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A COMPOSITE EXPLICIT ITERATIVE PROCESS
WITH A VISCOSITY METHOD FOR LIPSCHITZIAN

SEMIGROUP IN A SMOOTH BANACH SPACE

P. KATCHANG AND P. KUMAM∗

Communicated by Tony Lau

Abstract. We introduce a new explicit composite iteration scheme
with a viscosity iteration method for approximating a common fixed
point of Lipschitzian semigroup on a compact convex subset of a
smooth Banach space. We show that the iterative sequence con-
verges strongly to a common fixed point under some parameter
controlling conditions. Our results extend and improve the recent
results by Saeidi [S. Saeidi, Fixed Point Theory Appl. (2008) Art.
ID 363257 17pp.], Zhang et al. [S.-S. Zhang, L. Yang and J.-A.
Liu, Appl. Math. Mech. (English Ed.) 28 (2007) 1287–1297.] and
several others.

1. Introduction

Let E be a Banach space and let E∗ be the topological dual of E.
The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉 or x∗(x). With
each x ∈ E, we associate the set

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2}.
Using the Hahn-Banach theorem, it immediately follows that J(x) 6= ∅,
for each x ∈ E. A Banach space E is said to be smooth if the duality
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mapping J of E is single valued. We know that if E is smooth, then J
is norm to weak-star continuous; see [7, 20].

Let C be a nonempty closed convex subset of E. A mapping T : C →
C is said to be
(i) Lipschitzian with Lipschitz constant L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C;

(ii) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

(iii) asymptotically nonexpansive if there exists a sequence {kn} of pos-
itive numbers satisfying the property limn→∞ kn = 1 and

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C.

Recall that a self mapping f : C → C is a contraction on C if there
exists a constant α ∈ (0, 1) and x, y ∈ C such that

‖f(x)− f(y)‖ ≤ α‖x− y‖.

Clearly, every nonexpansive mapping T is asymptotically nonexpan-
sive with sequence {1}. Also, every asymptotically nonexpansive map-
ping is uniformly L-Lipschitzian with L = supn∈N kn.

In 1953, Mann [9] introduced an iterative process as follows: a se-
quence {xn} defined by

(1.1) xn+1 = αnxn + (1− αn)Txn

where, the initial guess x0 ∈ C is arbitrary and {αn} is a real sequence in
[0, 1]. The Mann iteration has been extensively investigated for nonex-
pansive mappings. One of the fundamental convergence results is proved
by Reich [10]. In an infinite-dimensional Hilbert space, the Mann iter-
ation can conclude only weak convergence [2]. Attempts to modify the
Mann iteration method (1.1) so that strong convergence is guaranteed
have recently been made. Saeidi [16] considered an implicit iteration
process of Mann’s type for (asymptotically) quasi-nonexpansive affine
mappings in normed and Banach spaces and prove the weak and strong
convergence of the process to a fixed point of the mappings.

On the other hand, let C be a nonempty closed convex subset of a
Banach space E. Then, {T (s) : s ∈ R+} is called a strongly continuous
semigroup of Lipschitzian mappings from C into itself if it satisfies the
following conditions:
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(i) for each s > 0, there exists a function k(·) : (0,∞) → (0,∞) such
that

‖T (s)x− T (s)y‖ ≤ k(s)‖x− y‖, ∀x, y ∈ C;

(ii) T (0)x = x for each x ∈ C;
(iii) T (s1 + s2)x = T (s1)T (s2)x for any s1, s2 ∈ R+ and x ∈ C;
(iv) for each x ∈ C, the mapping T (·)x from R+ into C is continuous.

If k(s) = L for all s > 0 in (i), then {T (s) : s ∈ R+} is called a strongly
continuous semigroup of uniformly L-Lipschitzian mappings. If k(s) = 1
for all s > 0 in (i), then {T (s) : s ∈ R+} is called a strongly continuous
semigroup of nonexpansive mappings (see [12]). For a semigroup S, we
can define a partial preordering ≺ on S by a ≺ b if and only if aS ⊃ bS.
If S is a left reversible semigroup (i.e., aS ∩ bS 6= ∅ for a, b ∈ S), then
it is a directed set. (Indeed, for every a, b ∈ S, applying aS ∩ bS 6= ∅,
there exist a′, b′ ∈ S with aa′ = bb′; by taking c = aa′ = bb′, we have
cS ⊆ aS ∩ bS, and then a ≺ c and b ≺ c.) If a semigroup S is left
amenable, then S is left reversible [5].

