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MULTIPLIERS OF GENERALIZED FRAMES IN
HILBERT SPACES
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Communicated by Heydar Radjavi

Abstract. In this paper, we introduce the concept of g-Bessel mul-
tipliers which generalizes Bessel multipliers for g-Bessel sequences
and we study the properties of g-Bessel multipliers when the sym-
bol m ∈ `1, `p, `∞. Also, we review the behavior of these operators
when the parameters are changing.

Furthermore, we show that equivalent g-frames have equivalent
multipliers and conversely. Finally, we specialize the results to fu-
sion frames.

1. Introduction

Frames have been introduced by Duffin and Schaeffer in [11], in con-
nection with non-harmonic Fourier series, but they have attracted more
attention since the beginning of wavelet theory. Frames have many
nice properties which make them very useful in the characterization of
function spaces, signal processing and many other fields. We refer to
[9, 12, 20] for an introduction to the frame theory and its applications.
G-frames, introduced by W. Sun in [29], are a natural generalization

of frames which cover many other extensions of frames, e.g. bounded
quasi-projectors [16, 17], pseudo-frames [21], frame of subspaces or fusion
frames [7], outer frames [1], oblique frames [10, 14], continuous frames
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[9] and a class of time-frequency localization operators [13]. Also it was
shown that g-frames are equivalent to stable spaces splitings studied in
[24]. All of these concepts are proved to be useful in many applications.
The perturbation of g-frames and some other properties of this family
of operator have been studied in [23, 30].

Bessel multipliers are investigated by Peter Balazs [2, 3, 4] for Hilbert
spaces. For Bessel sequences, the investigation of the operator M =∑
mk〈f, ψk〉ϕk, where the analysis coefficients 〈f, ψk〉 are multiplied by

a fix symbol (mk) before resynthesis ( with ϕk), is very natural and
useful and there are numerous applications of this kind of operators.
Bessel multipliers of p-Bessel sequences in Banach spaces are introduced
in [27].

In this paper, by using operator theory tools, we investigate multipli-
ers for g-Bessel sequences. We show that when the symbol m ∈ c0,
then this operator is compact and when m ∈ `1, `2, `p it is a trace
class, Hilbert-Schmidt and Schatten p-class operator, respectively. Also,
we show that equivalent g-frames have equivalent multipliers and con-
versely. Finally, we specialize the results to fusion frames.

2. G-Frames

Through this paper, H and K are Hilbert spaces and {Hi : i ∈ I} is
a sequence of Hilbert spaces, where I is a subset of Z. L(H,Hi) is the
collection of all bounded linear operators from H to Hi.

Note that for any sequence {Hi : i ∈ I}, we can assume that there
exits a Hilbert space K such that for all i ∈ I,Hi ⊆ K ( for example
K =

⊕
i∈I Hi).

Definition 2.1. A sequence {Λi ∈ L(H,Hi) : i ∈ I } is called gener-
alized frame, or simply a g-frame, for H with respect to {Hi : i ∈ I} if
there exist constants A and B, 0 < A ≤ B <∞, such that

(2.1) A‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2, ∀f ∈ H.

The numbers A and B are called g-frame bounds.

{Λi : i ∈ I} is called tight g-frame if A = B and Parseval g-frame if
A = B = 1. If in (2.1) the second inequality holds, then the sequence is
named g-Bessel sequence. {Λi ∈ L(H,Hi) : i ∈ I } is called a g-frame
sequence if it is a g-frame for span{Λ∗i (Hi)}i∈I .
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Multipliers of generalized frames in Hilbert spaces 65

It is easy to see that, if {fi}i∈I is a frame for H with bounds A and
B, then by putting Hi = C and Λi(·) = 〈·, fi〉, the family {Λi : i ∈ I} is
a g-frame for H with bounds A and B.

Example 2.1. Let Hi = C and let Λi : H → C be defined by Λif =
1
i ‖f‖, for any f ∈ H. Then,

∑
i ‖Λif‖2 =

∑
i

1
i2
‖f‖2 = π2

6 ‖f‖
2, and so

{Λi : i ∈ I} is a tight g-frame for H.

Similar to g-frames, the means g-complete, g-orthonormal bases and
g-Riesz bases can be defined as follows.

