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ON IMAGES OF CONTINUOUS FUNCTIONS FROM A
COMPACT MANIFOLD TO EUCLIDEAN SPACE

R. MIRZAIE

Communicated by Jost-Hinrich Eschenburg

Abstract. We show that typical elements of the set of continu-
ous functions from a compact differentiable manifold M to Rn are
nowhere differentiable. Then, we study the box dimensions of typ-
ical elements in the set of images of M in Rn.

1. Introduction

We recall that a subset Y of a metric space (X, d) is called a comeagre
subset, if Y contains an intersection of a countable number of open dense
subsets. Each element of a comeagre subset is called a typical element.
By Baire’s category theorem, if X is a complete metric space, then each
comeagre subset of X is dense in X.

Let M be a differentiable compact submanifold of Rn and

C(M,Rn) = {f : M → Rn, f is continuous}.

We denote by |a− b|, the usual distance of points a, b in Rn. C(M,Rn)
(endowed with the max-metric d, defined by d(f, g) = maxx∈M |f(x) −
g(x)|), is a complete metric space. If I = [0, 1], then a well known theo-
rem due to Banach states that “Typical elements of C(I,R) are nowhere
differentiable.” Banach’s theorem is a classic theorem, and there are sim-
ilar results in more general cases. Here, we generalize Banach’s theorem
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to C(M,Rn).

In the second part of the paper, we consider the set Kn = {A ⊂ Rn :
A is compact}. Kn endowed with the Hausdorff metric is a complete
metric space. It is interesting to characterize fractal elements in Kn

or a given subset of Kn. For this purpose, we must study the Box or
the Hausdorff dimension of sets. There are many interesting results
concerning the Box or the Hausdorff dimension of typical elements in
Kn or some subspaces of Kn (see [2], [4], [6]). We show here that typical
elements of the following subspace of Kn,

Im(M) = {f(M) : f ∈ C(M,Rn)},

have integer box dimensions. We will use the max-metric on C(M,Rn)
and on Im(M) (Max-metric on Im(M) is defined by d(f(M), g(M)) =
d(f, g)). But it is not hard to show that our conclusions on Im(M) are
also valid for the Hausdorff metric.

2. Results

The following notations will be used in the proofs:

(1) D(M,Rn) = {f ∈ C(M,Rn) : f is differentiable}.
(2) ND(M,Rn) = {f ∈ C(M,Rn) : f is nowhere differentiable}.
(3) Im = I × I × ...× I (m times).

Remark 2.1. By Banach’s theorem, ND(I,R) is a comeagre subset of
C(I,R).

Remark 2.2. If Y is a comeagre subset of a topological space X, and if
Y ⊂ Z ⊂ X, then Z is also comeagre in X.

Lemma 2.3. ND(Im, R) is a comeagre subset of C(Im, R).

Proof. By Banach’s theorem, the lemma is true for m = 1. We suppose
that m ≥ 2. Let ND1(Im, R) = {f ∈ C(Im, R) : ∂f

∂x1
nowhere exist}.

We show that ND1(Im, R) is a comeagre subset of C(Im, R). Let Q
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be the rational numbers and J = I ∩ Q. For each f ∈ C(Im, R), and
t = (t1, ...tm−1) ∈ Jm−1, define the map ft : I → R by

ft(x) = f(x, t1, ..., tm−1).

Jm−1 is countable, and so we can denote it by Jm−1 = {a1, a2, ...}. For
each ai ∈ Jm−1, put (C(I,R))ai = C(I,R) and consider the following
set, with the product topology (see [5] for definition and details about
the product topology),

C(I,R)a1 × C(I,R)a2 × · · · .
Now, define the map φ : C(Im, R) → C(I,R)a1 × C(I,R)a2 × · · · . by
φ(f) = (fa1 , fa2 , ...). φ is one to one and a continuous function. If we
put ND(I,R)ai = ND(I,R), then we have

φ(ND1(Im, R)) ⊂ ND(I,R)a1 ×ND(I,R)a2 × · · · .
By Banach’s theorem, ND(I,R) is a comeagre subset of C(I,R). So,
there is a countable collection {Uk : k ∈ N} of open and dense subsets
of C(I,R) such that ⋂

k∈N

Uk ⊂ ND(I,R).

