Bulletin of the Iranian Mathematical Society Vol. 37 No. 1 (2011), pp 127-130.

MULTIPLICATIVE BIJECTIVE MAPS ON STANDARD OPERATOR ALGEBRAS

M. B. ASADI

Communicated by Mohammad Sal Moslehian

ABSTRACT. We provide an elementary proof of the fact that every bijective multiplicative map $\pi : A \rightarrow B$ of standard operator algebras on real normed spaces X and Y , is respectively of the form $\pi(A) = TAT^{-1}$ and $A \in \mathcal{A}$, where $T : X \to Y$ is a bounded invertible linear operator.

Communicated by Mohammad Sal Moslehian
 ABSTRACT. We provide an elementary proof of the fact that every

bijective multiplicative map $\pi : A \rightarrow B$ of standard operator alge-

bras on real normed spaces X and Y, is respecti Semrl proved the following theorem for the infinite dimensional real and complex Banach spaces by using projective geometry [6] and automatic continuity [5]. Here, we give an elementary proof of the theorem for any real normed space of dimension at least two. We note that in our proof, we do not use the completeness of X and Y .

Let X and Y be normed spaces. Denote by $B(X)$, the algebra of all bounded linear operators on X. A subalgebra of $B(X)$ which contains $F(X)$ (the ideal of all finite rank operators in $B(X)$) is called a standard operator algebra on \overline{X} .

Theorem. Let X and Y be real normed spaces, at least two-dimensional, and let A and B be standard operator algebras on X and Y , respectively. Assume that $\pi : A \rightarrow B$ is a bijective map satisfying

$$
\pi(AB) = \pi(A)\pi(B), \quad \text{for every } A, B \in \mathcal{A}.
$$

MSC(2010): Primary: 47B49; Secondary: 47L10.

Keywords: Multiplicative maps, standard operator algebras. Received: 17 November 2009, Accepted: 6 December 2009.

c 2011 Iranian Mathematical Society.

¹²⁷

Then, $\pi(A) = TAT^{-1}$, $A \in \mathcal{A}$, where $T : X \to Y$ is a bounded invertible linear operator. In particular, π is continuous.

Proof. Let $P \in \mathcal{A}$ be a rank one idempotent. Then, $\pi(P)$ is rank one idempotent, as well. It follows that a nonzero idempotent $P \in B(X)$ has rank one if and only if for every nonzero idempotent $Q \in B(X)$, the equality $PQ = Q$ implies $P = Q$.

We fix a unit vector $z \in X$ and a functional $g \in X'$ with $g(z) = 1$. Then, $\pi(z \otimes g) = u \otimes h$, where $u \in Y$ and $h \in Y'$ with $h(u) = 1$. We define $T: X \to Y$ by

$$
T(x) = \pi(x \otimes g)u, \quad x \in X.
$$

For any $A \in \mathcal{A}$, we have

$$
TAx = \pi(A(x \otimes g))u = \pi(A)\pi(x \otimes g)u = \pi(A)Tx.
$$

Therefore,

$$
TA = \pi(A)T. (*)
$$

We observe that $T \neq 0$, by $T(z) = u$, and so the above equality implies that T is a bijective map from X onto Y .

Since $\pi(P)$ is a rank one idempotent, there exists a suitable number $U_P(\lambda)$ for any number λ such that

$$
\pi(P)\pi(\lambda P)\pi(P) = U_P(\lambda)\pi(P).
$$

 $T(x) = \pi(x \otimes g)u, \quad x \in X.$ For any $A \in \mathcal{A}$, we have
 $TAx = \pi(A(x \otimes g))u = \pi(A)\pi(x \otimes g)u = \pi(A)Tx.$ Therefore, $TA = \pi(A)T.$ We observe that
 $T \neq 0,$ by $T(z) = u,$ and so the above equality implies
that T is a bijective map from X o Therefore, $\pi(\lambda P) = U_P(\lambda)\pi(P)$. It is easy to see that U_P does not depend on $\pi(P)$; i.e., $U_P = U_Q$, for all rank one idempotents P and Q. Hence, we use U instead of U_P .

In fact, if R is a rank one idempotent such that $RP \neq 0, RQ \neq 0$, then $U_R(\lambda)\pi(R)\pi(P) = \pi((\lambda R)P) = \pi(R(\lambda P)) = U_P(\lambda)\pi(R)\pi(P)$ and so $U_R(\lambda) = U_P(\lambda)$.

Clearly, U is a one-to-one multiplicative map on $\mathbb R$, $U(1) = 1$ and $U(-1) = -1$, since π is a multiplicative bijective map.