Let S = {T (s) : s ∈ S} be a representation of a left reversible
semigroup S as Lipschitzian mappings on C with Lipschitz constants
{k(s) : s ∈ S}. We shall say that S is an asymptotically nonexpan-
sive semigroup on C, if there holds the uniform Lipschitzian condition
lims k(s) ≤ 1 on the Lipschitz constants. (Note that a left reversible
semigroup is a directed set.) It is worth mentioning that there is a no-
tion of asymptotically nonexpansive defined depending on left ideals in
a semigroup in [4] and [6].

In 2007, Lau et al. [8] introduced the following Mann’s explicit itera-
tion process:

(1.2) xn+1 = αnx + (1− αn)T (µn)xn, ∀n ≥ 1

for a semigroup S = {T (s) : s ∈ S} of nonexpansive mappings on a
compact convex subset C of a smooth and strictly convex Banach space.

Extending the above results to the nonexpansive semigroup case,
Zhang et al. [17] introduce the following composite iteration scheme:

(1.3)
{

yn = βnxn + (1− βn)T (tn)xn,
xn+1 = αnu + (1− αn)yn,

where, {T (t) : t ≥ 0} is a nonexpansive semigroup from C to C, u
is an arbitrary (but fixed) element in C, {αn} ⊂ (0, 1) and {βn} ⊂
[0, 1], {tn} ⊂ R+, and proved some strong convergence theorems of ex-
plicit composite iteration scheme for nonexpansive semigroups in the
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framework of a reflexive Banach space with a uniformly Gâteaux differ-
entiable norm, uniformly smooth Banach space and uniformly convex
Banach space with a weakly continuous normalized duality mapping.

Saeidi [13] introduced the following viscosity iterative scheme,

(1.4) xn+1 = αnf(xn) + βnxn + γnT (µn)xn,∀n ≥ 1

for a representation of S as Lipschitzian mappings on a compact convex
subset C of a smooth Banach space E with respect to a left regular
sequence {µn} of means defined on an appropriate invariant subspace of
l∞(S); for some related results, we refer the readers to [7, 20].

Here, motivated and inspired by the idea of Zhang et al. [17] and
Saeidi [13], we introduce the composite explicit viscosity iterative schemes
as follows:

(1.5)
{

yn = δnxn + (1− δn)T (µn)xn,
xn+1 = αnf(xn) + βnxn + γnyn,∀n ≥ 1

for a semigroup S = {T (s) : s ∈ S} on a compact convex subset C of
a smooth Banach space E with respect to a left regular sequence {µn}
of means defined on an appropriate invariant subspace of l∞(S). Then,
we prove that the sequence {xn} converges strongly to a common fixed
point of S, which is the unique solution of the variational inequality,

〈(f − I)z, J(p− z)〉 ≤ 0,∀p ∈ F (S).

Equivalently, we have z = Pfz, where P is the unique sunny nonex-
pansive retraction of C onto F (S). Our results improve and extend the
recent results of Saeidi [13] and Zhang Shi-Sheng et al. [17] to Lips-
chitzian semigroup mapping.

2. Preliminaries

Let E be a Banach space and let C be a closed convex subset of E.
Then,

(2.1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉
and

(2.2) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ E and λ ∈ [0, 1].
Let S be a semigroup. We denote by l∞(S) the Banach space of all

bounded real valued functions on S with the supremum norm. For each
s ∈ S, we define ls and rs on l∞(S) by (lsf)(t) = f(st) and (rsf)(t) =
f(ts) for each t ∈ S and f ∈ l∞(S). Let X be a subspace of l∞(S)
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containing 1 and let X∗ be its topological dual. An element µ of X∗ is
said to be a mean on X if ‖µ‖ = µ(1) = 1. We often write µt(f(t)),
instead of µ(f) for µ ∈ X∗ and f ∈ X. Let X be left invariant (resp.
right invariant), i.e., ls(X) ⊂ X (resp. rs(X) ⊂ X), for each s ∈ S.
A mean µ on X is said to be left invariant (resp. right invariant) if
µ(lsf) = µ(f) (resp. µ(rsf) = µ(f)) for each s ∈ S and f ∈ X. X
is said to be left (resp. right) amenable if X has a left (resp. right)
invariant mean. X is amenable if X is both left and right amenable. A
net {µα} of means on X is said to be strongly left regular if