For each l ∈ N and ai ∈ Jm−1, put (U1 ∩ ...∩Ul)ai = (U1 ∩ ...∩Ul) and
let

Wl = (U1 ∩ ... ∩ Ul)a1 × (U1 ∩ ... ∩ Ul)a2 × ...× (U1 ∩ ... ∩ Ul)al

× C(I,R)al+1
× C(I,R)al+2

× · · · .
Wl is open and dense in C(I,R)a1 × C(I,R)a2 × .... and we have⋂

l∈N

Wl ⊂ ND(I,R)a1 ×ND(I,R)a2 × · · · .

Jm−1 is dense in Im−1. Thus, ∂f
∂x1

(x, t) does not exist, for all t ∈ Im−1,

if and only if it does not exist for all t ∈ Jm−1. Thus, we can show that

(2.1)
⋂
l∈N

φ−1(Wl) ⊂ ND1(Im, R).

Now, we show that for each l ∈ N , φ−1(Wl) is a dense subset of C(Im, R).
Consider a function f ∈ C(Im, R) and let ε > 0. Since U1 ∩U2 ∩ ...∩Ul

is dense in C(I,R), for each i ∈ {1, 2, ...l} there is a gi ∈ U1∩U2∩ ...∩Ul

such that
d(fai , gi) <

ε

l
.
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Let θi : Im−1 → I be a continuous function such that

θi(ai) = 1 and θi(aj) = 0 for each j ∈ {1, 2, ..., l} − {i}.

Now, define a map h : Im → R by

h(x, t) = f(x, t) +
l∑

i=1

θi(t)(gi(x)− fai(x)), (x, t) ∈ I × Im−1.

We have

|h(x, t)− f(x, t)| ≤
l∑

i=1

|θi(t)||gi(x)− fai(x)| <
l∑

i=1

ε

l
= ε.

Thus, d(h, f) < ε. If φ(h) = (ha1 , ..., hal
, hal+1

, ...), then

ha1 = g1, ha2 = g2, ..., hal
= gl ⇒ φ(h) ∈Wl ⇒ h ∈ φ−1(Wl).

Therefore, φ−1(Wl) is dense in C(Im, R). Since φ−1(Wl) is open in
C(Im, R), then we get by (2.1) thatND1(Im, R) is comeagre in C(Im, R).
Since ND1(Im, R) ⊂ ND(Im, R), we get the result by Remark 2.2. �

Lemma 2.4. ND(M,R) is comeagre in C(M,R).

Proof. Let m = dimM and for each point p ∈M, consider a chart (U, φ)
around p such that Im ⊂ φ(U). Since M is compact, then there is a
finite collection of this kind of charts, say (U1, φ1), ..., (Ul, φl), such that
M ⊂ φ−1

1 (Im) ∪ ... ∪ φ−1
l (Im). Put Wi = φ−1

i (Im), 1 ≤ i ≤ l, and for
each f ∈ C(Im, R), denote by fi the restriction of f on Wi, and consider
the following function:

ψi : C(M,R) → C(Wi, R), ψi(f) = fi.

Since φ(Wi) = Im, then we get from Lemma 2.3 that ND(Wi, R) is a
comeagre subset of C(Wi, R). So, there is a countable collection {V i

k :
k ∈ N} of open and dense subsets of C(Wi, R) such that⋂

k

V i
k ⊂ ND(Wi, R).

We show that for each i, k ∈ N , ψ−1
i (V i

k ) is a dense subset of C(M,R).
Suppose f ∈ C(M,R) and let ε > 0. Since V i

k is dense in C(Wi, R), then
there is a function g ∈ V i

k such that

(2.2) d(fi, g) <
ε

2
.
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Let ĝ : M → R be a continuous extension of g on M . Since f and ĝ
are continuous, then by (2.2), there is an open subset B of M such that
Wi ⊂ B and

(2.3) x ∈ B ⇒ d(f(x), ĝ(x)) < ε.

Now, let θ : M → [0, 1] be a continuous function such that

θ(x) = 1 for x ∈Wi and θ(x) = 0, for x ∈M −B.

Consider the continuous function h : M → R, defined by

(2.4) h(x) = f(x) + θ(x)(ĝ(x)− f(x)).

If x ∈ Wi, then h(x) = g(x), and so ψi(h) = g. Thus, h ∈ ψ−1
i (V i

k ).
Also, we have

|f(x)− h(x)| = |θ(x)|ĝ(x)− f(x)| < ε.

