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n-CYCLICIZER GROUPS
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Abstract. The cyclicizer of an element x of a group G is defined
as CycG(x) = {y ∈ G|

〈
x, y

〉
is cyclic}. Here, we introduce an n-

cyclicizer group and show that there is no finite n-cyclicizer group
for n = 2, 3. We prove that for any positive integer n 6= 2, 3,
there exists a finite n-cyclicizer group and determine the structure
of finite 4 and 6-cyclicizer groups. Also, we characterize finite 5, 7
and 8-cyclicizer groups.

1. Introduction

Let G be a group. We know that the centralizer of an element x ∈ G
is defined as follows:

CG(x) = {y ∈ G|
〈
x, y

〉
is abelian}.

If, in this definition, we replace the word abelian by the word cyclic, we
get a subset of the centralizer of x. This subset is called the cyclicizer
of x in G and it is denoted by CycG(x) [9, 10]. Thus,

CycG(x) = {y ∈ G|
〈
x, y

〉
is cyclic}.
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Also, Cyc(G), the cyclicizer of G, is defined as follows:

Cyc(G) = {y ∈ G|
〈
x, y

〉
is cyclic for all x ∈ G}

=
⋂
x∈G

CycG(x).

In general, for an element x of a group G, CycG(x) is not a subgroup
of G. For example, in the group G = Z2 ⊕ Z4, we have

CycG((0, 2)) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 3)},
which is not a subgroup of G.
In [1] and [2], the cyclicizers of a group are studied via a graph which is
called the non-cyclic graph of the group.
For any non-cyclic group G, Cyc(G) is a subgroup, central, cyclic, nor-
mal and contained in all maximal cyclic subgroups of G. It is clear that
for a nontrivial element x of G, |CycG(x)| ≥ 2 and G =

⋃
1 6=x∈G CycG(x).

Also, for any group G and x ∈ G, if Ḡ = G/Cyc(G), then CycḠ(xCyc(G))
= CycG(x)/Cyc(G) [2] and it easily follows that Cyc(Ḡ) = 1 (see also
[10]).

For a finite group G, let Cent(G) denote the set of the centralizers of
single elements of G. G is called an n-centralizer group if |Cent(G)| = n.
We know that there is no n-centralizer group for n = 2, 3. Let Z(G)
denote the center of a group G. Then, |Cent(G)| = 4 if and only if
G/Z(G) ∼= C2 ×C2 and |Cent(G)| = 5 if and only if G/Z(G) ∼= C3 ×C3

or S3 [7], where C2 is a cyclic group of size two and S3 is a symmetric
group on three letters .

Moreover, if |Cent(G)| = 6, then G/Z(G) is isomorphic to one of the
groups (C2)3, (C2)4, A4 or D8 [6], where A4 is an alternating group on
four letters and D8 is a dihedral group of size eight.

Also, |Cent (G)| = 7 if and only if G/Z(G) is isomorphic to one of
the groups C5 × C5, D10 or 〈x, y|x5 = y4 = 1, y−1xy = x3〉 and if |Cent
(G)| = 8, then G/Z(G) is isomorphic to one of the groups D12, (C2)3 or
A4 [5].

Similarly, we can define an n-cyclicizer group, where n is a positive
integer.

Definition 1.1. For a positive integer n, we say that G is an n-cyclicizer
group if |{CycG(x)|x ∈ G}| = n and in this case, we write Cycl(G) = n.

It is obvious that G is a 1-cyclicizer group if and only if G is cyclic.
Here, we show that there is no finite n-cyclicizer group for n = 2, 3 and
prove that for any positive integer n 6= 2, 3, there exists a finite group
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G such that Cycl(G) = n. We also study finite n-cyclicizer groups for
n = 4, 5, 6, 7 and 8.

2. n-Cyclicizer Groups for n = 4, 5, 6, 7 and 8

The following theorem is proved in [2].

Theorem 2.1. Let G be a finite non-cyclic group. Then,
|G/Cyc(G)| ≤ max{(s − 1)2(s − 3)!, (s − 2)3(s − 3)!}, where s is the
number of maximal cyclic subgroups of G.

