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Abstract. We investigate ϕ-factorable operators and Weyl-Heise-
nberg frames with respect to a function-valued inner product, the
so called ϕ-bracket product on L2(G), where G is a locally compact
abelian group and ϕ is a topological isomorphism on G. We intro-
duce ϕ-factorable operators on L2(G) and extend the Riesz Repre-
sentation Theorems for these operators. Finally, as an application
of the ϕ-bracket product, we show that several well known theo-
rems for Weyl-Heisenberg frames in L2(R) remain valid in L2(G),
and they are unified within of group theory, in connection with the
ϕ-bracket product.

1. Introduction

In [13], we have defined the ϕ-bracket product as a function-valued
inner product on L2(G), where G is a locally compact abelian (which
will be abbreviated by “LCA”) group and ϕ is a topological isomor-
phism on G. The ϕ-bracket product, as a new inner product on L2(G),
is applicable to extend many ideas and constructions from the theory of
shift invariant spaces, factorable operators and Weyl-Heisenberg frames
on Rn, to the setting of LCA groups in a more general and different
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way. Whereas our work in [13] was devoted to basic properties of the
ϕ-bracket product and ϕ-orthonormal bases, here we deal with charac-
terizing ϕ-factorable operators on L2(G) and establishing Riesz Repre-
sentation Theorems for such operators. We continue our investigation
following the line of approach worked by Casazza and Lammers [5], but
in a more general setting, using various tools in abstract harmonic anal-
ysis. In fact, our results generalize some of the results developed in [5] on
Rn, in which the authors want to be able to scale the lattice, and so they
introduce a positive parameter a and express their results relative to the
lattice aZ. Here, like in [13], we use a topological isomorphism which
introduces an appropriate scale factor in the setting of LCA groups.
ϕ-Factorable operators are useful and shed light to define and investi-
gate ϕ-frames and ϕ-Riesz bases, which are worked out in a forthcoming
paper. After investigating ϕ-Factorable operators, we then, as an appli-
cation of the ϕ-bracket product, study Weyl-Heisenberg frames on LCA
groups in connection with the ϕ-bracket product. Our results generalize
some of the results appearing in the literature on the Weyl-Heisenberg
frames. Such a unified approach is useful, since it determines the basic
features of the Weyl-Heisenberg frames, and includes most of the special
cases.

Here, we give some of the basics regarding LCA groups. For a com-
prehensive account of LCA groups, we refer to [8, 11]. Suppose G is an
LCA group with the Haar measure dx. A subgroup L of G is called a
uniform lattice if it is discrete and co-compact (i.e., G/L is compact).
Let ϕ be a topological isomorphism on G. If L is a uniform lattice in
G, then so is ϕ(L). Indeed, obviously ϕ(L) is discrete. Also, by [11,
Theorem 5.34], G/ϕ(L) is topologically isomorphic to G/L and so it
is compact. Here, we always assume that G/ϕ(L) is normalized, i.e.,
|G/ϕ(L)| = 1. Denote by ϕ(L)⊥, the annihilator of ϕ(L) in Ĝ, i.e.,
ϕ(L)⊥ = {γ ∈ Ĝ; γ(ϕ(L)) = {1}}, which is a uniform lattice in Ĝ (see
[12-16]).

Let L be a uniform lattice in G. Choosing the counting measure on
L, a relation between the Haar measures dx on G and dẋ on G/ϕ(L) is
given by the following special case of Weil’s formula [8]:
For f ∈ L1(G), we have

∑
k∈L f(xϕ(k−1)) ∈ L1(G/ϕ(L)) and

(1.1)
∫

G
f(x)dx =

∫
G/ϕ(L)

∑
ϕ(k−1)∈ϕ(L)

f(xϕ(k−1))dẋ,

where, ẋ = xϕ(L).
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Let f, g ∈ L2(G). The ϕ-bracket product of f, g is defined by

