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Abstract. Let A = (an,k)n,k≥0 be a non-negative matrix. Denote
by Lw,p,q(A), the supremum of those L, satisfying the following
inequality:(

∞∑
n=0

wn

(
∞∑

k=0

an,kxk

)q) 1
q

≥ L

(
∞∑

k=0

wkxp
k

) 1
p

,

where, x ≥ 0 and x ∈ lp(w) and also w = (wn) is a decreasing, non-
negative sequence of real numbers. If p = q, then we use Lw,p(A)
inested of Lw,p,p(A). Here, we focus on the evaluation of Lw,p(At)
for a lower triangular matrix A, where, 0 < p < 1. In particular,
we apply our results to summability matrices, weighted mean ma-
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1. Introduction

Let p ∈ R\{0} and let lp(w) denote the space of all real sequences x =

{xk}∞k=0 such that ‖x‖w,p := (
∞∑

k=0

wkx
p
k)

1/p < ∞, where, w = (wn)∞n=0 is

a decreasing, non-negative sequence of real numbers with
∑∞

n=0
wn
n+1 =

∞ with w0 = 1.
We write x ≥ 0 if xk ≥ 0, for all k. We also write x ↑ for the case

that x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · . The symbol x ↓ is defined in a similar
way. For p, q ∈ R\{0}, the lower bound involved here is the number
Lw,p,q(A), which is defined as the supremum of those L obeying the
following inequality:( ∞∑

n=0

wn

( ∞∑
k=0

an,kxk

)q) 1
q

≥ L

( ∞∑
k=0

wkx
p
k

) 1
p

, (x ≥ 0, x ∈ lp(w)),

where, A ≥ 0, that is, A = (an,k)n,k≥0 is a non-negative matrix. We
have

Lw,p,q(A) ≤ ‖A‖w,p,q.

In [3], the author obtained Lw,p(C(1)t) = p, (0 < p < 1), where, (.)t

denotes the transpose of (.) and C(1) = (an,k)n,k≥0 is the Cesaro matrix
defined by

an,k =
{

1
n+1 0 ≤ k ≤ n

0 otherwise.

This is an analogue of Copson’s result [2, Eq. (1.1)] (see also [4], The-
orem 344) for weighted sequence space lp(w) and has been generalized
by Foroutannia [3]. He extended it in [3, Theorem 2.7.17 and Theorem
2.7.19] to those summability matrices A, whose rows are increasing or
decreasing. Also, he gave upper bounds or lower bounds for Lw,p(A),
for such A. For the case of Hausdorff matrices, the related result with
0 < p < 1 has been established in [3, Theorem 4.3.2], giving a Hardy-
type formula for Lw,p(Ht

µ).

Obviously, the lower bound problems of Copson type for the weighted
mean matrices, (AWM

W ) = (an,k)n,k≥0, and the Nörlund matrices, (ANM
W )

= (bn,k)n,k≥0, or more generally for the summability matrices on weighted
sequence spaces are still less satisfactory (cf. [1, problem 4.20]), where
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the weighted mean matrices and the Nörlund matrices are defined as:

an,k =

{
w′n
W ′

n
0 ≤ k ≤ n

0 otherwise,
and

bn,k =

{
w′n−k

W ′
n

0 ≤ k ≤ n

0 otherwise.
Here, W ′

n =
∑n

k=0 w′k, and w′ = (w′n) is a non negative sequence with
w′0 > 0.

Here we are concerned with the problem of finding Lw,p(At) and
Lw,p∗(A) (see Theorem 2.3), where, 0 < p < 1, 1

p + 1
p∗ = 1 and A is

a non-negative lower triangular matrix. Our result gives a lower esti-
mate for these two values in terms of the constant M , defined by:

(1.1) an,k ≤ Man,j , (0 ≤ k ≤ j ≤ n).