It is clear that if G has n maximal cyclic subgroups, then Cycl(G) ≥ n.

Lemma 2.2. Let G be a finite non-cyclic group such that Cycl(G) = n.
Then, G has at most n− 1 maximal cyclic subgroups.

Proof. Assume that
〈
x
〉

is a maximal cyclic subgroup of G. Then,
CycG(x) =

〈
x
〉
. Let Cycl(G) = n, and 〈x1〉, 〈x2〉, . . . , 〈xr〉 be dis-

tinct maximal cyclic subgroups of G. Since for any i, 1 ≤ i ≤ r,
CycG(xi) =

〈
xi

〉
, then r ≤ n. It is clear that r 6= n, since CycG(1) = G.

This completes the proof. �

Lemma 2.3. Let G be a finite group. Then, Cycl(Ḡ) = n if and only
if Cycl(G) = n.

Proof. Let Cycl(Ḡ) = n and C = Cyc(G). The key point of our proof
is that CycG(x) → CycḠ(x̄) is a one-to-one correspondence between the
set of cyclicizers of G and those of Ḡ (induced by the natural homomor-
phism G → Ḡ = G/C). For an element x of G, X̄ = CycG(x)/C and
x̄ = xC. We know that CycḠ(x̄) = X̄. Assume that X̄1, X̄2, . . . , X̄n

be distinct cyclicizers of x̄1 = C, x̄2, . . . , x̄n, respectively. It is clear
that Cycl(G) ≥ n. Without loss of generality, we can assume that
X1, X2, ..., Xn are distinct cyclicizers of x1, x2, ..., xn, respectively. Sup-
pose that Y = CycG(g) is different from Xi, for any i, 1 ≤ i ≤ n.
Then, Ȳ = X̄i, for some i, 1 ≤ i ≤ n. Thus, CycG(g)C = CycG(xi)C.
Therefore, for any hi ∈ CycG(g), there exist ci and zi ∈ C such that
hici = kizi, where ki ∈ CycG(xi), and so hi = kict, for some ct ∈ C.
Since ki ∈ CycG(xi), it is not hard to see that

〈
hi, xi

〉
is a cyclic group.

Hence, CycG(g) ⊆ CycG(xi). Similarly, CycG(xi) ⊆ CycG(g). Thus,
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CycG(g) = CycG(xi). This contradiction indicates Cycl(G) = n. The
converse is clear. �

Lemma 2.4. Let n ≥ 2 be an integer, and
Q4n =

〈
x, y|x2n = 1, xn = y2, y−1xy = x−1

〉
. Then, Cycl(Q4n) = n + 2.

Proof. The set of all members of Q4n is {1, xj , xiy, y|1 ≤ j, i ≤ 2n− 1}.
It is straightforward to check that

(i) for any i, 0 ≤ i ≤ n− 1, CycQ4n(xiy) = {1, y2, xiy, xn+iy};
(ii) CycQ4n(x) =

〈
x
〉
;

and
(iii) for any i, 0 ≤ i ≤ n− 1, CycQ4n(xiy) = CycQ4n(xn+iy).

Therefore, Cycl(Q4n) = n + 2. �

Corollary 2.5. Let n > 1 be an integer. Then, Cycl(D2n) = n + 2.

Proof. It is well known that Z(Q4n) = 〈y2〉, and we can see that Z(Q4n) =
Cyc(Q4n) and Q4n/Z(Q4n) = Q4n/Cyc(Q4n) ∼= D2n, and so the proof
follows from Lemma 2.3. �

Corollary 2.6. Let n > 3 be an integer. Then, there exists a group G
with Cycl(G) = n.

Theorem 2.7. There is no finite n-cyclicizer group for n = 2, 3.

Proof. First, note that there is no cyclic n-cyclicizer group for n = 2, 3.
Assume G is a finite group such that Cycl(G) = 2. Now since the
only proper cyclicizer of G is cyclic and G is covered by its all proper
cyclicizers, it follows that G is cyclic, which is a contradiction.