Definition 2.2. The family {Λi ∈ L(H,Hi) : i ∈ I } is called g-
complete if {f : Λif = 0, i ∈ I } = {0} and it is called g-orthonormal
basis for H if it satisfies

〈Λ∗i gi,Λ∗jgj〉 = δi,j〈gi, gj〉, ∀i, j ∈ I, gi ∈ Hi, gj ∈ Hj ,∑
i∈I

‖Λif‖2 = ‖f‖2, ∀f ∈ H.

{Λi ∈ L(H,Hi) : i ∈ I } is called g-Riesz basis if it is g-complete and
there are positive constants A and B such that for any finite subset J ⊂ I
and fi ∈ Hi, i ∈ J,

A
∑
i∈J

‖fi‖2 ≤ ‖
∑
i∈J

‖Λ∗i fi‖2 ≤ B
∑
i∈J

‖fi‖2.

It is clear that if {ei}i∈I is an orthonormal basis ( or ONB) for H,
then {Λi(·) = 〈·, ei〉, i ∈ I} is a g−ONB.

Let( ⊕
i∈I

Hi

)
`2

=
{
{fi}i∈I | fi ∈ Hi, ∀i ∈ I and

∑
i∈I

‖fi‖2 < +∞
}
,

with the inner product defined by

〈{fi}, {gi}〉 =
∑
i∈I
〈fi, gi〉.

It is clear that
( ⊕

i∈I Hi

)
`2

is a Hilbert space. Let Ei = (eik)k∈Ki
be

an orthonormal basis for Hi. Define Fi,k = (0, 0, ..., eik︸ ︷︷ ︸
i−times

, 0, ....). Then,

F = ((Fi,k)k∈Ki
)i∈N is an ONB of

( ⊕
i∈I Hi

)
`2

.
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Proposition 2.3. [23] Λ = {Λi ∈ L(H,Hi) : i ∈ I } is a g-Bessel
sequence for H with bound B if and only if the operator

TΛ :
( ⊕
i∈I

Hi

)
`2
−→ H,

defined by
TΛ({fi}i∈I) =

∑
i∈I

Λ∗i (fi),

is a well-defined and bounded operator with ‖TΛ‖ ≤
√
B. Furthermore,

T ∗Λ : H −→
( ⊕

Hi

)
`2
,

T ∗Λ(f) = {Λif}i∈I .

If Λ = {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame, then the operators TΛ

and T ∗Λ in Proposition 2.3 are called synthesis operator and analysis
operator of Λ = {Λi ∈ L(H,Hi) : i ∈ I }, respectively.

Definition 2.4. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H.
The operator

SΛ : H −→ H, SΛ = TΛT
∗
Λ

is called the g-frame operator of Λ = {Λi ∈ L(H,Hi) : i ∈ I }.

For any f ∈ H, we have

SΛf =
∑
i∈I

Λ∗iΛif,

AI ≤ SΛ ≤ BI.

It is known [23] that SΛ is a bounded, positive and invertible operator
and every f ∈ H has an expansion f =

∑
i Λ

∗
iΛiS

−1
Λ f .

One of the most important advantages of g-frames is a resolution of
identity

∑
i Λ

∗
iΛiS

−1
Λ = I.

Proposition 2.5. [23] Λ = {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for
H if and only if the synthesis operator TΛ is well-defined, bounded and
onto.
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Definition 2.6. If Λ = {Λi ∈ L(H,Hi) : i ∈ I } and Θ = {Θi ∈
L(H,Hi) : i ∈ I } are g-Bessel sequences for H and TΛT

∗
Θ = Id, then

(Λ,Θ) is called a dual pair. For example, (Λ, S−1Λ) is a dual pair.

Lemma 2.7. [23] If Λ = {Λi ∈ L(H,Hi) : i ∈ I } and Θ = {Θi ∈
L(H,Hi) : i ∈ I } are g-Bessel sequences for H and (Λ,Θ) is a dual
pair, then both of Λ and Θ are g-frames for H.