lim
α
‖l∗sµα − µα‖ = 0

for each s ∈ S, where l∗s is the adjoint operator of ls. Let C be a
nonempty closed and convex subset of E. Throughout this paper, S will
always denote a semigroup with an identity e. S is called left reversible
if any two right ideals in S have nonvoid intersection, i.e., aS∩bS 6= ∅ for
a, b ∈ S. In this case, we can define a partial ordering ≺ on S by a ≺ b
if and only if aS ⊃ bS. It is easy to see t ≺ ts, (∀t, s ∈ S). Furthermore,
if t ≺ s, then pt ≺ ps for all p ∈ S. If a semigroup S is left amenable,
then S is left reversible. But the converse is not true.
S = {T (s) : s ∈ S} is called a representation of S as Lipschitzian

mappings on C if for each s ∈ S, the mapping T (s) is Lipschitzian
mapping on C with Lipschitz constant k(s), and T (st) = T (s)T (t) for
s, t ∈ S. We denote by F (S) the set of common fixed points of S, and
by Ca the set of almost periodic elements in C, i.e., all x ∈ C such that
{T (s)x : s ∈ S} is relatively compact in the norm topology of E. We will
call a subspace X of l∞(S), S − stable if the functions s 7→ 〈T (s)x, x∗〉
and s 7→ ‖T (s)x − y‖ on S are in X for all x, y ∈ C and x∗ ∈ E∗. We
know that if µ is a mean on X and if for each x∗ ∈ E∗, the function
s 7→ 〈T (s)x, x∗〉 is contained in X and C is weakly compact, then there
exists a unique point x0 of E such that

µs〈T (s)x, x∗〉 = 〈x0, x
∗〉

for each x∗ ∈ E∗. We denote such a point x0 by T (µ)x. Note that
T (µ)z = z for each z ∈ F (S); see [3, 14, 19]. Let D be a subset of B,
where B is a subset of a Banach space E and let P be a retraction of B
onto D. Then, P is said to be sunny [11] if for each x ∈ B and t ≥ 0,
with Px + t(x− Px) ∈ B,

P (Px + t(x− Px)) = Px.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

148 Katchang and Kumam

A subset D of B is said to be a sunny nonexpansive retract of B if there
exists a sunny nonexpansive retraction P of B onto D. We know that
if E is smooth and P is a retraction of B onto D, then P is sunny and
nonexpansive if and only if for each x ∈ B and z ∈ D,

(2.3) 〈x− Px, J(z − Px)〉 ≤ 0.

For more details see [7, 20].
We need the following lemmas to prove our main results.

Lemma 2.1. ([15]) Let S be a left reversible semigroup and S = {T (s) :
s ∈ S} be a representation of S as Lipschitzian mappings from a non-
empty weakly compact convex subset C of a Banach space E into C,
with the uniform Lipschitzian condition lims k(s) ≤ 1 on the Lipschitz
constants of the mappings. Let X be a left invariant S − stable subspace
of l∞(S) containing 1, and µ be a left invariant mean on X. Then,
F (S) = F (T (µ)) ∩ Ca.

Corollary 2.2. ([13]) Let {µn} be an asymptotically left invariant se-
quence of means on X. If z ∈ Ca and lim infn→∞ ‖T (µn)z − z‖ = 0,
then z is a common fixed point for S.

Lemma 2.3. ([13]) Let S be a left reversible semigroup and S = {T (s) :
s ∈ S} be a representation of S as Lipschitzian mappings from a non-
empty weakly compact convex subset C of a Banach space E into C,
with the uniform Lipschitzian condition lims k(s) ≤ 1 on the Lipschitz
constants of the mappings. Let X be a left invariant subspace of l∞(S)
containing 1 such that the mappings s 7→ 〈T (s)x, x∗〉 be in X for all
x ∈ X and x∗ ∈ E∗, and {µn} be a strongly left regular sequence of
means on X. Then,

lim sup
n→∞

sup
x,y∈C

(‖T (µn)x− T (µn)y‖ − ‖x− y‖) ≤ 0.