Also, we have $T(\lambda P) = U(\lambda)TP$, for any rank one idempotent P in A. Therefore, $T(-P) = -TP$ and so $T(-x) = -T(x)$, for any x in X. We show that T is an additive map, and it follows that U is additive.

Suppose first that $x_1, x_2 \in X$ are linearly independent. We put $y_1 =$ $T(x_1)$, $y_2 = T(x_2)$ and distinguish two cases.

(1) $T^{-1}(y_1 + y_2) = x_3$ is linearly independent of x_1, x_2 .

(2) The contrary to (1) occurs.

In the first case, we can find an operator $A \in \mathcal{A}$ such that

$$
A(x_1) = x_1, A(x_2) = x_2, A(x_3) = x_1 + x_2.
$$

Multiplicative bijective maps on standard operator algebras 129

Then, we have

$$
T(x_1 + x_2) = T(A(x_3)) = \pi(A)T(x_3) = \pi(A)(T(x_1) + T(x_2))
$$

= $T(x_1) + T(x_2)$.

In the second case, let $x_3 = \lambda_1 x_1 + \lambda_2 x_2$, for some $\lambda_1, \lambda_2 \in \mathbb{R}$ and $P_1 = x_1 \otimes f_1, P_2 = x_2 \otimes f_2$, where $f_1(x_1) = f_2(x_2) = 1$. We find an operator $A \in \mathcal{A}$ such that $A(x_1) = x_1, A(x_2) = 0$. Then, we have

$$
\pi(A)(T(x_1) + T(x_2)) = \pi(A)T(x_3) = TA(\lambda_1 x_1 + \lambda_2 x_2)
$$

= $T(\lambda_1 x_1) = U(\lambda_1)T(x_1).$

On the other hand, $\pi(A)(T(x_1) + T(x_2)) = TA(x_1) + TA(x_2) = T(x_1)$. Then, $U(\lambda_1) = 1$ and $\lambda_1 = 1$, since U is one-to-one.

In the same way, we obtain $\lambda_2 = 1$; i.e., $T(x_1 + x_2) = T(x_1) + T(x_2)$.

Now, for each $0 \neq x \in X$ and $-1 \neq r \in \mathbb{R}$, assume that $y \in X$ be linear by independent of x. Then, $\{x+y, rx-y\}$ is a linear independent set, and therefore,

$$
T(x + rx) = T(x + y + rx - y) = T(x + y) + T(rx - y)
$$

= $T(x) + T(y) + T(rx) - T(y) = T(x) + T(rx).$

On the other hand, $\pi(A)(T(x_1) + T(x_2)) = TA(x_1) + TA(x_2) = T(x_1)$

Then, $U(\lambda_1) = 1$ and $\lambda_1 = 1$, since *U* is one-to-one.

In the same way, we obtain $\lambda_2 = 1$; i.e., $T(x_1 + x_2) = T(x_1) + T(x_2)$

Now, for each $0 \neq x \in X$ and $-1 \neq r \$ Also, if $r = -1$, then $T(x + rx) = T(x) + T(rx)$, since $T(-x) = -T(x)$. It follows that T and so U are additive. Further more U is multiplicative and $U(1) = 1$. Therefore, $U(\lambda) \equiv \lambda$, by the Darboux theorem. Then, T and so π are linear operators. Now, similar to [1], it can be proved that T is bounded.

Remark. It is essential that the normed spaces X and Y be at least two dimensional. For instance, let $X = Y = \mathbb{R}$ and consequently, $\mathcal{A} = \mathcal{B} =$ R. The map $\pi : \mathcal{A} \to \mathcal{B}$, related by $\pi(x) = x^3$, for $x \in \mathbb{R}$, is a bijective multiplicative map, but π is not a linear (or even additive) map.

REFERENCES

- [1] M. B. Asadi and A. Khosravi, An elementary proof of the characterization of isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 134 (2006) 3255-3256.
- [2] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973) 275-289.
- [3] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940) 97-105.
- [4] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969) 695-698.

130 Asadi

- [5] P. Šemrl, Isomorphisms of standard operator algebras, *Proc. Amer. Math. Soc.* 123 (1995) 1851-1855.
- [6] P. Šemrl, Applying projective geomety to transformations on rank one idempotents, J. Funct. Anal. 210 (2004) 248-257.

M. B. Asadi

Department of Mathematics, Shahed University, P.O.Box 18151-159, Tehran, Iran Email: mbasadi@shahed.ac.ir

Archive of SID