3. Multipliers of Frames

Gabor multipliers [13, 15], Gabor filters [22] and some other applica-
tions of frames led Peter Balazs to introduce Bessel and frame multipliers
for abstract Hilbert spaces H1 and H2. These operators are defined by a
fixed multiplication pattern (the symbol) which is inserted between the
analysis and synthesis operators [2, 3, 4]

Definition 3.1. Let H1 and H2 be Hilbert spaces, {ψk} ⊆ H1 and
{φk} ⊆ H2 be Bessel sequences. Fix m ∈ l∞. The operator Mm,(φk),(ψk) :
H1 → H2, defined by

Mm,(φk),(ψk)(f) =
∑
k

mk〈f, ψk〉φk ∀f ∈ H,

is called the Bessel multiplier for the Bessel sequences {ψk} and {φk}.
The sequence m is called the symbol of M. For frames, we will call the
resulting Bessel multiplier a frame multiplier and for Riesz sequence a
Riesz multiplier.

The interested reader can find the properties of this operator in [2, 3,
4].

4. Multipliers of G-Frames

In this section, the concept of multiplier operators for g-Bessel se-
quences will be introduced and some of their properties will be shown.

Proposition 4.1. If Λ and Θ are g-Bessel sequences with bounds BΛ

and BΘ and m ∈ `∞, then the operator M = Mm,Λ,Θ : H → H, defined
by M(f) =

∑
imiΛ∗iΘif, for all f ∈ H, is well defined.
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Proof. For any f, g ∈ H,

〈
∑
i

miΛ∗iΘif, g〉 =
∑
i

mi〈Θif,Λig〉

and

|
∑
i

mi〈Θif,Λig〉| ≤ ‖m‖∞
∑
i

|〈Θif,Λig〉|

≤ ‖m‖∞(
∑
i

‖Θif‖2)
1
2 (

∑
i

‖Λig‖2)
1
2

≤ ‖m‖∞
√
BΘ‖f‖

√
BΛ‖g‖.

�

Now, we can define multiplier operators for g-Bessel sequences.

Definition 4.2. Let {Hi : i ∈ I} be a family of Hilbert spaces. Let
Λ = {Λi ∈ L(H,Hi) : i ∈ I } and Θ = {Θi ∈ L(H,Hi) : i ∈ I } be
g-Bessel sequences for H with bounds BΛ and BΘ. For m ∈ `∞, the
operator

M = Mm,Λ,Θ : H → H,

(4.1) M(f) =
∑
i

miΛ∗iΘif,

is called the g-Bessel multiplier of Λ, Θ with symbol m.

It is clear that if m = (mi) = (1, 1, 1, ...) and (Λ,Θ) is a dual pair,
then M = Id.

Let {λi} and {ϕi} be Bessel sequences and m ∈ `∞. Consider the
corresponding g-Bessel sequences Λi· = 〈·, λi〉 and Θi· = 〈·, ϕi〉. For any
f ∈ H, we have

Mm,Λ,Θ(f) = Mm,(φk),(λk)(f).

The proof of Proposition 4.1 shows that

‖M‖op = sup{〈Mf, f〉 : ‖f‖ = 1} ≤ sup
‖f‖=1

‖m‖∞
√
BΘ

√
BΛ‖f‖2

= ‖m‖∞
√
BΘ

√
BΛ.
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Lemma 4.3. If Λ and Θ are g-Bessel sequences and m ∈ `∞, then the
adjoint of Mm,Λ,Θ is Mm,Θ,Λ.

Proof. For any f, g ∈ H,

〈Mf, g〉 = 〈
∑
i

miΛ∗iΘif, g〉 =
∑
i

mi〈Λ∗iΘif, g〉

=
∑
i

mi〈Θif,Λig〉 =
∑
i

mi〈f,Θ∗iΛig〉,

and so M∗
m,Λ,Θ =

∑
imiΘ∗iΛi = Mm,Θ,Λ. �

Lemma 4.4. If Θ = {Θi}i∈I is a g-Bessel sequence with bound BΘ

and m = (mi) ∈ `∞, then {miΘi}i∈I is a g-Bessel sequence with bound
‖m‖∞BΘ.

Proof. It is easy to show that, for all f ∈ H,∑
i

‖miΘif‖2 ≤ ‖m‖∞
∑
i

‖Θif‖2 ≤ ‖m‖∞BΘ‖f‖2.

�

Like weighted frames [6], {miΘi}i∈I can be called weighted g-frame
(g-Bessel). By using the synthesis and the analysis operators of Λ and
mΘ, respectively, we can write

Mm,Λ,Θf =
∑
i

miΛ∗iΘif =
∑
i

Λ∗i (miΘi)f = TΛ{miΘif} = TΛT
∗
mΘf.