Remark 2.1. Taking in Lemma 2.3,

(2.4) cn = sup
x,y∈C

(‖T (µn)x− T (µn)y‖ − ‖x− y‖),∀n,

we obtain lim supn→∞ cn ≤ 0. Moreover,

(2.5) ‖T (µn)x− T (µn)y‖ ≤ ‖x− y‖+ cn,∀x, y ∈ C.

Corollary 2.4. ([13]) Let S be a left reversible semigroup and S =
{T (s) : s ∈ S} be a representation of S as Lipschitzian mappings from a
nonempty compact convex subset C of a Banach space E into C, with the
uniform Lipschitzian condition lims k(s) ≤ 1. Let X be a left invariant
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S−stable subspace of l∞(S) containing 1, and µ be a left invariant mean
on X. Then, T (µ) is nonexpansive and F (S) 6= ∅. Moreover, if E is
smooth, then F (S) is a sunny nonexpansive retract of C and the sunny
nonexpansive retraction of C onto F (S) is unique.

Lemma 2.5. ([7, 20]) Let X be a real Banach space and let J be the
duality mapping. Then, for any given x, y ∈ X and j(x+ y) ∈ J(x+ y),
there holds the inequality,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Lemma 2.6. ([18]) Let {xn} and {yn} be bounded sequences in a Banach
space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn, for all inte-
gers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then,
limn→∞ ‖yn − xn‖ = 0.

Lemma 2.7. ([21]) Assume {an} is a sequence of nonnegative real num-
bers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where, {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(1)

∑∞
n=1 αn = ∞,

(2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then, limn→∞ an = 0.

3. Main Results

In this section, we prove a strong convergence theorem for Lipschitzian
semigroup in a smooth Banach space.

Theorem 3.1. Let S be a left reversible semigroup and S = {T (s) : s ∈
S} be a representation of S as Lipschitzian mappings from a nonempty
compact convex subset C of a smooth Banach space E into itself, with
the uniform Lipschitzian condition lims k(s) ≤ 1, and f be a contraction
of C into itself with coefficient α ∈ (0, 1). Let X be a left invariant
S-stable subspace of l∞(S) containing 1, {µn} be a strongly left regular
sequence of means on X such that limn→∞ ‖µn+1−µn‖ = 0 and {cn} be
the sequence defined by (2.4). Suppose the sequences {αn}, {βn}, {γn}
and {δn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1. The following
conditions are satisfied:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) limn→∞ δn = 0;
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(iii) lim supn→∞
cn
αn

≤ 0; (note that, by Remark 2.1, lim supn→∞ cn ≤
0);
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
If for arbitrary given x1 ∈ C, the sequence {xn} is generated by (1.5),
then {xn} converges strongly to z ∈ F (S), which is the unique solution
of the variational inequality

〈(f − I)z, J(p− z)〉 ≤ 0,∀p ∈ F (S).

Equivalently, we have z = Pfz, where P is the unique sunny nonexpan-
sive retraction of C onto F (S).

Proof. First, we prove that {xn} is bounded. Let p ∈ F (S). Then, by
the nonexpansiveness of T (µn) and (2.5), we have

‖yn − p‖ = ‖δnxn + (1− δn)T (µn)xn − p‖
≤ δn‖xn − p‖+ (1− δn)‖T (µn)xn − p‖
≤ δn‖xn − p‖+ (1− δn)(‖xn − p‖+ cn)
= δn‖xn − p‖+ (1− δn)‖xn − p‖+ (1− δn)cn

≤ ‖xn − p‖+ cn,

and so,

‖xn+1 − p‖ = ‖αnf(xn) + βnxn + γnyn − p‖
= ‖αn(f(xn)− p) + βn(xn − p) + γn(yn − p)‖
≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖yn − p‖
≤ ααn‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖

+γn‖xn − p‖+ γncn

= (1− αn + ααn)‖xn − p‖+ αn‖f(p)− p‖+ γncn

= (1− αn(1− α))‖xn − p‖+ γncn

+αn(1− α)
‖f(p)− p‖

1− α
.

