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DUAL MULTIWAVELET FRAMES WITH SYMMETRY
FROM TWO-DIRECTION REFINABLE FUNCTIONS

Y. LI AND SH. YANG*

Communicated by Tony Lau

ABSTRACT. Motivated by [B. Han and Q. Mo, Adv. Comp. Math.
18 (2003) 211-245] and [B. Han and Z. Shen, Constr. Approz.
29 (2009) 369-406], we propose dual two-direction frames in dual
Sobolev spaces (H®°(R), H °(R)), with s > 0. Based on the dual
two-direction frames from a pair of two-direction refinable func-
tions, dual multiwavelet frames with symmetry {¥*(z) := ({(z),
V5(x)) T, and {U4(z) : = (¥ (x), ¥5 (%)) T ¢, can'be constructed
very easily. The vanishing moment of the constructed multiwavelet
frames is discussed. An example is given to illustrate our results.

1. Introduction

Recently, wavelet and multiwavelet frames in L?(R) have been studied
extensively in the literature. To mention only a few here, see [1-5] and
the references therein. In [1], Daubechies and Han gave an algorithm for
constructing pairs of dual wavelet frames from any two refinable func-
tions. In [3], Han‘and Mo constructed multiwavelet frames in L?(R)
from any pair of refinable function vectors. In order to construct dual
frames with symmetry, Han and Mo in [3] proposed a new factoriza-
tion algerithm of mask symbols of multiwavelets. In [6], we used the
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factorization algorithm to construct symmetric multiwavelets with high
approximation orders and regularity. However, the process of factoriza-
tion is complex, as can be seen in [6]. Recently, we proposed a two-
direction refinable function and a two-direction wavelet with dilation
factor d, and got some nice results [7,8]. On the other hand, Han and
Shen in [9] constructed dual wavelet frames in the dual Sobolev spaces
(H*(R), H*(R)), which are of interest in numerical algorithm and char-
acterization of function spaces. Based on [9], we constructed pairs of
dual multiwavelet frames in (H*(R), H *(R)), from which we obtained
sampling theorem in H*(R), with s > 1/2 (see [11]). Motivated by the
results in [3, 7-9], we shall propose dual two-direction frames in Sobolev
spaces. Based on dual two-direction wavelet frames, dual symmetric
multiwavelet frames can be obtained very easily through a linear com-
bination. The vanishing moments of the dual symmetric multiwavelet
frames are discussed amply.

Firstly, we introduce some conceptions about two-direction refinable
functions. More details can be seen in [7,8].

If a function ¢(x) : R — C satisfies the following refinement equation,

(1.1) $x) =d> plé(de —k)+d Y py ok — dx)
k k

with d > 2 being an integer, we say that ¢(x) is a two-direction refinable
function. Moreover, PT(w) := Y, pie * and P~ (w) := >, p, e ™
are called the positive direction mask symbol and negative direction
mask symbol of ¢(x), respectively.

In [7, 8], we gave the conditions for the existense of the solution (1.1),
and constructed two-direction refinable functions with nice properties
including orthogonality, high approximation orders and regularity.

In order to investigate the existence of solution of (1.1), consider

(12) o d(=a) =d Y pfo(—dz—k)+d > pyd(de + k).
k

k

Taking the Fourier transform of both sides of (1.2), we have

(1.3) o(w) = PH(Z)9(5) + P~(5)0(5).

SHES
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From (1.1) and (1.3), we get

” ) | _[ 1) P )] [96
é(w) P=(q) P 1| o)

It is easy to see that (1.1) has a solution if and only if (1.4) has a
solution. That is, (1.1) is equivalent to (1.4). In [7], we gave conditions
that equation (1.1) has distribution solutions or L?- stable solutions.
Throughout this article, assume that ¢(0) = 1 which, together with
(1.4), leads to P (0) + P~(0) = 1.