So,

(4.2) Mm,Λ,Θ = TΛT
∗
mΘ.

If we define the diagonal operator

Dm :
( ⊕

Hi

)
`2
→

( ⊕
Hi

)
`2
,

(4.3) Dm((ξi)) = (miξi)i∈I
then

(4.4) Mm,Λ,Θ = TΛDmT
∗
Θ.

We will use both (4.2) and (4.4) in this paper.
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Proposition 4.5. Let m ∈ `∞, Λ be a g-Riesz base and Θ be a g-Bessel
sequence. The map m→ Mm,Λ,Θ is injective.

Proof. Let Mm,Λ,Θ = 0. Then, for any f ∈ H, Mm,Λ,Θf = 0. Without
loss of generality, we can chose f ∈ ∩[kerΘi]⊥. Since Λ = {Λi ∈
L(H,Hi) : i ∈ I } is a g-Riesz base, we have

A
∑

‖miΘif‖2 ≤ ‖
∑

Λ∗i (miΘif)‖ = 0 ⇒ mi = 0, i ∈ I,

that is, the map m→ Mm,Λ,Θ is injective. �

Proposition 4.6. Let Λ and Θ be g-Bessel sequences for H. If m =
(mi) ∈ c0 and (rankΘi) ∈ `∞, then Mm,Λ,Θ is compact.

Proof. Since m = (mi) ∈ c0, for every ε > 0 there is N ∈ N such that
|mi| < ε, for all i > N . Let mN = (mN1 ,mN2 , ...,mNN

, 0, 0, ...). Then,
for f ∈ H,

‖(T ∗mΘ − T ∗mNΘ)f‖ = ‖{(mi −mNi)Θif}‖`2

≤ ‖m−mN‖∞
( ∑

i

‖Θif‖2
) 1

2

≤ ε
√
BΘ‖f‖.

So, T ∗mNΘ → T ∗mΘ. Since

rankT ∗mNΘ = dim kerTmNΘ =
mN∏
i=1

(dim kerΘ∗i ) =
mN∏
i=1

rankΘi <∞,

it follows that T ∗mNΘ is a finite rank operator. Hence, T ∗mΘ is compact.
Therefore, Mm,Λ,Θ = TΛT

∗
mΘ Mm,Λ,Θ is compact. �

Recall that if T is a compact operator on a separable Hilbert space
H, then there exist orthonormal sets {en} and {σn} in H such that

Tx =
∑
n

λn〈x, en〉σn,

for x ∈ H, where λn is the n−th singular value of T . Given 0 < p <∞,
the Schatten p-class of H [28], denoted by Sp, is the space of all compact
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operators T on H with the singular value sequence {λn} belonging to
`p. It is known that Sp is a Banach space with the norm

(4.5) ‖T‖p = [
∑
n

|λn|p]
1
p .

S1 is called the trace class and S2 is called the Hilbert-Schmidt class.
Theorem 1.4.6. in [31] shows that T ∈ Sp if and only if T p ∈ S1.
Moreover, ‖T‖pp = ‖T p‖1. Also, T ∈ Sp if and only if |T |p = (T ∗T )

p
2 ∈ S1

if and only if T ∗T ∈ S p
2
. Moreover, ‖T‖pp = ‖T ∗‖pp = ‖|T |‖pp = ‖|T |p‖1 =

‖T ∗T‖ p
2
.

It is proved that Sp is a two sided ∗-ideal of L(H), that is, a Banach
algebra under the norm (4.5) and the finite rank operators are dense in
(Sp, ‖.‖p). Moreover, for T ∈ Sp, one has ‖T‖p = ‖T ∗‖p, ‖T‖ ≤ ‖T‖p and
if S ∈ L(H), then ‖ST‖p ≤ ‖S‖‖T‖p and ‖TS‖p ≤ ‖S‖‖T‖p. For more
information about these operators, see [18, 25, 28, 31]. Analogously, for
Hilbert spaces H1,H2,H3,H4 and for operators A ∈ L(H1,H2), B ∈
L(H4,H3) and C ∈ Sp(H3,H1), we have AC ∈ Sp(H3,H2) and CB ∈
Sp(H4,H1).

Theorem 4.7. Let Λ and Θ be g-Bessel sequences for H. If m = (mi) ∈
`p and (dimHi)i∈I ∈ `∞, then Mm,Λ,Θ is a Schatten p-class operator.