(1.2) [f, g]ϕ(ẋ) =
∑
k∈L

fg(xϕ(k−1)),

for all x ∈ G. We define the ϕ-norm of f as ‖f‖ϕ(ẋ) = ([f, f ]ϕ(ẋ))1/2.
In the sequel, we recall some basic properties of the ϕ-bracket product,
for the proofs of which and more details the reader is referred to [13].
Let f, g ∈ L2(G). Then, |[f, g]ϕ| ≤ ‖f‖ϕ‖g‖ϕ (the Cauchy-Schwartz
Inequality). Also, (1.1) implies

∫
G/ϕ(L)[f, g]ϕ(ẋ)dẋ =< f, g >L2(G). For

γ ∈ Ĝ, denote by Mγ , the modulation operator on L2(G), i.e., Mγf(x) =
γ(x)f(x), for all f ∈ L2(G). Then, for f, g ∈ L2(G) and γ ∈ ϕ(L)⊥, we
have the following relation between the ϕ-bracket product and the usual
inner product in L2(G):

(1.3) [̂f, g]ϕ(γ) =< f,Mγg >L2(G) .

We say g ∈ L2(G) is ϕ-bounded if there exists M > 0 so that ‖g‖ϕ ≤
M a.e.. For f, g ∈ L2(G), the function [f, g]ϕg need not generally be in
L2(G). But, we have the following result.

Proposition 1.1. If f, g, h ∈ L2(G) and g, h are ϕ-bounded, then [f, g]ϕh
∈ L2(G).

A sequence (gn)n∈N ⊆ L2(G) is called ϕ-orthonormal if [gn, gm]ϕ = 0,
for all n 6= m ∈ N and ‖gn‖ϕ = 1, for all n ∈ N. Let f ∈ L2(G)
and (gn)n∈N be a ϕ-orthonormal sequence in L2(G). An extension of
[5, Theorem 4.13] from R to the setting of an LCA group gives Bessel’s
Inequality for ϕ-bracket products as follows:

(1.4)
∑
n∈N

|[f, gn]ϕ(ẋ)|2 ≤ ‖f‖2
ϕ(ẋ), for a.e. ẋ ∈ G/ϕ(L).

A ϕ-orthonormal sequence (gn)n∈N is called a ϕ-orthonormal basis if
[f, gn]ϕ = 0 a.e., for all n ∈ N, implies f = 0 a.e.. Let (gn)n∈N be a
ϕ-orthonormal sequence. It is not difficult to mimic the standard proofs
for a usual orthonormal sequence in a Hilbert space to obtain equivalent
conditions for (gn)n∈N ⊆ L2(G) to be a ϕ-orthonormal basis (see also
[13]).

Proposition 1.2. If (gn)n∈N is a ϕ-orthonormal sequence in L2(G),
then the following are equivalent.

(1) (gn)n∈N is a maximal ϕ-orthonormal sequence, i.e., (gn)n∈N is
not contained in any other ϕ-orthonormal set.
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(2) (gn)n∈N is a ϕ-orthonormal basis.
(3) For each f ∈ L2(G), f =

∑
n∈N[f, gn]ϕgn a.e..

(4) ‖f‖2
ϕ =

∑
n∈N |[f, gn]ϕ|2 a.e., for all f ∈ L2(G) (the Parseval

Identity).
(5) {Mγgn}n∈N,γ∈ϕ(L)⊥ is an orthonormal basis for L2(G).

Thanks to Zorn’s Lemma and Proposition 1.2, L2(G) admits a ϕ-
orthonormal basis.

The rest of this paper is organized as follows. In Section 2, we intro-
duce a ϕ-factorable operator on L2(G), where G is an LCA group and
establish the Riesz Representation Theorems for these operators.

Over the last ten years, there have been a lot of research on frame
theory in general, and the Weyl-Heisenberg frame theory, in particular
[2-4, 7, 18], most of which are on the Euclidean space. Our main goal
in Section 3 is to represent the Weyl-Heisenberg frame identity and the
frame operator of a Weyl-Heisenberg frame in terms of the ϕ-bracket
product on an LCA group.

2. ϕ-factorable operators

Throughout this paper, we always assume thatG is a second countable
LCA group, ϕ is a topological isomorphism on G and the notation are
as in Section 1.