Here, M ≥ 1. We shall assume that M is the smallest value appearing
in (1.1). If (1.1) is not satisfied, then we set M = ∞. As a consequence,
we prove that Theorem 2.3 generalizes some works of Lashkaripour and
Foroutannia ([3], pp.53-54). Also, we obtain lower estimate and upper
estimate for the weighted mean matrix and the Nörlund matrix in some
cases.

2. Main Result

The purpose of this section is to establish general lower bounds for
Lw,p(At) and Lw,p∗(A), where, 0 < p < 1, 1

p + 1
p∗ = 1 and A is a non-

negative lower triangular matrix. First, we generalize Lemma 5.2 of [2]
to the weighted sequence space lp(w).

Lemma 2.1. Suppose that 0 < p < 1, 1
p + 1

p∗ = 1 and N ∈ N. Let
C1

N = (cn,k(N))n,k≥0 be the matrix with entries

cn,k(N) =
{

1
n+N

0≤k<n+N

0 k≥n+N.

Then,
Lw,p

(
(C1

N )t
)

= Lw,p∗
(
C1

N

)
= p.

Moreover, for r ∈ N and r > max{N − 2, 1
p}, there exists a sequence

{xm
N}

∞
m=0 such that xm

N =
(
0, ..., 0, xm

r−N+1, ...
)
≥ 0, xm

r−N+1 ≥ xm
r−N+2 ≥
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..., ‖xm
N‖w,p = 1, for all m, and also

lim
m→∞

‖xm
N‖w,1 = 0 , lim

m→∞

∥∥∥(C1
N

)t
xm

N

∥∥∥
w,p

= p.

Proof. Applying Proposition 2.5 of [6], it suffices to prove the case
Lw,p

(
(C1

N )t
)

= p. For x ≥ 0, we have∥∥∥(C1
N

)t
x
∥∥∥

w,p
=
∥∥C(1)tx′

∥∥
w,p

,

where, x′ = {x′k}
∞
k=0 is defined by

(2.1) x′k =
{

0 0 ≤ k < N − 1,
xk−N+1 k ≥ N − 1.

This implies that Lw,p

(
(C1

N )t
)
≥ Lw,p

(
C(1)t

)
= p. For the rest of

the proof, it suffices to prove the existence of {xm
N}

∞
m=0, for r ∈ N, with

r > max{N −2, 1
p}. Choose a sequence, say {ρm}∞m=0 , such that ρ0 ≤ r

and ρm ↓ 1
p . Define xm

N = {xm
k }

∞
k=0 by

xm
k =

{
0 0≤k<r−N+1,

(φ(ρm))−1
(

k+N−1−ρm
k+N−1−r

)
/(k+N−1

r ) k≥r−N+1,

where,

φ(t) =

( ∞∑
k=r−N+1

wk

{(
k+N−1−t
k+N−1−r

)/(
k+N−1

r

)}p
) 1

p

.

We have xm
N =

(
0, ..., 0, xm

r−N+1, ...
)
≥ 0 , xm

k ↓, for all k ≥ r − N + 1,
and ‖xm

N‖w,p = 1, for all m. Applying ([7, Vol.I], p.77, Eq. (1.15)), we
have(

k+N−1−ρm

k+N−1−r

)/(
k+N−1

r

)
∼ Γ (r + 1)

Γ (r − ρm + 1)
(k+N−1−r)−ρm , as k →∞.

Since ρm ↓, 1
p and 1

p > 1, it follows from the monotone convergence
theorem that lim

m→∞
φ (ρm) = ∞. Moreover, there exists a constant C

such that

lim sup
m→∞

∞∑
k=r−N+1

wk

{(
k+N−1−ρm

k+N−1−r

)/(
k+N−1

r

)}
≤ C

∞∑
n=1

wnn−1/p < ∞.
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So, lim
m→∞

∥∥xN
m

∥∥
w,1

= 0. We know that C(1) is the same as the Hausdorff

matrix Hµ with dµ(θ) = dθ. By modifying the argument given in ([3],
pp. 80-81), we can prove that

‖(C1
N )txm

N‖w,p = ‖C(1)t(xm
N )′‖w,p → p, as m →∞,

where, (xm
N )′ is obtained from xm

N by means of (2-1). This completes the
proof of the lemma �

In the following lemma, we extend Lemma 2.1 from matrix C1
N to

general matrix C l
N , with l ∈ N.