Let
B(z) = [ (b‘?(_xgz) ] —dY [ ]fi ]fkk ] B(dz <),

keZ

Then, (1.4) is the d-refinement equation in frequency field of ®(x). Its
refinement mask symbol is:

o= [543 )

Therefore, (1.1) has an unique compactly supported distributional solu-
tion if and only if P(w) satisfies condition E.

Now, let us introduce some conceptions about multiwavelet frames
and propose dual two-direction frames in dual Sobolev space (H*(R),
H7*(R)) with H*(R) defined to be

R) ={f : /f 2(1 + |w[?)*dw < oo}

Denote:

va(f) =sup{s: f e H*(R)}.
Note that H?(R) is a Hilbert space with inner product defined to be

o) e B = /f (1+ [€)°de, f.g € H(R).

For f € H*(R) and g € H*(R), define

<ﬁg>=4f@mmmx

Suppose ‘I)(x) (61(2), - r(2))T € (H(R))" and d(w) = (d1(x), - ,
or(2))T € (H*(R))" are two refinable function vectors. They satisfy
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the following refinement equations:

(1.5) O(z) =d) _ Pe®(dz — k),
k

(1.6) O(x) =d Yy Pd(de — k),
k

where {P,}; and {P,}; are some r X r matrices of numbers with the
two mask symbols P(w) := Y, Pre ™** and P(w) = ok Ppeikw
being called the mask symbols of ®(z) and ®(x), respectively. Let
{W! ... WL} be a finite set of » x 1 function vectors in H*(R). De-
note
X5 (P; Uy, -+, V) —{‘I)nOk n=1---,rmke’}
U{\I/njk() n=1,--- ,rk'€Z;j € No;
¢=1,---,L}

with @0 () 1= (- — k) and 7% (+) := /29 (a7 - k). If there
exist two positive constants C| and Cy such that

Cy ||f||2<2keZ|<fa (z —h) > |?

+3 1Z]eZEkez|<f,‘I’ > |2
<Co|l f 17 VfeH™ (R)

then we say that the set X*(®; Uq, -+, Uy ) generates a d-multiwavelet
frame in H*(R), where, | < fy®(-< k) > |? =< f,®(- — k) >< &(- —
k), f > is the square of the ¢35 Euclidean norm of the column vector
< f,®(- — k) > in R™*!_If there exists another set of function vectors

{U(x), -, Ul(z)} in H=5(R) such that for all f € H*(R),g € H*(R),

<fg> Zk€Z<f( z), ®(x — k) >< (IJ(x—k) g(z) >
+Ze 1Z]ezzkez<fa‘1’ ><\I”k ,qg >,

then we say that X*(®; ! ... ¥l) and X_S(q); \Ifl, e ,(Ivf ) generate
a pair of dual d-multiwavelet frames in (H*(R), H*(R)).

Concerning the two-direction refinable functions, we introduce the
concept of two-direction frames in Sobolev spaces.

Assume ¢(x) € H*(R) and ¢(z) € H *(R) are a pair of two-direction
refinable functions. They satisfy the following refinement equations:

= de $(de — k) +d Y p bk — du),
k
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dx)=d> piolde—k)+d>_ pyo(k — dz).
k k

Moreover, {1*(x)}r | and {yt (z)}L_, are two sets of functions, and there
exist 4L sequences {q/, k. {G/ .} » {a,,}x and {q, . }x such that

?W(a:)ZdeZkgb(dx—k)—i—dequS(k—dx), 0=1,---,L,
k k

and

D) =dY pelde — k) +dY pok - dz),  €=1, L.
k k

If X5(®;w!, ... W) and X_S(&);(Ivll,--~ ,E'L) generate a pair-of dual
d-multiwavelet frames, then we say that ({¢*(@)}L,, {¥!(z)}L ) can
generate a pair of dual two-direction frames in (H*(R), H=*(R)), where,

®(x) = [¢(x), p(—2)]", B(2) = [$(), o(-m)]", ¥'(x) = [ (2), %" (—2)]",
and U!(z) = [(x), P! (—=)]T.
2. Main Result