A function h ∈ L∞(G) is said to be ϕ-periodic if h(xϕ(k)) = h(x), for
every k ∈ L, x ∈ G.

Definition 2.1. We say an operator U : L2(G) → Lp(E), 1 ≤ p ≤ ∞,
is ϕ-factorable if U(hf) = hU(f), for all f ∈ L2(G) and all ϕ-periodic
h ∈ L∞(G), where E is a subgroup of G or G/ϕ(L).

A bounded operator U is ϕ-factorable if and only if it commutes with
modulations. More precisely, we have the following result.

Lemma 2.2. Let U be a bounded operator from L2(G) to L2(E), where
E is a subgroup of G or G/ϕ(L). U is ϕ-factorable if and only if

(2.1) U(Mγg) = MγU(g), for all g ∈ L2(G), γ ∈ ϕ(L)⊥.

Proof. If U is ϕ-factorable and γ ∈ ϕ(L)⊥(⊆ Ĝ ⊆ L∞(G)), then since γ
is ϕ-periodic, (2.1) obviously holds. Conversely, assume (2.1). Then, U
is ϕ-factorable using the facts that ϕ(L)⊥(= Ĝ/ϕ(L)) is an orthonormal
basis for L2(G/ϕ(L)) and L∞(G/ϕ(L)) ⊆ L2(G/ϕ(L)). Note that there
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is a one-to-one correspondence between L∞(G/ϕ(L)) and the set of all
ϕ-periodic h ∈ L∞(G). �

Our main goal in this section is to characterize ϕ-factorable operators
U : L2(G) → Lp(G/ϕ(L)), for p = 1 and p = 2.

Clearly, the operator U, defined by U(f) = [f, g]ϕ, for f ∈ L2(G), is
ϕ-factorable. We will also show that every ϕ-factorable operator U :
L2(G) → L1(G/ϕ(L)) is of this form. First, we establish a lemma in
which we show that two ϕ-factorable operators are equal on L2(G) if
and only if their integrals over G/ϕ(L) are the same.

Lemma 2.3. Let U1, U2 : L2(G) → L1(G/ϕ(L)) be two ϕ-factorable
operators. Then, U1 = U2 if and only if∫

G/ϕ(L)
U1(f)(ẋ)dẋ =

∫
G/ϕ(L)

U2(f)(ẋ)dẋ,

for every f ∈ L2(G).

Proof. The necessity is obvious. For the converse, by [8, Theorem 4.33],
it is enough to show that Û1(f) = Û2(f), for all f ∈ L2(G). Let ξ ∈
ϕ(L)⊥ and f ∈ L2(G). Since ξ as a function in L∞(G) is ϕ-periodic, we
obtain:
Û1(f)(ξ) =

∫
G/ϕ(L) U1(f)(ẋ)ξ̄(ẋ)dẋ

=
∫
G/ϕ(L) U1(ξ−1.f)(ẋ)dẋ

=
∫
G/ϕ(L) U2(ξ−1.f)(ẋ)dẋ

= Û2(f)(ξ).

Hence, U1 = U2. �

Now, we have the following Riesz Representation Theorem which gen-
eralizes [5, Theorem 4.5.5] and characterizes all ϕ-factorable operators
from L2(G) to L1(G/ϕ(L)).

Theorem 2.4. A bounded operator U : L2(G) → L1(G/ϕ(L)) is ϕ-
factorable if and only if there exists g ∈ L2(G) such that U(f) = [f, g]ϕ a.e.,
for all f ∈ L2(G). Moreover, ‖U‖ = ‖g‖.

Proof. Let U : L2(G) → L1(G/ϕ(L)) be a bounded ϕ-factorable opera-
tor. Define the linear functional ψ : L2(G) → C by

ψ(f) =
∫

G/ϕ(L)
U(f)(ẋ)dẋ.
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By the standard Riesz Representation Theorem [9, Theorem 5.25], there
exists g ∈ L2(G) such that ψ(f) =< f, g >L2(G), for all f ∈ L2(G).
Thus,

∫
G/ϕ(L) U(f)(ẋ)dẋ = ψ(f) =< f, g >L2(G)=

∫
G/ϕ(L)[f, g]ϕ(ẋ)dẋ.

