAn)). This shows that the function ψ : lim←−H
1(An) −→

lim←−H
1(C(MAn)), defined by (xn · exp(An))n −→ (x̂n · exp(C(MAn)))n,

is well-defined. Clearly, ψ is a group homomorphism.

Let (xn · exp(An))n ∈ lim←−H
1(An) be such that x̂n ∈ exp(C(MAn)),

for all n ∈ N. By the Implicit Function Theorem, for each n ∈ N, there
exists cn ∈ An such that xn = exp cn. Thus, ψ is injective. For the
surjectivity of ψ, let (fn · exp(C(MAn)))n ∈ lim←−H

1(C(MAn)). For each
n ∈ N, there exists hn ∈ C(MAn) such that fn+1|MAn

= fn · exphn.
On the other hand, by the Arens-Royden Theorem, for each n ∈ N,
there exist xn ∈ G(An) and gn ∈ C(MAn) such that x̂n = fn · exp gn.
Therefore, for each n ∈ N,

̂πn+1,n(xn+1) = x̂n+1|MAn
= x̂n · exp(−gn + hn + gn+1).

By applying the Implicit Function Theorem, πn+1,n(xn+1)·x−1
n ∈ exp(An),

for all n ∈ N, i.e.,

(xn · exp(An))n ∈ lim←−H
1(An).

Obviously, ψ((xn · exp(An))n) = (fn · exp(C(MAn)))n.
�

As a consequence of the above two theorems we obtain the following
result, which is an extension of the Arens-Royden theorem.

Corollary 3.4. Let A be a unital commutative F-algebra such that MA

is a k-space, and MAn has finitely many components, for each n ∈ N.
Then H1(C(MA)) is isomorphic with lim←−H

1(An).
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Corollary 3.5. Let A be a uF-algebra on X = MA such that X is a
k-space, and each Xn = MAn has finitely many components. If π1(X) is
trivial, or equivalently, if G(C(X)) = exp(C(X)), then G(A) = exp(A).

Proof. By Corollary 3.4 and Theorem 3.1, π1(X) is isomorphic with
lim←−H

1(AXn). Obviously, if f ∈ G(A), then fn = f |Xn ∈ G(AXn), for all
n ∈ N. By considering the continuous functions θn, which were defined
before Theorem 3.2, it follows that (fn · exp(AXn))n ∈ lim←−H

1(AXn).
Since π1(X) is trivial, fn ∈ exp(AXn), for all n ∈ N. Now, the result
follows by Theorem 2.5. �

Remark 3.6. (i) Recall that if X is a compact plane set, then π1(X)
is trivial, i.e., X has trivial fundamental group if and only if C\X is
connected [1].

(ii) If X is a hemicompact k-space with the admissible exhaustion
(Xn) such that C\Xn is connected for each n ∈ N, then each π1(Xn) is
trivial by (i). If, moreover, each Xn has finitely many components, then
by Theorem 2.3 π1(X) is trivial.

Remark 3.7. In Corollary 3.5, the fact that π1(X) is trivial does not
pass to compact subsets of X, i.e., π1(Xn) may not be trivial, in general,
as the following example shows.

Example 3.8. Consider the admissible exhaustion of the open unit disc
X consisting of an expanding sequence (Xn) of compact subsets, each of
which consists of the union of a closed disc centred on the origin together
with a disjoint closed annulus with two slightly larger radii. Each Xn has
then 2 components, and since C\Xn is not connected, none of the Xn

have trivial fundamental group, i.e., G(C(Xn) 6= exp(C(Xn), by Remark
3.6(i), although X does, i.e., G(C(X)) = exp(C(X)), by Remark 3.6(ii)
(it is enough to take the exhaustion (Kn) for X as the increasing closed
discs with centres at the origin). Nevertheless, the projective limit of the
fundamental groups lim←−H

1(C(Xn)) is trivial by theorems 3.1 and 3.2.

It is interesting to note that H1(C(X)) may be trivial even if X
is disconnected (consider, for example, a union of two disjoint closed
intervals or discs).
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Remark 3.9. Let A be a uF-algebra on X = MA, which is a k-space,
with each Xn having finitely many components. If A|Xn is closed in
C(Xn), that is, AXn = A|Xn, for each n ∈ N, then, by following the same
technique as in Theorem 3.2, we can obtain an isomorphism between
H1(A) and lim←−H

1(AXn). Hence, in this case, H1(C(MA)) is isomorphic
with H1(A). However, in general, we do not yet know whether there
exists an isomorphism between H1(C(MA)) and H1(A).