By induction and (2.4), we get

‖xn − p‖ ≤ max{‖x1 − p‖, ‖f(p)− p‖
1− α

}.

This implies that {xn} is bounded, and so are {f(xn)} and {yn}. In
fact, letting M = ‖p‖+ max{‖x1− p‖, ‖f(p)−p‖

1−α }, for any n ≥ 1, we have

‖T (µn)xn‖ ≤ ‖T (µn)xn − p‖+ ‖p‖ ≤ ‖xn − p‖+ ‖p‖ ≤ M,
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and then we also have ‖T (µn)xn‖ is bounded.
Let {ωn} be a sequence in C. By Saeidi ([13], Theorem 3.1, STEP 1,

p. 7), we can show that

lim
n→∞

‖T (µn+1)ωn − T (µn)ωn‖ = 0.(3.1)

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0, and by Lemma 2.3, we
observe that

‖yn+1 − yn‖ = ‖δn+1xn+1 + (1− δn+1)T (µn+1)xn+1

− (δnxn + (1− δn)T (µn)xn)‖
= ‖δn+1xn+1 − δn+1xn + δn+1xn

+ (1− δn+1)T (µn+1)xn+1 − (1− δn+1)T (µn)xn

+ (1− δn+1)T (µn)xn − δnxn − (1− δn)T (µn)xn‖
= ‖δn+1(xn+1 − xn) + (δn+1 − δn)xn

+ (1− δn+1)(T (µn+1)xn+1 − T (µn)xn)
+ (δn − δn+1)T (µn)xn‖

≤ δn+1‖xn+1 − xn‖+ |δn+1 − δn|(‖xn‖+ ‖T (µn)xn‖)
+ ‖T (µn+1)xn+1 − T (µn)xn‖

≤ δn+1‖xn+1 − xn‖+ |δn+1 − δn|(‖xn‖+ ‖T (µn)xn‖)
+ ‖T (µn+1)xn+1 − T (µn)xn+1‖
+ ‖T (µn)xn+1 − T (µn)xn‖

≤ δn+1‖xn+1 − xn‖+ |δn+1 − δn|(‖xn‖+ ‖T (µn)xn‖)
+ ‖T (µn+1)xn+1 − T (µn)xn+1‖+ ‖xn+1 − xn‖+ cn.

Setting xn+1 = (1 − βn)zn + βnxn, we see that zn = xn+1−βnxn

1−βn
. Then,

we compute

‖zn+1 − zn‖ = ‖xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn
‖

= ‖αn+1f(xn+1) + γn+1yn+1

1− βn+1
− αnf(xn) + γnyn

1− βn
‖

= ‖αn+1f(xn+1) + γn+1yn+1

1− βn+1
− αn+1f(xn)

1− βn+1

+
αn+1f(xn)
1− βn+1

− γn+1yn

1− βn+1
+

γn+1yn

1− βn+1
− αnf(xn) + γnyn

1− βn
‖
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= ‖ αn+1

1− βn+1
(f(xn+1)− f(xn)) +

γn+1

1− βn+1
(yn+1 − yn)

+(
αn+1

1− βn+1
− αn

1− βn
)f(xn) + (

γn+1

1− βn+1
− γn

1− βn
)yn‖

≤ ααn+1

1− βn+1
‖xn+1 − xn‖+

γn+1

1− βn+1
‖yn+1 − yn‖

+| αn+1

1− βn+1
− αn

1− βn
|‖f(xn)‖

+|1− βn+1 − αn+1

1− βn+1
− 1− βn − αn

1− βn
|‖yn‖

=
ααn+1

1− βn+1
‖xn+1 − xn‖+

γn+1

1− βn+1
‖yn+1 − yn‖

+| αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

≤ ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

+‖yn+1 − yn‖

≤ ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

+δn+1‖xn+1 − xn‖+ |δn+1 − δn|(‖xn‖+ ‖T (µn)xn‖)
+‖T (µn+1)xn+1 − T (µn)xn+1‖+ ‖xn+1 − xn‖+ cn.