By Lemma 2.3, U(f) = [f, g]ϕ a.e., for all f ∈ L2(G). Moreover, for any
f ∈ L2(G),
‖U(f)‖1 =

∫
G/ϕ(L) |[f, g]ϕ(ẋ)|dẋ

≤
∫
G/ϕ(L) ‖f‖ϕ(ẋ)‖g‖ϕ(ẋ)dẋ

≤ (
∫
G/ϕ(L) ‖f‖

2
ϕ(ẋ)dẋ)1/2(

∫
G/ϕ(L) ‖g‖

2
ϕ(ẋ)dẋ)1/2

= ‖f‖2‖g‖2.

So, ‖U‖ ≤ ‖g‖2. Also, ‖Ug‖1 =
∫
G/ϕ(L) |[g, g]ϕ(ẋ)|dẋ = ‖g‖2

2. There-
fore, ‖U‖ = ‖g‖2. �

The following theorem, which generalizes [5, Theorem 4.5.8], charac-
terizes ϕ-factorable operators from L2(G) to L2(G/ϕ(L)).

Theorem 2.5. A bounded operator U : L2(G) → L2(G/ϕ(L)) is ϕ-
factorable if and only if there exists a ϕ-bounded g ∈ L2(G) such that
U(f) = [f, g]ϕ a.e., for all f ∈ L2(G). Moreover,

‖U‖2 = ess supẋ∈G/ϕ(L)‖g‖2
ϕ(ẋ).

Proof. Let U(f) = [f, g]ϕ a.e., for some ϕ-bounded g ∈ L2(G). Then,
obviously U is ϕ-factorable and by the Cauchy-Shwartz Inequality, we
have

(2.2)

‖U(f)‖2
L2(G/ϕ(L)) =

∫
G/ϕ(L) |U(f)(ẋ)|2dẋ

=
∫
G/ϕ(L) |[f, g]ϕ(ẋ)|2dẋ

≤
∫
G/ϕ(L) ‖f‖

2
ϕ(ẋ)‖g‖2

ϕ(ẋ)dẋ

≤ ess supẋ∈G/ϕ(L)‖g‖2
ϕ(ẋ)‖f‖2

L2(G).

Letting f = g above, we get ‖U‖ = ess supẋ∈G/ϕ(L)‖g‖ϕ(ẋ).
For the converse, let U be a ϕ-factorable operator from L2(G) to

L2(G/ϕ(L)). Since G/ϕ(L) is compact, L2(G/ϕ(L)) ⊆ L1(G/ϕ(L)) and
so by Theorem 2.4, there exists g ∈ L2(G) such that U(f) = [f, g]ϕ a.e.,
for all f ∈ L2(G). But, also g is ϕ-bounded. To show this observe
that |U(g)(ẋ)| ≤ ‖U‖‖g‖ϕ(ẋ) for a.e. ẋ ∈ G/ϕ(L). In fact, for every
ϕ-periodic h ∈ L∞(G), we have

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

ϕ-factorable operators and Weyl-Heisenberg frames on LCA groups 107∫
G/ϕ(L)

|h(ẋ)|2|U(g)(ẋ)|2dẋ =
∫

G/ϕ(L)
|U(hg)(ẋ)|2dẋ

= ‖U(hg)‖2
L2(G/ϕ(L))

≤ ‖U‖2
∫

G
|hg(x)|2dx

= ‖U‖2
∫

G/ϕ(L)

∑
ϕ(k)∈ϕ(L) |hg(xϕ(k−1))|2dẋ

= ‖U‖2
∫

G/ϕ(L)
|h(ẋ)|2

∑
ϕ(k)∈ϕ(L) |g(xϕ(k−1))|2dẋ

= ‖U‖2
∫

G/ϕ(L)
|h(ẋ)|2‖g‖2

ϕ(ẋ)dẋ,

that is, |U(g)(ẋ)| ≤ ‖U‖‖g‖ϕ(ẋ) for a.e. ẋ ∈ G/ϕ(L). So, we get
‖g‖2

ϕ(ẋ) = |U(g)(ẋ)| ≤ ‖U‖‖g‖ϕ(ẋ) for a.e. ẋ ∈ G/ϕ(L). Hence,
‖g‖ϕ(ẋ) ≤ ‖U‖ a.e. That is, g is ϕ-bounded. �

Next, we show that every bounded ϕ-factorable operator on L2(G) is
adjointable.