Theorem 2.1. Let ¢(z) € HS(R)-and ¢(z) € H*(R), with s > 0, satisfy
(1.1) and

o) = dY_Ppo(de — k) +d > _ b, ¢k — dx).
k k

Obviously, ¢(x) € H 5(R). Moreover, assume that

(211 (L+e ™+ e VNPT (w)  (1+e ™ 4o 4 e " @7DY) P (w),
(At e ™™ 4. e @ DY) PF(w) (14 e ™ 4 ..o 4 e @D P~ ().
Then, there exist 2d two-direction functions {i(x)}_, C Vi and {ibe(x)}9_,
C Vi such that ({¢*(2)}2,, {W(m)}éLzl) can generate a pair of dual two-
direction frames in (H® (R), H=% (R)), where, s* = min{l,s}, V; =
span{dz ¢(diz—k), dzd(—diz—k)} and V; = span{d% d(diz—k), d ¢(—dix
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—k)}. Furthermore, construct

, 11 -
o) = (@00 = | 1 2 || 49 ],
B(o) = (Ga(a) ) = [ 1% | [ 2 |,
¢ ¢ |3 3 Pt (x) £=td
@ =i =1 2 || 50
~ ~ ~ i 12 T/JZ(JU
¥(0) = (T, @) = | § H 2

Then ®(x), U (z) and V() are symmetric. Moreover, X (®;01, ... WL)
and X5 (®; U, ... WL generate a pair of dual symmetric d- multi-
wavelet frames in (H* (R), H—*" (R)).

3. Dual Two-direction Frames

In this section, we shall study how to construct dual two-direction
frames in (H*(R), H *(R)). We begin with giving the following defini-
tion.

Definition 3.1. If a 2 x 2 matriz (A;;(w)) of 2m-periodic trigonometric
polynomials satisfies Ay 1(w) = Aga(w) and Ay 2(w) = Az 1(w), then we
say that A(w) is a two-direction matriz. We call Ay 1(w) and Az 2(w) a
pair of dual entries. The appellation also makes sense for Aj2(w) and

Agq(w).

Remark 3.2. If A(w) and B(w) are two-direction matrices, then A(w)=+
B(w) and A(w)B(w) are also two-direction matrices.

Next, we shall establish Oblique Extension Principle (OEP) for
dual d-multiwavelet frames in dual Sobolev spaces. It is easily proved
by the same way as in [3, Theorem 3.1] and [9, Theorem 2.4, Corollary
2.5]. In fact, this was also mentioned in [10, Section 1] and [11, Theorem
2.9].

Lemma 3.3. Let two refinable function vectors ®(z) € (H*(R))" and
®(x) € (H(R))" be defined by (1.5) and (1.6), respectively. Suppose
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there exist v x r matrices of 2m-periodic trigonometric polynomials a',
o, ad bt oo b O such that

and
a'(w)* a?(w)* a’(w)*
al(w+ )" a?(w + %) a(w + 27)*
al( T 27r(<fl—1))* a2( + ;W(!é—l))* ad( + 27r(ili—1))*
b (w)
2(w
b(w)
where,
O — P;u)*@(df)zf(w)
(3.1) M(w) = —P(w+ 7). O(d&) P(w)

—P(w + 241> 9(de) P(w)

Construct function vectors

V(@) = (@), o) ) = (B (@), )T =1,
through

(w)=a (5)0(5), () =¥ ()e(5).
If

[CI}E](])(O)2076217 7d7j:07'” ,O[—l;CMEN,

then X" (®; 01, ... ¥l and X_S*(fi; \Ill, e ,\IJL) can generate a pair
of dual d=multiwavelet frames in (H* (R), H=*"(R)), with s* = min{a +
1, s}

Remark 3.4. We can see from Lemma 3.1 that we do not have any
requirement on the vanishing moment of \Ifz(x), ¢ =1,---,d, which
is the most significant difference from that of multiwavelet frames in
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L?(R) and which makes the construction of dual multiwavelet frames
much easter.