Lemma 2.2. Suppose that 0 < p < 1, 1
p + 1

p∗ = 1 and l, N ∈ N. Let
C l

N = (cl
n,k)n,k≥0 be the matrix with

cl
n,k =


1

n+N 0 ≤ k < n + N − l + 1

0 k ≥ n + N − l + 1.

Then,

Lw,p

(
(C l

N )t
)

= Lw,p∗

(
C l

N

)
≤ p.

Moreover, the following two assertions hold:
(i) For l ≤ N and x ≥ 0 with x ↓, we have

(2.2)
∥∥∥(C l

N )tx
∥∥∥p

w,p

≤
∥∥C(1)tx′

∥∥p

w,p
≤
∥∥∥(C l

N )tx
∥∥∥p

w,p

+
lp(l + 1)

Np
‖x‖p

w,p
,

where, x′ = {x′k}
∞
k=0 is defined by (2.1).

(ii) There exists a sequence {xN}∞N=0 such that xN ≥ 0, xN ↓,
‖xN‖w,p

= 1, and also

lim
N→∞

‖xN‖w,1 = 0, lim
N→∞

∥∥∥(C l
N )txN

∥∥∥
w,p

= p.

Proof. For x ≥ 0 ,
∥∥(C l

N )tx
∥∥p

w,p
≤
∥∥(C1

N

)
x
∥∥p

w,p
. Applying Lemma 2.1,

we have
Lw,p((C l

N )t) ≤ Lw,p∗((C1
N )t) = p.

The left side in (2.2) follows from the observation,

‖(C l
N )tx‖p

w,p ≤ ‖(C1
N )t)x‖p

w,p = ‖C(1)tx′‖p
w,p (x ≥ 0).

Hence, to prove (i) it is suffices to show the right side of (2-2). Assume
that l ≤ N , x ≥ 0 and x ↓. Applying definition of x′k, we get
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(2.3)

‖C(1)tx′‖p
w,p =

N−1∑
k=0

wk

( ∞∑
n=N−1

x′
n

n+1

)p

+
∞∑

k=N

wk

( ∞∑
n=k

x′
n

n+1

)p

≤
N∑

k=0

wk

( ∞∑
n=0

xn

n+N

)p

+
∞∑

k=N+1

wk

(
∞∑

n=k−N+1

xn

n+N

)p

= Σ1 + Σ2.

We know that ap + bp ≥ (a + b)p, for all a, b ≥ 0. Hence,

(2.4)

Σ1 ≤
N−l∑
k=0

wk

( ∞∑
n=0

cl
n,kxn

)p

+
N∑

k=N−l+1

wk

{(
k−N+l−1∑

n=0

xn

n+N

)p

+

(
∞∑

n=k−N+l

cl
n,kxn

)p}
.

The monotonicity of xn implies that
k−N+l−1∑

n=0

xn
n+N ≤

(
l/N
)

x0, for all

N − l < k ≤ N. Inserting this into (2.4), yields:

(2.5) Σ1 ≤
N−l∑
k=0

wk

( ∞∑
n=0

cl
n,kxn

)p

+
lp+1xp

0

Np
+

N∑
k=N−l+1

wk

( ∞∑
n=0

cl
n,kxn

)p

.

In the same way as in (2.4), one can show

(2.6)

Σ2 ≤
∞∑

k=N+1

wk

{(
k−N+l−1∑
n=k−N+1

xn

n+N

)p

+

(
∞∑

n=k−N+l

cl
n,kxn

)p}

≤ lp

Np

∞∑
k=N+1

wkxp
k−N+1+

∞∑
k=N+1

wk

( ∞∑
n=0

cl
n,kxn

)p

.