Therefore, we observe that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ (
ααn+1

1− βn+1
+ δn+1)‖xn+1 − xn‖

+| αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

+|δn+1 − δn|(‖xn‖+ ‖T (µn)xn‖)
+‖T (µn+1)xn+1 − T (µn)xn+1‖+ cn.

It follow from (i), (ii), (iv), (3.1) and Lemma 2.3, that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Applying Lemma 2.6, we obtain limn→∞ ‖zn − xn‖ = 0, and also

‖xn+1 − xn‖ = (1− βn)‖zn − xn‖ → 0,

as n →∞. Therefore, we have

(3.2) lim
n→∞

‖xn+1 − xn‖ = 0.
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Next, we show that the set of all limit points of {xn} is a subset of
F (S). Let p be a limit point of {xn} and {xnk

} be a subsequence of
{xn} converging strongly to p. Note that

‖xn+1 − xn‖
= ‖αnf(xn) + βnxn + γn(δnxn + (1− δn)T (µn)xn)− xn‖
= ‖αnf(xn)− (1− βn)xn + γn(δnxn + (1− δn)T (µn)xn)‖
= ‖αnf(xn)− (1− βn)xn + γnδnxn + γnT (µn)xn − γnδnT (µn)xn‖
= ‖αnf(xn)− (1− βn)xn + γnδnxn + (1− αn − βn)T (µn)xn − γnδnT (µn)xn‖
= ‖αn(f(xn)− T (µn)xn) + (1− βn)(T (µn)xn − xn) + γnδn(xn − T (µn)xn)‖
= ‖αn(f(xn)− T (µn)xn) + (−1 + βn + γnδn)(xn − T (µn)xn)‖
≤ αn‖f(xn)− T (µn)xn‖+ (−1 + βn + γnδn)‖xn − T (µn)xn‖.

So,

‖xn − T (µn)xn‖ ≤
1

1− βn − γnδn
(αn‖f(xn)− T (µn)xn‖ − ‖xn+1 − xn‖).

Hence, by (i), (ii), (iv) and (3.2), we have

lim
n→∞

‖xn − T (µn)xn‖ = 0.(3.3)

From this and Lemma 2.3, we obtain:

lim sup
k→∞

‖p− T (µnk
)p‖ ≤ lim sup

k→∞
(‖p− xnk

‖+ ‖xnk
− T (µnk

)xnk
‖

+‖T (µnk
)xnk

− T (µnk
)p‖)

≤ lim sup
k→∞

(2‖p− xnk
‖+ ‖xnk

− T (µnk
)xnk

‖+ cnk
)

≤ 0.

Therefore, applying Corollary 2.2, we get p ∈ F (S).
Next, we show that lim supn→∞〈(f − I)z, J(xn − z)〉 ≤ 0, where,

z = Pfz. We know from Corollary 2.4 and the proof of Corollary 2.2
[13], that there exists a unique sunny nonexpansive retraction P of C
onto F (S). The Banach Contraction Mapping Principle guarantees that
Pf has a unique fixed point z, which by (2.3) is the unique solution of

〈(f − I)z, J(p− z)〉 ≤ 0, ∀p ∈ F (S).(3.4)

Let {xnk
} be a subsequence of {xn} such that

lim
k→∞

〈(f − I)z, J(xnk
− z)〉 = lim sup

n→∞
〈(f − I)z, J(xn − z)〉.(3.5)

Without loss of generality, we can assume that {xnk
} converges to some

p ∈ C such that p ∈ F (S). Smoothness of E and a combination of (3.4)
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and (3.5) give

lim sup
n→∞

〈(f − I)z, J(xn − z)〉 = 〈(f − I)z, J(p− z)〉 ≤ 0,(3.6)

as required.