Proposition 2.6. Let U : L2(G) → L2(G) be a bounded ϕ-factorable
operator and U∗ be its adjoint. Then, U∗ is ϕ-factorable. Moreover,

(2.3) [U(f), g]ϕ = [f, U∗(g)]ϕ, a.e., for all f, g ∈ L2(G).

Proof. Clearly U∗ is ϕ-factorable. Indeed, for f, g ∈ L2(G) and ϕ-
periodic h ∈ L∞(G), we have
< U∗(hf), g >L2(G) = < hf,U(g) >L2(G)

= < f, h̄U(g) >L2(G)

= < f,U(h̄g) >L2(G)

= < U∗(f), h̄g >L2(G)

= < hU∗(f), g >L2(G) .

Moreover, given f, g ∈ L2(G), we have∫
G/ϕ(L)[U(f), g]ϕ(ẋ)dẋ = < U(f), g >L2(G)

= < f,U∗(g) >L2(G)

=
∫
G/ϕ(L)[f, U

∗(g)]ϕ(ẋ)dẋ,
which implies (2.3). �

Example 2.7. Let G = Rn, for n ∈ N. Then, L = Zn is a uniform
lattice in G. Let A be an invertible n×n real matrix. Define ϕ : G→ G
by ϕ(x) = Ax, for x ∈ Rn. Then, for g ∈ L2(G), the operator U given by
U(f) = [f, g]ϕ, where [f, g]ϕ(x) =

∑
k∈Zn fḡ(x − Ak), is a ϕ-factorable

operator from L2(G) to L1(G/ϕ(L)) (= L1(Tn)).

Example 2.8. Fix a prime p. Let ∆p denote the group of p-adic in-
tegers, as defined in [11, Definition 10.2]. Consider the LCA group
G = R × ∆p and let L be the subgroup {(n, nu)}n∈Z of R × ∆p, where
u = (1, 0, 0, ...). Then, L is a uniform lattice in R × ∆p (obviously,
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L is discrete and by [11, Theorem 10.13], R × ∆p/L is compact). Let
a := (1/p, 0, 0, ...) ∈ ∆p. Then, the mapping ϕ : R × ∆p → R × ∆p,
defined for (x, v) ∈ R × ∆p, by ϕ(x, v) = (2x,av), is a topological iso-
morphism on R × ∆p. For g ∈ L2(R × ∆p), the operator U, given by
U(f)(x, v) =

∑
k∈Z fḡ(x− 2k, v− kau), is a ϕ-factorable operator from

L2(R×∆p) to L1(R×∆p/L).

The next section is devoted to an application of the ϕ-bracket product
to the Weyl-Heisenberg systems.

3. Applications to Weyl-Heisenberg frames

In this section, we investigate the Weyl-Heisenberg frames with regard
to the ϕ-bracket product. For general references on the Weyl-Heisenberg
frames on R, we refer to the survey articles [2, 3].

Suppose L1 and L2 are two uniform lattices in G, g ∈ L2(G) and
Tϕ(k)g is the translation of g by ϕ(k). We call (MγTϕ(k)g)γ∈ϕ(L2)⊥,k∈L1

,
a Weyl-Heisenberg system (Gabor’s system). If this system is a frame
in L2(G), we call it a Weyl-Heisenberg frame. In this case, the frame
operator associated with it is defined to be

S(f) =
∑

γ∈ϕ(L2)⊥

∑
k∈L1

< f,MγTϕ(k)g > MγTϕ(k)g.