Putting (2.3), (2.5) and (2.6) together, yields:∥∥C(1)tx′
∥∥p

w,p
≤
∥∥∥∥(C l

N

)t
x

∥∥∥∥p

w,p

+
lp(l + 1)

Np
‖x‖p

w,p .

This completes the proof of (i).
(ii). Let x0 = x1 = ... = x[

1
p

]
+1

= e0, where, e0 = (1, 0, 0, ...). For

each N > 1
p + 1, it follows from the case r = N − 1 of Lemma 2.1
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that there exist xN with the properties: xN ≥ 0, xN ↓, ‖xN‖w,p =
1, ‖xN‖w,1 ≤

1
N and

p− 1
N

≤
∥∥∥∥(C l

N

)t
xN

∥∥∥∥
w,p

≤ p +
1
N

.

Obviously,

lim
N→∞

‖xN‖w,1 = 0, lim
N→∞

∥∥∥∥(C l
N

)t
xN

∥∥∥∥
w,p

= p.

Applying (2.2), we get∥∥∥(C l
N

)t
xN

∥∥∥p

w,p
≤
∥∥C(1)tx′N

∥∥p

w,p
=
∥∥∥(C1

N

)t
xN

∥∥∥p

w,p

≤
∥∥∥(C l

N

)t
xN

∥∥∥p

w,p
+ lp(l+1)

Np . (N ≥ l)

Making N →∞, it follows that

lim
N→∞

∥∥∥∥(C l
N

)t
xN

∥∥∥∥
w,p

= lim
N→∞

∥∥∥(C1
N

)t
xN

∥∥∥p

w,p
= p.

This completes the proof. �

Note that, in general, Lw,p((C l
N )t) 6= p. In fact, we have Lw,p((CN

N )t)
≤ 1

N < p, if N > 1
p . One can see this by considering the definition of

CN
N .

Theorem 2.3. Let 0 < p < 1, 1
p + 1

p∗ = 1 and A = (an,k)n,k≥0 be a
lower triangular matrix with A ≥ 0. Then,

(2.7) pMp−1( inf
n≥0

n∑
k=0

an,k) ≤ Lw,p(At).

Also, the same inequality holds, if Lw,p(At) is replaced by Lw,p∗(A).
Here, M is defined by (1.1).

Proof. Applying Proposition 4.3.6 of [3], we have Lw,p

(
At
)

= Lw,p∗ (A),
and so it suffices to prove (2.7). Let x ≥ 0 with ‖x‖w,p = 1. Since
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p− 1 < 0, from Lemma 2.7.18 of [3] with (1.1) and Fubini’s theorem, it
follows that:

(2.8)

‖Atx‖p
w,p =

∞∑
k=0

wk

( ∞∑
n=k

an,kxn

)p

≥ p

 ∞∑
k=0

wk

∞∑
j=k

aj,kxj

(
∞∑

n=j

an,kxn

)p−1


≥ pMp−1
∞∑

k=0

wk

∞∑
j=k

aj,kxj

(
∞∑

n=j

an,jxn

)p−1

≥ pMp−1
∞∑

j=0

wjxj

(
∞∑

n=j

an,jxn

)p−1(
j∑

k=0

aj,k

)

≥ pMp−1

(
inf
j≥0

j∑
k=0

aj,k

) ∞∑
j=0

wjxj

(
∞∑

n=j

an,jxn

)p−1
 .

Applying Hölder’s inequality, we deduce that

∞∑
j=0

wjxj

(
∞∑

n=j
an,jxn

)p−1

=
∞∑

j=0
w

1
p

j xj

(
w

1
p∗(p−1)

j

∞∑
n=j

an,jxn

)p−1

≥

(
∞∑

j=0
wjx

p
j

) 1
p
(

∞∑
k=0

(
w

1
p

k

∞∑
j=k

aj,kxj

)p) 1
p∗

= ‖x‖w,p

∥∥Atx
∥∥p−1

w,p
.