Next, based on Lemma 3.3, we shall study how to explicitly construct
pairs of dual two-direction wavelet frames in dual Sobolev spaces from

two-direction refinable functions ¢ € H*(R) and ¢ € H*(R), with s > 0.

For two-direction matrices a‘(w), £ = 1,--- ,d, denote
(3.2)
al(w)* a2(w)* . ad(w)*
By | C@TET dwei e gy

al(w+ Oy g2 4 2D (g 2Dy

From now on, we require that E(w) is strongly invertible, which means
that E(w)~! is also a matrix of 27-trigonometric polynomials.

Theorem 3.5. Let ¢(x) and 5(;13) be as in Theorem 2.1. Suppose their
mask symbols are {P*(w), P~ (w)} and {PT(w), P~ (w)}. Denote

Ptw) P~ (w) ]

S

P(w) = | ot

(
)
w)
)
)

P=( *(w P (w) Pt(w)
at(w) = [al,l(w a{g(w)] —1 d
afo(w) afy(w) ]’ o
and construct
b (w)
: = B~ (w)M(w),
b (w)

with the strongly invertible matriz E(w) being defined in (3.2) and M (w)
n (3.1). Consequently, b'(w) = (bf’j(w))i,j are two-direction matrices,
{=1,--- ,d. Moreover, assume that

(LSO, 1]" =1, P (0)0(0)[1,1]" = ©(0)[1,1]"
and construct {*(z)}¢_, and {Jg(x)}gzl through

V' (dw) = af 1 (w)$(w) + af 5 (w)(—w)

and

~ o~

(3.3) F(dw) = b, () B(w) + b 5(w)d(~w).
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Then, ({¢*(z )}e 1 {0t (z )}e 1) can generate a pair of dual two-direction
frames in (H* (R), H=*"(R)), with s* = min{1, s}.

Proof. Rewrite E(w) as:

a%l(w) a12( ) e (,7/12( )
_ajp(w) aty (w) - ad (w)
E(w) = ayy (w + 27”) aty(w + 7“) a‘ﬁ(w + Fn)
[ aly(w+ 2 adi(w+ ) a0+ )

It is easy to see that E(w) consists of blocks of two-direction matrices.
Denote

621‘71,2]'—1(10) 621'*1,23'(“’)
e2;,2j—1(w) €525 (W)

-1 .
E2i—1,2j—1(w) =: )
where, e; ; is the (i, j)-entry of E~*(w). Next, we prove that ;" ,._;(w)
is a two-direction matrix. Without loss of generality, we just prove that
Er 1 (w) is a two-direction matrix. Let Aj;(w) be theralgebraic cofactor

of E; j(w) with E; j(w) being the (4, j)-entry of E(w). Assume p is the

set of all arrangements of {2,3,---,2d}, and 7 the number of inverse
order. Then,
atq (w) . ailz (w) af; (w)
27 2T 2T
An=| BOTD (G gl )
a%l(er 2#(2—1)) (w+ 27T(d 1)) (w+ 27T(d 1))

Z Z (_1)T(i2i3'..i2d)+‘r(]2]3m]2d)Ei2j2 (w)EhJ? (w)--- Eisajaa (w),
1213 +i2d J2J3" " J2d
where, the arrangements igi3 - - - iag, j2J3 - - - jad € P-
Let g be the set of all arrangements of {1,3,4,---,2d}. Then,

aj, (w) e af; (w) afy(w)
Azs(w) = a}l(z'y.—'i— %ﬂ) 3 a% (w+ %ﬂ) a‘{lg(te'—.&- 27”)
2m(d—1 2m(d—1 2m(d—1
afp(w+2GH) ey (w+ 2 afy (w2