So, ψ−1
i (V i

k ) is dense in C(M,R). It is easy to show that⋂
k∈N

⋂
1≤i≤l

ψ−1
i (V i

k ) ⊂ ND(M,R).

Therefore, ND(M,R) is comeagre in C(M,R). �

Theorem 2.5. Typical elements of C(M,Rn) are nowhere differen-
tiable.

Proof. For each f ∈ C(M,Rn), we have f = (f1, ..., fn) such that fi ∈
C(M,R). Consider the map ψ : C(M,Rn) → C(M,R) × ...× C(M,R)
(n times), and ψ(f) = (f1, ..., fn). ψ is a homeomorphism and

(2.5) ψ−1[ND(M,R)× ...×ND(M,R)] ⊂ ND(M,Rn).

Since by Lemma 2.4, ND(M,R) is comeagre in C(M,R), thenND(M,R)
× · · · × ND(M,R) is comeagre in C(M,R) × ... × C(M,R). Thus,
ψ−1[ND(M,R)×...×ND(M,R)] must be comeagre in C(M,Rn). Now,
we get the result by (2.5) and Remark 2.2. �

3. Box Dimension

Let C be a bounded subset of Rn. We denote by dim(C), the topo-
logical dimension of C. For each number ε > 0, put

Aε(C) = sup{card{Z} : Z ⊂ C and for each x, y ∈ Z, |x− y| > ε}.
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The upper and lower box dimensions of C are defined by:

dimB(C) = limsupε→0
logAε(C)
−logε

,

dimB(C) = liminfε→0
logAε(C)
−logε

.

If dimB(C) = dimB(C), then dimB(C) = limε→0
logAε(C)
−logε is the box di-

mension of C.

Remark 3.1. Let M be a differentiable submanifold of Rn and dim(M) =
m. Then,
(1) dimB(M) = dim(M) = m.
(2) If g : M → Rn is a differentiable map and Mg = g(M), then

dimB(Mg) = dim(Mg) ∈ {0, 1, ...,m}.

If g : M → Rn is nowhere differentiable, then Mg may be a fractal
subset of Rn. Thus, we might expect that for typical Mg, dimB(Mg) >
dimMg. But, the following theorem shows that typical elements of
Im(M) have integer box dimensions. Therefore, the set of images of
M , which have fractal behaviors, is a meagre subset of Im(M).

Remark 3.2. Since D(M,Rn) is an algebra in C(M,Rn), then by the
Stone-Weierstrass theorem, it is dense in C(M,Rn) (see [7], Chapter
7).

Theorem 3.3. If M is a compact differentiable submanifold of Rn, then
typical elements of the set of images of M under continuous maps have
integer box dimensions.

Proof. For each g ∈ C(M,Rn) put

Mg = g(M) ⊂ Rn.

Consider a real number ε > 0. If f, g ∈ C(M,Rn), x, y ∈ M , and
d(g, f) < ε

3 , then

d(g(x), g(y)) ≤ d(g(x), f(x)) + d(f(x), f(y)) + d(f(y), g(y))

≤ 2ε
3

+ d(f(x), f(y)).
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Thus,
Aε(Mg) ≤ A ε

3
(Mf ).

In a similar way, we can show that

A 1
3
ε(Mf ) ≤ A 1

9
ε(Mg).

So, if 0 < ε < 1, then

logAε(Mg)
−logε

≤
logA 1

3
ε(Mf )

−log ε
3 − log3

≤
logA 1

9
ε(Mg)

−log ε
9 − log9

.

If g is differentiable, then by Remark 3.1, we have

dimB(Mg) = dimMg.

Therefore,

limε→0
logAε(Mg)
−logε

= limε→0

logA ε
9
(Mg)

−log ε
9 − log9

= dimMg.

Thus, for each K ∈ N, there is an open set UK,g in C(M,Rn) containing
Mg such that for each f ∈ UK,g,

dimMg −
1
K
≤

logA 1
3
εMf

−log ε
3 − log3

≤ dimMg +
1
K
.

Put
WK =

⋃
g∈D(M,Rn)

UK,g.

Since D(M,Rn) is dense in C(M,Rn), then WK is an open and dense
subset of C(M,Rn). Now, put

W =
⋂

K∈N

WK .

W is comeagre in C(M,Rn). If f ∈ W, then there is a differentiable
function g such that dimBMf = dimMg. So, dimBMf ∈ {0, 1, 2, ...,m}.

�
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