Now, suppose for a contradiction that Cycl(G) = 3. Assume that
G = CycG(x) ∪ CycG(y), where CycG(x) and CycG(y) are two distinct
cyclicizers of G. By Lemma 2.2, G has at most two maximal cyclic
subgroups. If G has exactly two maximal cyclic subgroups, then, without
loss of generality, G =

〈
x
〉
∪

〈
y
〉
, which is a contradiction. Thus, G has

only one maximal cyclic subgroup. This means that G is a cyclic group.
This contradiction completes the proof. �
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Remark 2.8. Let p be a prime number and m ∈ N. Then, pm−1
p−1 is the

number of subgroups of order p in (Cp)m.

Theorem 2.9. Let p be a prime number and let G be a finite group such
that G/Cyc(G) ∼= Cp × Cp. Then, Cycl(G) = p + 2.

Proof. Let Cycl(Cp × Cp) = r. By Remark 2.8, Cp × Cp has p + 1
maximal cyclic subgroups, and so r ≤ p + 1. Let

〈
x1

〉
,
〈
x2

〉
, ...,

〈
xp+1

〉
be maximal cyclic subgroups of H = Cp × Cp· If Y = CycH(y) 6= H
is different from

〈
xi

〉
, for any i, 1 ≤ i ≤ p + 1, then there exists j,

1 ≤ j ≤ p + 1, such that y ∈
〈
xj

〉
. Therefore,

〈
xj

〉
=

〈
y
〉
⊆ Y . Let g

be an arbitrary element in Y . Then, for some integer k, 1 ≤ k ≤ p + 1,〈
g, y

〉
=

〈
xk

〉
. Thus, y ∈

〈
xj

〉
∩

〈
xk

〉
. If j 6= k, then y = 1, and so

Y = H. This is a contradiction. Therefore, j = k. This implies that
Y =

〈
xj

〉
. Now, Lemma 2.3 completes the proof. �

Corollary 2.10. Let p be a prime number. Then, Cyc(Cp × Cp) = 1.

Proof. By Lemma 2.9, we have that Cp×Cp has p+1 proper cyclicizers.
Let CycCp×Cp(x) = 〈x〉 and CycCp×Cp(y) = 〈y〉 be two distinct proper
cyclicizers of Cp × Cp. If 〈x〉 ∩ 〈y〉 6= 1, then |〈x〉 ∩ 〈y〉| = |〈x〉| = p.
Since 〈x〉 ∩ 〈y〉 ≤ 〈x〉, then 〈x〉 ∩ 〈y〉 = 〈x〉. Therefore, 〈x〉 = 〈y〉. This
contradiction shows that 〈x〉 ∩ 〈y〉 = 1 and the proof is complete. �

Lemma 2.11. Let G be a finite p-group, for some prime number p.
Then, Cyc(G) 6= 1 if and only if G is either a cyclic group or a gener-
alized quaternion group. In this case, Cyc(G) = Z(G).

Proof. It follows from Proposition 2.2 of [2]. �

Lemma 2.12. Let G and H be finite groups such that (|G|, |H|) = 1.
Then, Cyc(G×H) = Cyc(G)× Cyc(H).

Proof. Let (a, b) ∈ Cyc(G × H). Then, for any (g, h) ∈ G × H, there
exists (x, y) ∈ G × H such that 〈(g, h), (a, b)〉 = 〈(x, y)〉. Therefore,
〈(g, a)〉 ≤ 〈x〉. So a ∈ Cyc(G). Similarly, b ∈ Cyc(H). Thus, Cyc(G ×
H) ⊆ Cyc(G)× Cyc(H).

Now, let (a, b) ∈ Cyc(G) × Cyc(H). Then, for any g ∈ G, 〈g, a〉 is
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a cyclic group. Also, for any h ∈ H, 〈b, h〉 is a cyclic group. Since
〈(g, h), (a, b)〉 ≤ 〈g, a〉 × 〈h, b〉 and (|H|, |G|) = 1, then (a, b) ∈ Cyc(G×
H). Thus, Cyc(G)× Cyc(H) ⊆ Cyc(G×H). �

Lemma 2.13. (i) Let p be a prime number and n be an integer such
that (n, p) = 1. If G = Cpn × Cp, then G/Cyc(G) ∼= Cp × Cp.