Z Z (71)T(i1i3...Z‘Qd)JrT(jljSij)Ek1£1 (W)Ek3[3 (w) e Ek2d€2d (w)7

kiks3---kog £143---L2q
where, the arrangements kiks - - - kog, L1435 - - - log € q. We know that any
pair of dual entries is on a diagonal. On the other hand, we observe that
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if any two entries of E'(w) on the same row (column), then its dual entries
are also on the same row (column). Therefore, Vigis - - - iaq4, j2J3 - - jod €
p, from the structure of E(w), it is easy to see that there exist two
arrangements kiks - - - kog, {143 - - - fo4 € ¢ such that

Eisz (w) - Ekﬂl (w)’Eisjs (w) = Eksfs (w)> te 7Ei2dj2d (w) - Edeezd (w>

We know that for any pair of dual entries E; j(w) and Ej¢(w), it is
straightforward to see |i — k| = 1 and |j — ¢| = 1. Thus,

|7 (kyig - - - igq) — T(igig - - - iaq)| = 1,
’T(k1k3i4 . 'iQd) — T(k1i3i4 e 'i2d)‘ =1,

|7 (k1ks - - kag) — T(kiks -+ -i2q)| = 1.

So, (—1)7(kiks kaa) — (_1)2d=1(_1)7(i2is72a)  Similarly, (—1)7(¢1fs"42d)
— (_1)2(1—1(_1)T(j2j3"'j2d)_ Therefore, (_1)T(k11€3~~1€2d) x (_1)T(€1Z3~~f2d) —
(—1)7(2i8124) 5 (—1)7(273524)  On the other hand, |p| =|¢| = (2d —1)!.
From the discussion above, we know that A11(w) = Ags(w). Similarly, we
get Aja(w) = Agi(w). Thus, Efll (w) is a two-direction-matrix. Without
loss of generality, we point out that E;jl(w) 7,7 =1,---,d, is a two-
direction matrix. _

Note that ¢ € H*(R). It is straightforward to see that ¢ € H #(R),

for Vu € R*. To prove that ({we(x)}ﬁzl,{ig(x)}ﬁzl) can generate a
pair of dual two-direction frames'in (H*(R), H*(R)), by Lemma 3.1, it

suffices to prove {wvz(()) =0, {=1,--- yd. Since 5(0) =¢(0) =1,
PO)1, 11" =P(0)1,1]" = [1,1]",
which, together with (2.1), leads to
(3.4)
(©(0) = P(0)*0(0)P(0))[1,1]" = ©(0)[L, 1]" — P(0)*©(0)[1,1]" = O

and

(3.5)
%>

2k

OO PO)L 1T = P(=

)1, 1) =0, k=1,---,d— 1.
It is easy to verify from (3.4) and (3.5) that Y0y =0, L=1,---,d.
Therefore, by Lemma 3.1, ({1/*(x)}2,, {¢*(z)}L_,) can generate a pair
of two-direction frames in (H* (R), H~* (R)). O
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Note 1 (I) In Theorem 3.5, for the convenience of computation,

we can set ¢(x) = ¢(x). (II) From Theorem 3.5, we know that the
strongly invertible matrix F(w) plays a key role in constructing dual
two-direction frames.

Next, we just consider the case of d = 2. Other cases can be discussed
similarly. There are many ways of constructing E(w). We shall give
Theorem 3.6 as a special way of constructing E(w), based on which, the
dual two-direction frames {¢*(z)}2_, and {0t (z) }2_, can be constructed
through (3.3).

Theorem 3.6. In Theorem 3.2, if we set dilation factor to d = 2, and

select a'(w) as

ol (w) = a+bz+cz? d+ fz+ gz?
T ld+fr 49272 ad+br e |

9 h 4 pz + q2> m+ nz + kz?
a*(w) = -1 -2 -1 -2
m-+nz "+ kz h+pz=r4qz"7,
Where, a,b,c,d, f,g,h,p,q,m,n, and k are parameters. satisfying
fobonop
b f p n| 0
a d h m/| 7
g cok_q
and
b f p n b f p n
f bon p f b n p
c—-g q k . a d h m 70,
g c k q d a m h

then E(w) is strongly invertible.