4. On the Denseness of Invertible Elements in a UF-Algebra

In 2003, Dawson and Feinstein obtained some results on the denseness
of the invertible group in Banach function algebras [3]. Following the
same technique and making use of the theorems proved in Section 3,
we extend some of these results to uF-algebras. For the definition of
topological dimension, refer to [9].

Theorem 4.1. Let A be a uF-algebra on X = MA such that X is a
k-space, and each Xn = MAn is locally connected. Let π1(X) be trivial,
or equivalently, let G(C(X)) = exp(C(X)). Then,

(i) If X contains a closed subspace E whose topological dimension
is at least 2, and if En = E ∩ Xn is locally connected, for all
n ∈ N, then A does not have a dense invertible group.

(ii) If A has a dense invertible group, then A = C(X).

Proof. We first note that each Xn has finitely many components.

(i) By Corollary 3.5, G(A) = exp(A). Suppose on the contrary that A
has a dense invertible group. Let B = A|E , and I = {f ∈ A : f |E = 0}.
It is easy to see that B is algebraically isomorphic with A/I. Since I is a
closed ideal of A, A/I is a Fréchet algebra with respect to the sequence
of seminorms (qk)k, defined by

qk(f + I) = inf{‖f + g‖Xk
: g ∈ I}, (f ∈ A).

If we endow B with this sequence of seminorms, then B is an Ff -
algebra on E. Note that E is a hemicompact k-space with the admissible
exhaustion (En)n. Hence, C(E) is an F -algebra.

Let F = exp(A)|E , and let C be the closure of B in C(E) with respect
to the compact-open topology. Therefore, C is a uF-algebra on E. By
our assumption, A has a dense invertible group, and so F is dense in C.
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Clearly, we may write C = lim←−CEn , where CEn is the completion of
C|En with respect to the norm ‖·‖En , for each n ∈ N. Obviously, F |En is
dense in CEn and each element in F |En has a square root in CEn . Since
each En is locally connected, it follows from Čirka’s Theorem [11, pp.
131-134] that CEn = C(En), and hence C = C(E). Since E is normal
and the invertible elements are dense in C(E), by [9, Theorem 3.2, p.
128], we have dimE ≤ 1, which is a contradiction. Therefore, A does
not have a dense invertible group.

(ii) Since π1(X) is trivial, Corollary 3.5 implies that G(A) = exp(A).
By the hypothesis, G(A) is dense in A. Hence, exp(AXn) is dense in
AXn , for all n ∈ N. Since each Xn is locally connected, again by Čirka’s
Theorem [11, pp. 131-134], we conclude that AXn = C(Xn), for all
n ∈ N. Therefore, A = lim←−AXn = lim←−C(Xn) = C(X). �

The following result for Fréchet algebras is also similar to Corollary
1.8 in [3].

Corollary 4.2. Let A be a natural uF-algebra on R. If A has a dense
invertible group, then A = C(R).

Proof. Set In = [−n, n], then C(R) = lim←−C(In). Since C\In is con-
nected, π1(In) is trivial. Hence, H1(C(In)) is trivial. By theorems 3.1
and 3.2, π1(R) is isomorphic with lim←−H

1(C(In)). Therefore, π1(R) is
trivial, and hence A = C(R), by Theorem 4.1 (ii). �

Note that we can also deduce the triviality of π1(R) and π1(C) from
Remark 3.6(ii).

Remark 4.3. One may think that the above corollary is also true if we
replace R by C. Actually this case cannot arise, since C(C) does not
have a dense invertible group. To see this, it is interesting to note that
for a hemicompact k-space X, it is known that the uF-algebra C(X) has
a dense invertible group if and only if dim(X) ≤ 1, where dim(X) is the
topological dimension of X. Since dim(R) = 1 and dim(C) = dim(R2) =
2 [9, Theorem 3.2.7], it follows that C(R) has a dense invertible group,
whereas C(C) does not have a dense invertible group.
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Acknowledgments
The authors thank Dr. F. Sady for useful conversations and helpful
remarks. They are also grateful to the referee for his valuable comments.

References

[1] A. Browder, Topology in the complex plane, Amer. Math. Monthly 107 (2000)
393-401.

[2] H. G. Dales, Banach Algebras and Automatic Continuity, The Clarendon Press,
Oxford University Press, New York, 2000.

[3] T. W. Dawson and J. F. Feinstein, On the denseness of the invertible group in
Banach algebras, Proc. Amer. Math. Soc. 131 (2003) 2831-2839.

[4] J. Dugundji, Topology, Wm. C. Brown Publishers, Dubuque, IA, 1989.
[5] T. W. Gamelin, Uniform Algebras, Chelsea Publishing Company, 1984.
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