(ii) Let n be an odd positive integer. If G = Cn×Q8, then G/Cyc(G) ∼=
C2 × C2.

Proof. (i) Let H = Cp × Cp and K = Cn. Since (|H|, |K|) = 1, then
|Cyc(G)| = n. Thus, |G/Cyc(G)| = p2. If G/Cyc(G) is a cyclic
group, then G is also a cyclic group, which is a contradiction. Thus,
G/Cyc(G) ∼= Cp × Cp.

(ii) Any Sylow subgroup of G is either a cyclic group or a generalized
quaternion group, and so by Lemma 2.11, Cyc(G) = Z(G). We have
|G/Cyc(G)| = |G/Z(G)| = 4 and G/Cyc(G) is not a cyclic group, since
G is not a cyclic group. Therefore, G/Cyc(G) ∼= C2 × C2. �

Lemma 2.14. Let p be a prime number and let G be a finite group such
that G/Cyc(G) ∼= Cp × Cp. Then, G is not a cyclic group and

(i) if p = 2, then G is isomorphic to either C2n × C2 or Cn × Q8,
where n is an odd positive integer;
and

(ii) if p 6= 2, then G ∼= Cpn × Cp, where n is an integer such that
(p, n) = 1.

Proof. If G is a cyclic group, then |G/Cyc(G)| = 1, which is a con-
tradiction. If G/Cyc(G) ∼= Cp × Cp, then G/Cyc(G) is an abelian
group. Since G/Z(G) ∼= G/Cyc(G)

Z(G)/Cyc(G) , then G is a nilpotent group. Thus,
G = Syl2 × Syl3 × · · · × Sylp × · · · .
Since |G/Cyc(G)| = p2, then Cyc(G) contains C = Ŝylp (Ŝylp is the
product of all Sylow subgroups of G, except Sylp). So, C is a cyclic
group of size n such that (p, n) = 1. Thus, |Cyc(G)| = pm × n.

If Cyc(G) ∩ Sylp =
〈
1
〉
, then |Sylp| = |G/Cyc(G)| = p2. If Sylp is a

cyclic group, then G is a cyclic group, which is a contradiction. Thus,
Sylp ∼= Cp × Cp. So G ∼= Cpn × Cp.

If Cyc(G) ∩ Sylp 6=
〈
1
〉
, since Cyc(G) ∩ Sylp ≤ Cyc(Sylp), then Sylp
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is a p-group whose cyclicizer is nontrivial. Thus, Sylp is a generalized
quaternion group.

If p 6= 2, then G is not a generalized quaternion group.
If p = 2, then |Cyc(Sylp)| = 2. Since 1 6= |Cyc(G) ∩ Syl2| ≤

|Cyc(Syl2)| = 2, then |Syl2| = 8. Thus, G ∼= Cn ×Q8, and the proof is
complete. �

Lemma 2.15. Let G be a finite group. Then, Cycl(G) = 4 if and only
if G/Cyc(G) ∼= C2 × C2.

Proof. Suppose that G/Cyc(G) ∼= C2 × C2. Since Cycl(C2 × C2) = 4,
then, by Lemma 2.3, Cycl(G) = 4.

If Cycl(G) = 4, then, by Lemma 2.2, G has at most three maximal
cyclic subgroups. Now, Theorem 2.1 completes the proof. �

Theorem 2.16. Let n be an odd positive integer, and G be a finite
group. Then, Cycl(G) = 4 if and only if G is isomorphic to one of the
following groups:

Cn ×Q8, C2n × C2.

Proof. It follows from Lemmas 2.14 and 2.15. �

Theorem 2.17. Let n be an odd positive integer, and G be a finite
group. Then, Cycl(G) = 6 if and only if G is isomorphic to one of the
following groups:

Cn ×D8, C4n × C2, Cn ×Q16.