Proof. 1t is only necessary to prove that det(FE(w)) is a real number. In
fact,

a+bz 4272 d+fz 49272 h4pzt4¢z2 m4nzTl k22

- d+fz—i—gz2 a+bz+c22 m+nz+k,22 h+pz—i—qz2
def{EMW)) = a—bz ' +cz? d—fz71+gz72 h—pz71+qz72 m—mnz '+ kz?
d—fz+gz2 a— bz + cz? m — nz + kz? h—pz-i—qu
b f P n
b n
=4 % f 9 p

a—bz 4272 d—fz 49272 h—pzrt4qgz? m—nzt+kz?
d— fz+ g2* a— bz + cz? m —nz + k2> h —pz + qz2
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Corollary 3.7. If a' and a® are chosen in Theorem 3.3, then E~'(w) =
(€i,;(w))i;, where,

_ 2
~ det(E(w))

1

e1,1(w) = ez 2(w) {(—gnh + bhq + gpm + ank — bmk — apq)z~ +

(ap® — fpm + fnh — an® 4 bnm — bph)+
(bq* — cpq + anm — bk? — bm? + dpm — dnh + cnk + gpk — aph —gng + bh?)z+

(cp? —cen® — fpk+ fng+bnk—bpq)2°* + (—cph—dng+cnm-+-dpk —bmk+bhq) 2> }7
B -2

~ det(E(w))
(bng — bpk — gn® — fap + fkn -+ gp*)z~>+

e12(w) = ez 1(w) {(*anq +apk — fmk + fhq+ gnm — gph)z~*+

(—gpq—fm2—fk:2+dnm+cpk+apm+fh2 <ceng+fq? —anh—dph+gnk)z_1+
(—fhp+fmn+bnh—dn2—bpm+dp2)+(—fmk—cnh+th+cpm—dpq+dnk)z},
B 2
~ det(E(w))
(ap?® 4+ bnm.— fpm — bph — an® + fnh)+
(bm? — bg® + bk? — cnk < dpm +aph + cpq — anm + gnq — gpk — bh?)z+
dnh + (ep® — bpg — cn? + fng + bnk — fpk)z*+
(—=bhg + cph — dpk — cnm + bmk + dnq)z3},
=2
~ det(E(w))
(gn® — bng — fnk + bpk + fpq — gp*)z~*—
(fk2 f@*— fm2 — dph+dnm — gpg+ fh? — cng+ apm+ cpk + gnk —anh)z =+
(—alpz—bnh—l—bpm—fnm—i—dn2—l—fph)—|—(dnk—alpq—i—cpm—fmk—l—th—cnh)z}7
2
~ det(E(w)) {(
(fna +b*h — f2h — dbn + dpf — bpa)—
(fma+ pa® — pg® + fgq — fkec — abh + dbm + c*p — cbq + gbk — d*p + fdh)z+

e1,3(w) = ez 3(w) {(gnh < gpm — bhq + apq + bmk — ank)z "'+

e1.4(w) = 2,4(u) {(gnm — ang + fha — fmk + apk — gph)=~%+

es,1(w) = eq2(w) —cbh + ape + fgh — fka + dbk — gpd)z—*+
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(—f2q+fnc—gbn—bpc+bzq+gpf)z2+(—fmc+qu—abq+apc+gbm—gpd)z3},

) _3

(—f%k + fng + kb* — cbn — bgp + cpf)z 2+
(*n —ng?® —bma+dfm—cfq+ gfk+bgq—afh+mna®+bdh —d*n —bke)z '+
(—abn—f2m+apf+mb2—bdp—|—fnd)+(gfm+anc—afq—gnd—bmc—l—bdq)z},

es3(w) =eqq(w) = m{(—apc — fgh — dbk + cbh + gpd + fka)z""+

(b*h — dbn — f2h + dpf — bpa + fna)—
(fgq + fma + cbq — *p + pg® + d*p + abh — pa® — gbk — fdh — dbm <+ fkc)z+