We would like to consider the Weyl-Heisenberg frame Identity and the
frame operator of a Weyl-Heisenberg frame in terms of the ϕ-bracket
product. The following proposition is an extension of the Weyl-Heisenberg
frame Identity ([5, Theorem 4.6.2]) with regards to the ϕ-bracket prod-
uct; see also [6].

Proposition 3.1. Let L1 and L2 be two uniform lattices in G. Let
g ∈ L2(G) be ϕ-bounded. Then, for every f ∈ L2(G) which is bounded
and compactly supported, we have

(3.1)
∑
k∈L1

∑
γ∈ϕ(L2)⊥

| < f,MγTϕ(k)g > |2 =

∑
l∈L2

∫
G/ϕ(L1)

[Tϕ(l−1)f, f ]ϕ,L1(ẋ)[g, Tϕ(l−1)g]ϕ,L1(ẋ)dẋ,

where, [f, g]ϕ,Li(ẋ) =
∑

k∈Li
fg(xϕ(k−1)), i = 1, 2.
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Proof. For k ∈ L1, using the Plancherel Theorem, we have∑
γ∈ϕ(L2)⊥ | < f,MγTϕ(k)g > |2

=
∑

γ∈ϕ(L2)⊥ |
∫
G f(x)MγTϕ(k)g(x)dx|2

=
∑

γ∈ϕ(L2)⊥ |
∫
G/ϕ(L2)

∑
ϕ(l)∈ϕ(L2) f(xϕ(l))g(xϕ(lk−1))γ(x)dẋ|2

=
∑

γ∈ϕ(L2)⊥ |F̂k(γ)|2

= ‖F̂k‖2

L2( ̂G/ϕ(L2))

= ‖Fk‖2
L2(G/ϕ(L2)),

where, Fk(x) =
∑

ϕ(l)∈ϕ(L2) f(xϕ(l))g(xϕ(lk−1)). So, we get∑
k∈L1

∑
γ∈ϕ(L2)⊥

| < f,MγTϕ(k)g > |2

=
∑

k∈L1

∫
G/ϕ(L2)

|
∑

ϕ(l)∈ϕ(L2)
f(xϕ(l))g(xϕ(lk−1))|2dẋ

=
∑

k∈L1

∫
G/ϕ(L2)

∑
ϕ(l)∈ϕ(L2)

f(xϕ(l))g(xϕ(lk−1))∑
ϕ(m)∈ϕ(L2)

f(xϕ(m))g(xϕ(mk−1))dẋ (put m = nl)

=
∑

k∈L1

∫
G/ϕ(L2)

∑
ϕ(l)∈ϕ(L2)

f(xϕ(l))g(xϕ(lk−1))∑
ϕ(n)∈ϕ(L2)

f(xϕ(nl))g(xϕ(nlk−1))dẋ

=
∑

k∈L1

∫
G
f̄(x)g(xϕ(k−1))

∑
ϕ(n)∈ϕ(L2)

f(xϕ(n))g(xϕ(nk−1))dx

=
∑

n∈L2

∫
G
f̄(x)f(xϕ(n))

∑
k∈L1

g(xϕ(k−1))g(xϕ(nk−1))dx

=
∑

n∈L2

∫
G
f̄(x)f(xϕ(n))[g, Tϕ(n−1)g]ϕ,L1(x)dx

=
∑

n∈L2

∫
G/ϕ(L1)

∑
ϕ(l)∈ϕ(L1)

f(xϕ(l))Tϕ(n−1)f(xϕ(l))[g, Tϕ(n−1)g]ϕ,L1(ẋ)dẋ

=
∑

n∈L2

∫
G/ϕ(L1)

[Tϕ(n−1)f, f ]ϕ,L1(ẋ)[g, Tϕ(n−1)g]ϕ,L1(ẋ)dẋ.
�

As a consequence of Proposition 3.1, we have the following corollary.

Corollary 3.2. Let L1 and L2 be two uniform lattices in G. Let g ∈
L2(G) such that
(3.2)
B := supẋ∈G/ϕ(L1)

∑
k2∈L2

|[g, Tϕ(k2)g]ϕ,L1(ẋ)| <∞, and

A := infẋ∈G/ϕ(L1)[‖g‖2
ϕ,L1

(ẋ)−
∑

1G 6=k2∈L2
|[g, Tϕ(k2)g]ϕ,L1(ẋ)|] > 0.