Proof. Since Sp is a two sided ideal of L(H), it is enough to show that

the operator Dm in (4.4) is in Sp. Let F =
(
(Fi,k)k∈Ki

)
i∈N

be an ONB

of
( ⊕

i∈I Hi

)
`2

. Now, let (F̂j)j∈N be the rearrangement of F given by:

(1) If 1 ≤ j ≤ K1 then F̂j = F1,j ;
(2) If j > K1 then F̂j = Fn+1,k, where n = max{m ∈ N : j >

K1 + ...+Km} and k = j − (K1 + ...+Kn).

So, for every ξ = (ξi)i∈N ∈
( ⊕

i∈I Hi

)
`2
,

Dm(ξ) = (miξi)i∈N =
∑
i∈N

∑
k∈Ki

mi〈ξ, Fi,k〉Fi,k =
∑
j∈N

m̂j〈ξ, F̂j〉F̂j ,

where,

(m̂j)j∈N = (m1,m1, ...,m1︸ ︷︷ ︸
K1

,m2,m2, ...,m2︸ ︷︷ ︸
K2

, ...,mj ,mj , ...,mj︸ ︷︷ ︸
Kj

, ...).
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Now, ∑
j∈N

|m̂j |p =
∑
i∈N

Ki|mi|p ≤ ‖(dimHi)‖∞‖m‖pp <∞,

and therefore, Dm ∈ Sp. The fact that Sp is a ∗-ideal of L(H) and (4.4)
imply that Mm,Λ,Θ is a Schatten p-class operator. �

Corollary 4.8. Let Λ and Θ be g-Bessel sequences for H.
(1) If m = (mi) ∈ `1 and (dimHi)i∈I ∈ `∞, then Mm,Λ,Θ is a trace-

class operator.
(2) If m = (mi) ∈ `2 and (dimHi)i∈I ∈ `∞, then Mm,Λ,Θ is a

Hilbert-Schmit operator.

5. Perturbation of Multipliers

Like Bessel multipliers [2], a g-Bessel multiplier Mm,Λ,Θ clearly de-
pends on the parameters m , Λ and Θ. So, it is natural to ask: What
happens if these items are changed?

Proposition 5.1. Let Λ and Θ be g-Bessel sequences for H.
(1) If m(k) → m in `∞, then

‖Mmk,Λ,Θ −Mm,Λ,Θ‖op → 0.

(2) If m(k) → m in `p and (dimHi) ∈ `∞, then

‖Mmk,Λ,Θ −Mm,Λ,Θ‖p → 0.

Proof. The decomposition (4.4) shows that

Mmk,Λ,Θ −Mm,Λ,Θ = Mmk−m,Λ,Θ = TΛDmk−mT
∗
Θ.

It is easy to observe that
(1)

‖Mm(k),Λ,Θ −Mm,Λ,Θ‖op = ‖TΛDmk−mT
∗
Θ‖op

≤ ‖TΛ‖op‖Dm(k)−m‖op‖T
∗
Θ‖op,

and since
‖Dm(k)−m‖op = sup

‖(ξi)‖=1
‖Dm(k)−m(ξi)‖

= sup
‖(ξi)‖=1

‖((m(k)
i −mi)(ξi))‖

≤ ‖m(k) −m‖`∞ → 0.
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So
‖Mmk,Λ,Θ −Mm,Λ,Θ‖op → 0.

(2)
‖Mm(k),Λ,Θ −Mm,Λ,Θ‖p = ‖TΛDmk−mT

∗
Θ‖p

≤ ‖TΛ‖op‖Dm(k)−m‖p‖T
∗
Θ‖op,

and since
‖Dm(k)−m‖p ≤ ‖m(k) −m‖p → 0,

so
‖Mmk,Λ,Θ −Mm,Λ,Θ‖p → 0.

�

By an argument like Proposition 5.1, it can be proved that if Λk → Λ
strongly, then Mm,Λk,Θ → Mm,Λ,Θ.

6. Equivalent G-Frames and their Multipliers

In this section we introduce equivalent g-frames and we show that
the multipliers of equivalent g-frames are equivalent in the special sense.
For more information about equivalent g-frames see [26].