Inserting this estimate into the corresponding term in (2.8), gives

∥∥Atx
∥∥

w,p
≥ pMp−1

(
inf
j≥0

j∑
k=0

aj,k

)
‖x‖w,p .

This leads us to the lower estimate in (2.7). �

Theorem 2.3 has some applications. For example, consider the weighted
mean matrix, say (AWM

W l ), associated with the sequence W ′ = (w′n)∞n=0,
where, l = 0, 1, 2, · · · , w′0 = w′1 = · · · = w′l = 1 and w′n = 1

2 , for n > l.
Applying inequality (2.7) for M = 2, we have

Lw,p((AWM
W l )t) ≥ p2p−1.

Next, consider the Nörlund matrix (ANM
W ), where, w′ = (w′n)∞n=0 is a

non-negative sequence with w′0 > 0 and W ′
n =

∑n
k=0 w′k. If w′n ↓, then
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M = 1. Applying (2.7), we deduce that

Lw,p((ANW
W )t) ≥ p.

In general, for the summability matrix A (see [1]), with increasing rows
M = 1, we observe that (2.7) has the following form:

(2.9) p ≤ Lw,p(At) = Lw,p∗(A).

Inequality (2.9) is an analogue of ([4], Theorem 4.2), obtained by a
different way.

Theorem 2.4. Let 0 < p < 1, 1
p + 1

p∗ = 1, w′0 > 0 and w′n ≥ 0, for all
n ≥ 1 and also lim

n→∞
W ′

n = ∞. Then, the following assertions are true:

(i) Lw,p

((
ANM

W

)t) = Lw,p∗
(
ANM

W

)
≤ p

(
lim
l→∞

K(l)
)

,

where, K(l) := sup
n≥0, N≥l, l≤k≤n+N

(n+N+1)w′k
W ′

n+N
.

(ii) Lw,p

((
AWM

W

)t) = Lw,p∗
(
AWM

W

)
≤ p

(
lim
l→∞

k(l)
)

,

where, k(l) := sup
n≥0, l≤k≤n

(n+1)w′k
W ′

n
.

Obviously, k(l) ≤ K(l), for all l ≥ 1. Since k(l) ↓ and K(l) ↓, then
the limits in (i) and (ii) can be replaced by inf

l∈N
. We have

K(l) ≤

(
sup
n≥l

w′n

)
/
(

inf
n≥l

W ′
n

n + 1

)
.

Proof. Let xN and x′N be defined as in Lemma 2.2. Since ap + bp ≥
(a + b)p, for all a, b ≥ 0, we deduce that

(2.10)
∥∥∥(ANM

W

)t
x′N

∥∥∥p

w,p
≤
∥∥∥∥(Al

1

)t
x′N

∥∥∥∥p

w,p

+
∥∥∥∥(Al

2

)t
x′N

∥∥∥∥p

w,p

(N ≥ 0),

where, Al
2 = ANM

W −Al
1 and Al

1 = (an,k)n,k≥0 is the matrix obtained from
ANW

W by replacing the (n, k)th entry of ANW
W with 0, for all n, k, with

n− l < k ≤ n. Consider N ≥ l + 1. Obviously, an+N−1,k ≤ K(l)/n + N,
for 0 ≤ k < n+N − l, and an+N−1,k = 0, for k ≥ n+N − l. This implies
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that

(2.11)
∥∥∥∥(Al

1

)t
x′N

∥∥∥∥p

w,p

≤ K(l)p

∥∥∥∥(C l
N

)t
xN

∥∥∥∥p

w,p

.