Proof. Let Cycl(G) = 6. Then, Cycl(Ḡ) = 6. Since G has at most five
maximal cyclic subgroups, then, by Theorem 2.1, |G/Cyc(G)| ≤ 54. It
is easy to see (by the following programs in GAP [11]) that 6-cyclicizer
groups whose orders are less than 54 are the followings:

C4 × C2, D8, Q16, C12 × C2, C3 ×D8, C20 × C2, C5 ×D8, C3 ×Q16.

a:=function(n)
local a;
a:=AllSmallGroups(n);
return a;
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end;
cycelement:=function(G,x)

local c, e, i;
e:=Elements(G);
c:=[];

for i in[1..Size(e)] do
if IsCyclic(Group(x,e[i]))=true then Add(c,e[i]);
fi;

od;
return c;
end;

for n in[4..54] do
G:=a(n);

for i in [1..Size(G)] do
h:=G[i];
e:=Elements(h);
l:=List(e,i->[cycelement(h,i)]);

if Size(Set(l)) = 6 then
Print(StructureDescription(h),"\n"); fi;

od;
od;

But |Cyc(G/Cyc(G))| = 1, therefore, G/Cyc(G) is isomorphic to
either C4 × C2 or D8. We compute |Cyc(G)| by the following program:

CycG := function(G)
local c, e, i;
c:=G;
e:=Elements(G);

for i in[1..Size(G)] do
c:=Intersection(c,cycelement(G,e[i]));
od;

return c;
end;

Similar to the proof of Lemma 2.14, we can conclude that Cycl(G) = 6 if
and only if G is isomorphic to either Cn×D8 or C4n×C2 or Cn×Q16. �

Theorem 2.18. Let G be a finite group. Then, Cycl(G) = 5 if and
only if G/Cyc(G) is isomorphic to either S3 or C3 × C3.
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Proof. Let Cycl(G) = 5. By Lemma 2.2, G has at most four maximal
cyclic subgroups. Since Cycl(Ḡ) = 5, then, by Theorem 2.1, we have
5 ≤ |G/Cyc(G)| ≤ 9. On the other hand, |G/Cyc(G)| is not a prime
number, and so |G/Cyc(G)| is either 6 or 8 or 9. If |G/Cyc(G)| = 8, then
(by GAP) Cycl(Ḡ) 6= 5, which is a contradiction. Thus, |G/Cyc(G)| = 6
or 9. Therefore, G/Cyc(G) is isomorphic to either S3 or C3 × C3. The
converse is clear. �

A covering for a group G is a collection of subgroups of G whose union
is G. An n-cover for a group G is a cover with n members. A cover is
irredundant if no proper subcollection is also a cover.

We write f(n) for the largest index |G : D| over all groups G having an
irredundant n-cover with intersection D. Bryce et al. obtained f(5) =
16 [8]. Also, Abdollahi et al. obtained f(6) = 36, and f(7) = 81 [3, 4].
We use these results to prove the following theorems.

Theorem 2.19. Let G be a finite group. Then, Cycl(G) = 7 if and
only if G/Cyc(G) is isomorphic to one of the following groups:

D10, A =
〈
x, y|x5 = y4 = 1, xy = x3

〉
, C5 × C5.

Proof. Let Cycl(G) = 7. By Lemma 2.2, G has at most six maximal
cyclic subgroups. Since f(6) = 36, then 8 ≤ |G/Cyc(G)| ≤ 36. Now,
it is easy to see (by GAP) that G is isomorphic to one of the following
groups:

D10, C5 × C5, A, Q20, C3 ×D10.

On the other hand, |Cyc(G/Cyc(G))| = 1, and so G is isomorphic to
either D10 or C5 × C5 or A. The converse is clear. �

Theorem 2.20. Let G be a finite group. Then, Cycl(G) = 8 if and
only if G/Cyc(G) is isomorphic to one of the following groups:

(C2)3, A4, D12, C8 × C2, C8 : C2, C3 × S3, C9 × C3, C9 : C3.

Proof. Let Cycl(G) = 8. By Lemma 2.2, G has at most seven maximal
cyclic subgroups. As f(7) = 81, with an argument similar to the proof
of Theorem 2.19, we can prove our claim. The converse is clear.

�
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