Definition 6.1. Let Λ and Θ be g-frames for H.
(1) If Q is an invertible bounded operator and Θi = ΛiQ, for i ∈ I,

then we say that Λ and Θ are Q-equivalent.
(2) We say they are unitarily equivalent if they are Q-equivalent for

a unitary operator Q.
(3) If Q is a bounded operator (not necessarily invertible) and Θi =

ΛiQ, then we say that Λ is Q-partial equivalent with Θ.

Proposition 6.2. [26] Let Λ and Θ be g-frames with synthesis operators
TΛ and TΘ, respectivly. Then, RT ∗Θ

⊆ RT ∗Λ
if and only if there exists a

bounded and one to one operator U on H such that Λi = ΘiU , for any
i ∈ I. Furthermore, kerU∗ = TΛ(RT ∗Λ

∩ (RT ∗Θ
)⊥).

Corollary 6.3. Under the assumption of Proposition 6.2, RT ∗Θ
= RT ∗Λ

if and only if U is a bounded and invertible operator.
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Lemma 6.4. If Λ is a g-Bessel sequence with bound B and U : H → H
is a bounded operator, then ΛU = {ΛiU ∈ L(H,Hi) : i ∈ I } is a
g-Bessel sequence.

Proof. It is easy to see that for any f ∈ H,∑
i

‖ΛiUf‖2 ≤ B‖Uf‖2 ≤ BK2‖f‖2.

�

Let U ∈ L(H) and Λ = {Λi ∈ L(H,Hi) : i ∈ I } be a g-Bessel
sequence. Lemma 6.4 shows that ΛU = {ΛiU ∈ L(H,Hi) : i ∈ I } is a
g-Bessel sequence, and by a simple calculation we have

(6.1) TΛU = U∗TΛ and T ∗ΛU = T ∗ΛU.

(4.2), (4.4) and (6.1) imply that for bounded operators U , V ∈ L(H),

Mm,ΛU,Θ = TΛUDmT
∗
Θ = U∗TΛDmT

∗
Θ = U∗Mm,Λ,Θ,

Mm,Λ,ΘV = TΛDmT
∗
ΘV = TΛDmT

∗
ΘV = Mm,Λ,ΘV,

and

Mm,ΛU,ΘV = TΛUDmT
∗
ΘV = U∗TΛDmT

∗
ΘV = U∗Mm,Λ,ΘV.

The following theorems may be used as criteria for equivalent g-
frames.

Theorem 6.5. Let m ∈ `∞, Λ = {Λi ∈ L(H,Hi) : i ∈ I }, and
Θ = {Θi ∈ L(H,Hi) : i ∈ I } and Λ′ = {Λ′i ∈ L(H,Hi) : i ∈ I } be
g-Bessel sequences. Mm,Λ,Θ = UMm,Λ′,Θ if and only if Λ and Λ′ are
U∗-equivalent on RT ∗mΘ

.

Proof. Mm,Λ,Θ = UMm,Λ′,Θ ⇒ TΛT
∗
mΘ = UTΛ′T ∗mΘ. So, on RT ∗mΘ

we
have TΛ = UTΛ′ . Therefore, Λ = Λ′U∗ and conversely. �

Similarly, we can state the following assertion.

Theorem 6.6. Let m ∈ `∞, Λ = {Λi ∈ L(H,Hi) : i ∈ I }, and
Θ = {Θi ∈ L(H,Hi) : i ∈ I } and Θ′ = {Θ′i ∈ L(H,Hi) : i ∈ I } be
g-Bessel sequences. Mm,Λ,Θ = Mm,Λ,Θ′V if and only if Θ and Θ′ are
V -equivalent on RTΛDm.
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Proof. Mm,Λ,Θ = Mm,Λ,Θ′V ⇒ TΛDmT
∗
Θ = TΛDmT

∗
Θ′V . So, on

RTΛDm we have T ∗Θ = T ∗Θ′V = T ∗Θ′V. Therefore, Θ = Θ′V and con-
versely. �

7. Fusion Frames Multipliers

Fusion frames (or frames of subspaces) are recent developments of
frames that provide a natural mathematical framework for two-stage
(or, more generally, hierarchical) data processing. The notion of a fusion
frame was introduced in [8] with the main ideas already presented in [7].
A fusion frame is a frame-like collection of subspaces in a Hilbert space.
In frame theory, a signal is represented by a collection of scalars, which
measure the amplitudes of the projections of the signal onto the frame
vectors, whereas in fusion frame theory the signal is represented by the
projections of the signal onto the fusion frame subspaces. In a two-stage
data processing setup, these projections serve as locally processed data,
which can be combined to reconstruct a signal of interest.