Finally, we show that the sequence {xn} converges strongly to z =
Pfz. Now, we have

‖yn − z‖ = ‖δnxn + (1− δn)T (µn)xn − z‖
= ‖(1− δn)(T (µn)xn − z) + δn(xn − z)‖
≤ (1− δn)‖T (µn)xn − z‖+ δn‖xn − z‖
≤ (1− δn)‖xn − z‖+ cn + δn‖xn − z‖
= ‖xn − z‖+ cn.(3.7)

By using Lemma 2.5, (3.7) and (2.2), we have

‖xn+1 − z‖2 = ‖αnf(xn) + βnxn + γnyn − z‖2

= ‖(γn(yn − z) + βn(xn − z)) + αn(f(xn)− z)‖2

≤ ‖γn(yn − z) + βn(xn − z)‖2

+ 2αn〈f(xn)− z, J(xn+1 − z)〉

= ‖(1− βn)
γn

1− βn
(yn − z) + βn(

1− βn

1− βn
)(xn − z)‖2

+ 2αn〈f(xn)− f(z), J(xn+1 − z)〉
+ 2αn〈f(z)− z, J(xn+1 − z)〉

≤ (1− βn)‖ γn

1− βn
(yn − z)‖2 + βn‖xn − z‖2

+ 2ααn‖xn − z‖‖xn+1 − z‖
+ 2αn〈f(z)− z, J(xn+1 − z)〉

≤ γ2
n

1− βn
‖yn − z‖2 + βn‖xn − z‖2

+ ααn(‖xn − z‖2 + ‖xn+1 − z‖2)
+ 2αn〈f(z)− z, J(xn+1 − z)〉

≤ γ2
n

1− βn
‖xn − z‖2 +

γ2
ncn

1− βn
+ βn‖xn − z‖2

+ ααn‖xn − z‖2 + ααn‖xn+1 − z‖2

+ 2αn〈f(z)− z, J(xn+1 − z)〉
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= (
γ2

n

1− βn
+ βn + ααn)‖xn − z‖2 +

γ2
ncn

1− βn

+ααn‖xn+1 − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉

= (
((1− βn)− αn)2

1− βn
+ βn + ααn)‖xn − z‖2 +

γ2
ncn

1− βn

+ ααn‖xn+1 − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉

= (
(1− βn)2 − 2(1− βn)αn + α2

n

1− βn
+ βn + ααn)‖xn − z‖2

+
γ2

ncn

1− βn
+ ααn‖xn+1 − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉

= (1− βn − 2αn +
α2

n

1− βn
+ βn + ααn)‖xn − z‖2 +

γ2
ncn

1− βn

+ ααn‖xn+1 − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉

= ((1− ααn) + (2ααn − 2αn) +
α2

n

1− βn
)‖xn − z‖2 +

γ2
ncn

1− βn

+ ααn‖xn+1 − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉.

It follows that

‖xn+1 − z‖2 ≤ (1− 2αn(1− α)
1− ααn

+
α2

n

(1− ααn)(1− βn)
)‖xn − z‖2 +

γ2
ncn

(1− ααn)(1− βn)

+
2αn

1− ααn
〈f(z)− z, J(xn+1 − z)〉

≤ (1− 2αn(1− α)
1− ααn

)‖xn − z‖2 +
αn

1− ααn
(

αn

1− βn
‖xn − z‖2

+
γ2

ncn

αn(1− βn)
+ 2〈f(z)− z, J(xn+1 − z)〉)

:= (1− σn)‖xn − z‖2 + ρn,

where, σn := 2αn(1−α)
1−ααn

and ρn := αn
1−ααn

( αn
1−βn

‖xn − z‖2 + γ2
ncn

αn(1−βn) +
2〈f(z) − z, J(xn+1 − z)〉). Now, from (i), (iii), (iv), (3.6) and Lemma
2.7, we get ‖xn − z‖ → 0, as n →∞. This completes the proof. �

Corollary 3.2. Let S be a left reversible semigroup and S = {T (s) : s ∈
S} be a representation of S as Lipschitzian mappings from a nonempty
compact convex subset C of a smooth Banach space E into itself, with the
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uniform Lipschitzian condition lims k(s) ≤ 1. Let X be a left invariant
S-stable subspace of l∞(S) containing 1, {µn} be a strongly left regular
sequence of means on X such that limn→∞ ‖µn+1−µn‖ = 0 and {cn} be
the sequence defined by (2.4). Suppose the sequences {αn}, {βn}, {γn}
and {δn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1. The following
conditions are satisfied:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) limn→∞ δn = 0;
(iii) lim supn→∞

cn
αn

≤ 0; (by Remark 2.1, lim supn→∞ cn ≤ 0);
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
If arbitrary given x1 ∈ C, the sequence {xn} is generated by

(3.8)
{

yn = δnxn + (1− δn)T (µn)xn,
xn+1 = αnu + βnxn + γnyn,∀n ≥ 1,

then {xn} converges strongly to z ∈ F (S), which is the unique solution
of the variational inequality,

〈(f − I)z, J(p− z)〉 ≤ 0,∀p ∈ F (S).