Then, (MγTϕ(k)g)k∈L1,γ∈ϕ(L2)⊥ is a Weyl-Heisenberg frame with bounds
A and B.
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Proof. Put Hn(x) =
∑

k∈L1
g(xϕ(k−1))g(xϕ(nk−1)). Then,∑

0 6=k2∈L2

|Tϕ(k2
)Hk2(x)| =

∑
0 6=k2∈L2

|Hk2(x)|.

Using Proposition 3.1, we have∑
k∈L1

∑
γ∈ϕ(L2)⊥ | < f, MγTϕ(k)g > |2

|
∑

0 6=n∈L2

∫
G

f̄(x)f(xϕ(n))
∑

k∈L1
g(xϕ(k−1))g(xϕ(nk−1))dx|

≤
∑

0 6=n∈L2

∫
G
|f(x)|

√
|Hn(x)| |Tϕ(n−1)f(x)|

√
|Hn(x)|dx

≤
∑

0 6=n∈L2
(
∫

G
|f(x)|2|Hn(x)|dx)1/2(

∫
G
|Tϕ(n−1)f(x)|2|Hn(x)|dx)1/2

≤ (
∑

0 6=n∈L2

∫
G
|f(x)|2|Hn(x)|dx)1/2(

∑
0 6=n∈L2

∫
G
|Tϕ(n−1)f(x)|2|Hn(x)|dx)1/2

≤ (
∫

G
|f(x)|2

∑
0 6=n∈L2

|Hn(x)|dx)1/2(
∫

G
|f(x)|2

∑
06=n∈L2

|Tϕ(n)Hn(x)|dx)1/2

=
∫

G
|f(x)|2

∑
06=n∈L2

|Hn(x)|dx.

Thus, by (3.2) we, get the desired inequalities:

A‖f‖2
2 ≤

∑
k∈L1γ∈ϕ(L2)⊥

| < f,MγTϕ(k)g > |2 ≤ B‖f‖2
2.

�

It is useful to note also that the Weyl-Heisenberg system has the
following property.

Proposition 3.3. Let L1 and L2 be two uniform lattices in G. If f, g ∈
L2(G) and g is ϕ-bounded, then
(3.3)∑

γ∈ϕ(L2)⊥

∑
k∈L1

| < f,MγTϕ(k)g > |2 =
∑
k∈L1

‖[f, Tϕ(k)g]ϕ,L2‖2
L2(G/ϕ(L2)).

Proof. Using the Plancherel Theorem we have the following calculations
which proves (3.3):∑

γ∈ϕ(L2)⊥
∑

k∈L1
| < f,MγTϕ(k)g > |2

=
∑

γ∈ϕ(L2)⊥
∑

k∈L1
|
∫

G
f(x)Tϕ(k)g(x)γ(x)dx|2

=
∑

γ∈ϕ(L2)⊥
∑

k∈L1
|
∫

G/ϕ(L2)

∑
ϕ(l)∈ϕ(L2)

f(xϕ(l))Tϕ(k)g(xϕ(l))γ(x)dẋ|2

=
∑

γ∈ϕ(L2)⊥
∑

k∈L1
|
∫

G/ϕ(L2)
[f, Tϕ(k)g]ϕ,L2(ẋ)γ(ẋ)dẋ|2

=
∑

γ∈ϕ(L2)⊥
∑

k∈L1
| ̂[f, Tϕ(k)g]ϕ,L2

(γ)|2

=
∑

k∈L1
‖ ̂[f, Tϕ(k)g]ϕ,L2

‖2

L2( ̂G/ϕ(L2))

=
∑

k∈L1
‖[f, Tϕ(k)g]ϕ,L2‖2

L2(G/ϕ(L2)).

�

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

ϕ-factorable operators and Weyl-Heisenberg frames on LCA groups 111

In the sequel, we will identify the frame operator of a Weyl-Heisenberg
frame. For this, we need a couple of lemmas.