Definition 7.1. Let I be some index set, and {wi}i∈I be a family of
weights, i.e., wi > 0, for all i ∈ I . A family of closed subspaces {Wi}i∈I
of a Hilbert space H is a fusion frame (or frame of subspaces) with respect
to {wi}i∈I for H, if there exist constants C and D, 0 < C ≤ D < ∞,
such that

(7.1) C‖f‖2 ≤
∑
i∈I

w2
i ‖πWi(f)‖2 ≤ D‖f‖2 ∀f ∈ H,

where πWi is the projection on the subspace Wi. The constants C and
D are called the fusion frame bounds. When the upper bound inequality
in (7.1) holds, for all f ∈ H, {Wi}i∈I is called a fusion Bessel sequence
with respect to {wi}i∈I with Bessel bound D.

The following is an example of fusion frames.

Example 7.1. Given a function g ∈ L2(R) and a, b > 0, the Gabor
system determined by g and a, b is defined by

G(g, a, b) = {EmaTnbg | m,n ∈ Z},
where Ea and Ta are unitary operators, defined on L2(R), by

Eaf(x) = e2πiaxf(x), Taf(x) = f(x− a).
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G(g, a, b) is unitarily equivalent to G(g, 1
q , 1), where ab = 1

q , and also

G(g,
1
q
, 1) =

q−1⋃
j=0

{E 1
q
(mq+1)Tna}m,n∈Z.

By letting Wj := spanm,n∈Z{E 1
q
(mq+1)Tna}m,n∈Z, j = 0, 1, ...q−1, {Wj}q−1

j=0

is a frame of subspaces (for more details, see [7]).

The above example can be related to Gabor multipliers introduced in
[19].

It is clear that by putting Λi = wiπWi and Hi = Wi in (2.1), we con-
clude that fusion frames are a special g-frame, so the results in sections
4 and 5 hold for fusion frames.

Definition 7.2. Let W = (Wi, wi)i∈I and V = (Vi, vi)i∈I be fusion
Bessel sequences with bounds BW and BV , respectively and let m ∈ `∞.
The operator Mm,W,V : H → H defined by

(7.2) Mm,W,Vf :=
∑
i

miviwiπ
∗
Wi
πVif

for all f ∈ H is called Bessel fusion multiplier of W = (Wi, wi)i∈I and
V = (Vi, vi)i∈I .

Note that we consider πVi : H → Hi so its adjoint π∗Vi
: Hi → H is

just the inclusion.
The results shown in Section 4 can be specialized for fusion frames to

get:

Theorem 7.3. Let W = (Wi, wi)i∈I and V = (Vi, vi)i∈I be fusion Bessel
sequences with bounds BW and BV , respectively.

(1) If m ∈ `∞, then the operator Mm,W,V defined by (7.2) is well
defined and ‖Mm,W,V‖op ≤

√
BWBV‖m‖∞.

(2) (Mm,W,V)∗ = Mm,V,W .
(3) If m = (mi) ∈ c0 and (dimVi) ∈ `∞, then Mm,W,V is compact.
(4) If m = (mi) ∈ `p and (dimVi) ∈ `∞, then Mm,W,V is a Schatten

p-class operator for all p ≥ 1. In particular also for p = 1 (trace
class) and p = 2 (Hilbert-Schmidt class).

Using the fact that for frame sequences,
∑

k ‖ψk‖2 < ∞ if and only
if its span is finite-dimensional [5], we can rephrase some items of the
above theorem:

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Multipliers of generalized frames in Hilbert spaces 77

Corollary 7.4. Let W = (Wi, wi)i∈I and V = (Vi, vi)i∈I be fusion Bessel
sequences with bounds BW and BV , respectively. Let (φ(i)

k )k∈K be frames
for Vi.

(1) If m = (mi) ∈ c0 and supi
∑

k ‖φ
(i)
k ‖ < ∞, then Mm,W,V is

compact.
(2) If m = (mi) ∈ `p and supi

∑
k ‖φ

(i)
k ‖ < ∞, then Mm,W,V is a

Schatten p-class operator, for all p ≥ 1.