Equivalently, we have z = Pfz, where P is the unique sunny nonexpan-
sive retraction of C onto F (S).

Proof. Taking f(x) = u for all x ∈ C in (1.5), we get (3.8), and we can
conclude the desired conclusion easily. This completes the proof. �

Corollary 3.3. [13, Theorem 3.1] Let S be a left reversible semigroup
and S = {T (s) : s ∈ S} be a representation of S as Lipschitzian map-
pings from a nonempty compact convex subset C of a smooth Banach
space E into itself, with the uniform Lipschitzian condition lims k(s) ≤ 1
and f be a contraction of C into itself with coefficient α ∈ (0, 1). Let X
be a left invariant S-stable subspace of l∞(S) containing 1, {µn} be a
strongly left regular sequence of means on X such that limn→∞ ‖µn+1 −
µn‖ = 0 and {cn} be the sequence defined by

cn = sup
x,y∈C

(‖T (µn)x− T (µn)y‖ − ‖x− y‖),∀n.

Suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn +
γn = 1, n ≥ 1. The following conditions are satisfied:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) lim supn→∞
cn
αn

≤ 0; (by Remark 2.1, lim supn→∞ cn ≤ 0);
(iii) lim infn→∞ βn ≤ lim supn→∞ βn < 1.
If arbitrary given x1 ∈ C, the sequence {xn} is generated by (1.4), then
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{xn} converges strongly to z ∈ F (S), which is the unique solution of the
variational inequality,

〈(f − I)z, J(p− z)〉 ≤ 0,∀p ∈ F (S).

Equivalently, we have z = Pfz, where P is the unique sunny nonexpan-
sive retraction of C onto F (S).

Proof. Taking δn = 0 for all n ∈ N in (1.5), we get (1.4), and we can
conclude the desired conclusion easily. This completes the proof. �

4. Application

Corollary 4.1. Let C be a nonempty compact convex subset of a smooth
Banach space E and let S = {T (t) : t ∈ R+} be a strongly continuous
semigroup of Lipschitzian mappings from C into itself, with the uniform
Lipschitzian condition lims k(s) ≤ 1 and {tn} be an increasing sequence
in (0,∞) such that limn→∞ tn = ∞ and limn→∞

tn
tn+1

= 1. Let f be
a contraction of C into itself with coefficient α ∈ (0, 1). Suppose the
sequences {αn}, {βn}, {γn} and {δn} in (0, 1) satisfy αn + βn + γn = 1,
n ≥ 1. The following conditions are satisfied:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) limn→∞ δn = 0;
(iii) lim supn→∞

cn
αn

≤ 0,
where, cn = supx,y∈C{‖ 1

tn

∫ tn
0 T (s)xds− 1

tn

∫ tn
0 T (s)yds‖ − ‖x− y‖};

(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
If for arbitrary given x1 ∈ C, the sequence {xn} is generated by

(4.1)
{

yn = δnxn + (1− δn) 1
tn

∫ tn
0 T (s)xnds,

xn+1 = αnf(xn) + βnxn + γnyn,∀n ≥ 1,

then {xn} converges strongly to z ∈ F (S), which is the unique solution
of the variational inequality,

〈(f − I)z, J(p− z)〉 ≤ 0,∀p ∈ F (S).

Equivalently, we have z = Pfz, where P is the unique sunny nonexpan-
sive retraction of C onto F (S).

Proof. For n ≥ 1, define µn(f) = 1
tn

∫ tn
0 f(t)dt for each f ∈ C(R+),

where, C(R+) is the space of all real valued bounded continuous func-
tions on R+ with the supremum norm. Then, {µn} is a strongly regular
sequence of means and limn→∞ ‖µn+1 − µn‖ = 0 [1]. Furthermore, for
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each x ∈ C, we have T (µn)x = 1
tn

∫ tn
0 T (s)xds. Therefore, we apply

Theorem 3.1 to conclude the result. �
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