Lemma 3.4. Suppose g ∈ L2(G) is ϕ-bounded and ϕ-periodic. Let L be
a uniform lattice in G. Then,

(3.4)
∑

γ∈ϕ(L)⊥

< f,Mγg > Mγg = [f, g]ϕg a.e. for all f ∈ L2(G),

where the series converges in L2(G). In particular, if ‖g‖ϕ = 1 a.e.,
and P is the orthogonal projection onto span{Mγg}γ∈ϕ(L)⊥, then Pf =
[f, g]ϕg a.e..

Proof. Let f ∈ L2(G). By (1.3), we have∑
γ∈ϕ(L)⊥ < f,Mγg > γ(ẋ) =

∑
γ∈ϕ(L)⊥ [̂f, g]ϕ(γ)γ(ẋ) = [f, g]ϕ(ẋ), for

a.e. ẋ ∈ G/ϕ(L). Hence, (3.4) holds, where the convergence of the
series in L2(G) follows from Proposition 1.1. In particular, if ‖g‖ϕ = 1,
then (Mγg)γ∈ϕ(L)⊥ is an orthonormal basis for span{Mγg}γ∈ϕ(L)⊥ . So,
Pf =

∑
γ∈ϕ(L)⊥ < f,Mγg > Mγg = [f, g]ϕg a.e.. �

Lemma 3.5. Let L1 and L2 be two uniform lattices in G, g ∈ L∞(G/ϕ(L1))

and (MγTϕ(k)g)γ∈ϕ(L1)⊥,k∈L2
be a Bessel sequence with bound B in L2(G).

Then, ‖g‖2
ϕ,L2

≤ B.

Proof. Let f ∈ L2(G) be ϕ-periodic and k ∈ L2. Then, f · Tϕ(k)g ∈
L2(G/ϕ(L1)). Since ϕ(L1)⊥ is an orthonormal basis for L2(G/ϕ(L1)),
we have∑

γ∈ϕ(L1)⊥ | < f · Tϕ(k)g,Mγ > |2 = ‖f · Tϕ(k)g‖2
L2(G/ϕ(L1))

=
∫
G/ϕ(L1) |f(x)|2|g(xϕ(k−1))|2dẋ.

So,

(3.5)∑
γ∈ϕ(L1)⊥,k∈L2

| < f, MγTϕ(k)g > |2 =
∑

γ∈ϕ(L1)⊥,k∈L2
| < f · Tϕ(k)g, Mγ > |2

=
∫

G/ϕ(L1)
|f(x)|2

∑
k∈L2

|g(xϕ(k−1)|2dẋ

=
∫

G/ϕ(L1)
|f(x)|2‖g‖2

ϕ,L2(x)dẋ.

On the other hand,

(3.6)
∑

γ∈ϕ(L1)⊥,k∈L2

| < f,MγTϕ(k)g > |2 ≤ B‖f‖2
L2(G/ϕ(L1)).

Hence, (3.5) and (3.6) imply that ‖g‖2
ϕ,L2

≤ B, a.e.. �

The frame operator of a Weyl-Heisenberg frame is given by the fol-
lowing theorem, which is a generalization of [5, Theorem 4.6.8].
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Theorem 3.6. Let L1 and L2 be two uniform lattices in G and g ∈
L∞(G/ϕ(L1)). Suppose (MγTϕ(k)g)γ∈ϕ(L1),k∈L2

is a Weyl-Heisenberg
frame with the frame operator S. Then, S has the form

(3.7) S(f) =
∑
k∈L2

[f, Tϕ(k)g]ϕ,L1Tϕ(k)g,

where the series converges unconditionally in L2(G).

Proof. By Lemma 3.5, Tϕ(k)g is ϕ-bounded, and so we can use Lemma
3.4 to obtain:
S(f) =

∑
γ∈ϕ(L1)⊥,k∈L2

< f,MγTϕ(k)g > MγTϕ(k)g

=
∑

k∈L2
[f, Tϕ(k)g]ϕ,L1Tϕ(k)g.

�
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