On the other hand, it follows from the definition of Al
2 that

(2.12)
∥∥∥∥(Al

2

)t
x′N

∥∥∥∥p

w,p

≤ l

(
max{w′0, w′1, ..., w′l−1}

W ′
N−1

)p

‖xN‖p
w,p .

Putting (2.10) and (2.11) together with (2.12), yields:∥∥∥(ANM
W

)t
x′N

∥∥∥p

w,p
≤ (K(l))p

∥∥∥(C l
N

)t
xN

∥∥∥p

w,p

+ l
(

max{w′0,w′1,...,w′l−1}
W ′

N−1

)p

‖xN‖p
w,p .

We have ‖xN‖w,p = 1 and W ′
N →∞, as N →∞, and applying Lemma

2.2(ii), we get Lw,p((ANM
W )t) ≤ pK(l). Hence,

Lw,p((ANM
W )t) ≤ p(inf

l∈N
K(l)) = p lim

l→∞
K(l).

This proves (i).

Now, consider (ii). Let {xm
N}

∞
m=0 be the corresponding sequence given

in Lemma 2.2. Similar to ANM
W , write AWM

W = Al
1 + Al

2, where, Al
1 is

the matrix obtained from AWM
W by replacing the (n, k)th entry of AWM

W
with 0, for all n ≥ 0 and 0 ≤ k < l. As seen above, one can easily derive:∥∥∥(AWM

W

)t (xm
N )′
∥∥∥p

w,p
≤
∥∥(Al

1)
t(xm

N )′
∥∥p

w,p
+
∥∥(Al

2)
t(xm

N )′
∥∥p

w,p

≤ (k(l))p
∥∥(C1

N

)
xm

N

∥∥p

w,p

+ l(
max{w′0,w′1,...,w′l−1}

W ′
N−1

)p ‖xm
N‖

p
w,p ,

which gives Lw,p(AWM
W )t) ≤ pk(l), for all l ∈ N. Therefore,

Lw,p((AWM
W )t) ≤ p(inf

l∈N
k(l)) = p lim

l→∞
k(l).

This completes the proof of the (ii). �

Applying (2.9) for the summability matrix A, with increasing rows,
we have

p ≤ Lw,p(At) = Lw,p∗(A).
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Also, applying Theorem 2.4(i), we deduce the following corollaries.

Corollary 2.5. Let 0 < p < 1, 1
p + 1

p∗ = 1, w′n ↓ α and α > 0. Then,

Lw,p((ANM
W )t) = Lw,p∗((ANM

W )) = p.

Remark 2.6. The case α = 0 in Corollary 2.5 is false. In general, a
counterexample is the Nörlund matrix (ANM

W ), where, w′0 = 1, w′n ↓ 0,
inf
k≥0

w′0
w′0+...+w′k

> p. For this matrix, α = 0, but

Lw,p((ANM
W )t) ≥ inf

‖x‖w,p=1, x≥0

( ∞∑
n=0

wn(an,nxn)p

)1/p

≥ inf
k≥0

w′0
w′0+...+w′k

> p.

In ([5], Theorem 4.1), the upper bound of Lw,p(At) is established for
those summability matrices A, whose rows are decreasing, where, such
matrices, Lw,p(At) ≤ p. For this of type matrix, applying (2.7), we have

pMp−1 ≤ Lw,p(At) ≤ p.

Also, we have the following results for particular cases of such matrices.

Corollary 2.7. Let 0 < p < 1, 1
p + 1

p∗ = 1, w′n ↓ α and α ≥ 0. Then,

p(
w′0
α

)p−1 ≤ Lw,p

((
AWM

W

)t)
= Lw,p∗

(
AWM

W

)
≤ p.

Corollary 2.8. Let 0 < p < 1, 1
p + 1

p∗ = 1 , w′n ↑ α and w′0 > 0. Then,

p(
α

w′0
)p−1 ≤ Lw,p

((
ANM

W

)t)
= Lw,p∗

(
ANM

W

)
≤ p.
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