For fusion frames, we can state (7.2) in the following form. Let {ψ(i)
k }k

be a frame for Wi and let {φ(i)
k }k be a frame for Vi, for all i ∈ I. It is

easy to show that

Mm,W,Vf =
∑
i,k,l

miviwi〈f, φ(i)
l 〉〈φ̃

(i)
l , ψ

(i)
k 〉ψ̃

(i)
k

for any f ∈ H,. Where {ψ̃(i)
k }k is a dual of {ψ(i)

k }k and {φ̃(i)
k }k is a dual

of {φ(i)
k }k.

In the case that {φ̃(i)
k }k and {φ(i)

k }k are biorthogonal, we have

Mm,W,Vf =
∑
i,k

miviwi〈f, φ(i)
k 〉ψ̃

(i)
k ,

which corresponds to a frame multiplier in the sense of [2].

As fusion frames were investigated to ‘string together’ frames of sub-
spaces, it is natural to look at a ‘combination’ of fusion frame multipliers
and frame multipliers on the related subspaces.

Definition 7.5. Let W = (Wi, wi)i∈I and V = (Vi, vi)i∈I be fusion
frames and let m ∈ `∞. Furthermore, let n(i) = (n(i)

k )k∈K ∈ `∞ and
(ψ(i)

k )k∈K and (φ(i)
k )k∈K be frames for Wi and Vi, respectively. Then, we

can define the combined multiplier Mm,W,V ?
(
M

n(i),ψ
(i)
k ,φ

(i)
k

)
i∈I

by[
Mm,W,V ?

(
M

n(i),ψ
(i)
k ,φ

(i)
k

)
i∈I

]
f :=

∑
i

miwiviπWiMn(i),ψ
(i)
k ,φ

(i)
k

πVif.

To shorten the notation, we use M to denote the combined multiplier.
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Let ξ(i)k = π∗Wi
ψ

(i)
k and η

(i)
k = π∗Vi

φ
(i)
k , i.e. the extension of the frames

of the subspaces to frame sequences of the whole space. Then, we can
write

Mf =
∑
i

miwiviπ
∗
Wi

M(i)πVif =
∑
i

miwiviπ
∗
Wi

∑
k

n
(i)
k

〈
πVif, φ

(i)
k

〉
ψ(i)

=
∑
i,k

miwivi
∑
k

n
(i)
k

〈
f, π∗Vi

φ
(i)
k

〉
π∗Wi

ψ(i).

So

Mf =
∑
i,k

min
(i)
k 〈f, viη

(i)
k 〉wiξ

(i)
k .

Under this condition, {viη(i)
k }i,k and {wiξ(i)k }i,k are frames for H [7],

so this is again a frame multiplier. Therefore, using the above results,
we can formulate the following proposition.

Proposition 7.6. Let m ∈ `∞ and n(i) = (n(i)
k ) ∈ `∞. Let W =

(Wi, wi)i∈I and V = (Vi, vi)i∈I be fusion frames with upper bounds BW
and BV , respectively. Let (ψ(i)

k )k∈K and (φ(i)
k )k∈K be frames for Wi and

Vi; respectively. Let supi
∑

k ‖φ
(i)
k ‖ <∞.

(1) If either
• m = (mi) ∈ c0 and n(i) = (n(i)

k )k∈K ∈ c0 or
• n = (n(i)

k )(k,i)∈K×I ∈ c0,

then Mm,W,V ?
(
M

n(i),ψ
(i)
k ,φ

(i)
k

)
i∈I

is compact.

(2) Let p ≥ 1. If either
• m = (mi) ∈ `p and n = (n(i)

k )(k,i)∈K×I ∈ l(∞,p) or

• n = (n(i)
k )(k,i)∈K×I ∈ l(p,p),

then Mm,W,V ?
(
M

n(i),ψ
(i)
k ,φ

(i)
k

)
i∈I

is a Schatten p-class operator.

(3) Let p, p′ ≥ 1 and 1
p + 1

p′ = 1. If m = (mi) ∈ `p and n =

(n(i)
k )(k,i)∈K×I ∈ l(1,p

′), then Mm,W,V ?
(
M

n(i),ψ
(i)
k ,φ

(i)
k

)
i∈I

is a

trace class operator.
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Basel, 2000.
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