(gpf*f2q+b2q+fncfgbn*bp0)22+(*gbm+abqfapc+gpd~qu+fm6)23},
— —2
e3.4(w) = exs(w) = m{(gnd +cfh — dfk — anc #bka — bgh)z—3

(=bpg — cbn — f2k + kb*> + fng + epf)z 2~
(na?® —bdh +bma+afh+cfq+ng* +d>n—dfm — c*n— gfk =bgq+ bke)z 1+
(ff2m+apffbderfndfaanrbzm)+(fgfm+aquanc+bmcfbdq+gnd)z}.

6372(111) = 6471(71)) =

Remark 3.8. By the same method wused in [3, Lemma 3.2, we can
construct dual two-direction wavelet frames ({*(z)}e_ |, {v*(x)})) in
(H*(R), H=*(R)), with {*(z)}L_ having high vanishing moments.

4. Proof of Theorem 2.1

Proof. Since ({ ()} e = 1,{1%( z)}4_)) is a pair of dual two-direction
frames in (H* (R), H~¥(R ))

<fg> = Z( — k) >< ¢z — k), g(x) >
k
+ < f(@), b= — k) >< H(—x — k), g() > )

d
+ IS (< f@) gy @) >< i @), g(@) >

{=1jeZkeZ
< f(@), 05 (—) >< 0 (), (@) > ),
VfeH " (R),g€H (R),
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where, wf,‘z* (z) = d%(j—S*)¢f(djx — k) and Jf;s* (z) = d%(j+8*)qz€(djx _
k). It is easy to check that

S| < F@) @) >< O (@), 9(2) >

=32 [ < f@), B @ W — k) + (-0 (—diz £ K) >

< LR iz — k) + (— 1) (~diz + k), g(z) > |
= S Yier Sher | < F@) U5 @) >< 35 (@), g(@) >
< F@), U5 (—) >< B (<), g(o) > .

Similarly, we can check that

Zi:l < f($),¢n(l‘ - kl>< gn(m - k‘)7g(l‘) >
=< f(z),9(x — k) >< ¢(z — k), g(x) >
+ < f(z),0(—x — k) >< ¢p(—x — k), g(x) >.

From the discussion above, it is easy to see that X* (®;W! ... ¥l) and

X" (®; W, ... | Wl) generate a pair of dual symmetric d-multiwavelet

frames in (H* (R), H~* (R)). O
5. Example

Let ¢(z) = ¢(z) be a two-direction refinable function with the dilation
factor 2 satisfying the following refinable function,

d(x) = 0.102¢(22—2)+0.3062¢(22—3) +0.3062¢ (2 —4) +0.102¢(22—5)
+0.0406¢)(—22) +0.3418¢( <2 — 1) +0.546(—2x — 2) +0.25¢)(—22 — 3).

According to [8, 12], we know that ¢(x) provides an approximation
order 2 and ¢ € W 999, where, W denotes the Sobolev smoothness.
In Theorem 3.3, select a = 0,b =0,c = %,d: 0,f=0,9g= %,h =0;p=
%,q:O,m:O,k =0,n= % and
_ | 1/4 1/4
According to ' Theorem 3.6 and Corollary 3.7, we get
Yl (a) =T7/20(x — 2) +3/2¢(—z +2),
Y2 (x) =7/2¢(x — 1) + 3/2¢( z+1),
P! (2w) = by (w)o ( ) + b1 5 (w)g d(—w),
P2(2w) = b 1 (w)d(w) + b3 o (w)d(—w),

—~~ o~
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where,

b (w) = —8.2483616625z — 0.0011434523 4 3.6666246752 >
—2.98596642522 — 7.23447466252* — 3.600424452°
—10.985491662523 — 1.6335534752~1 — 0.3802465527
—0.102220652% — 1.19032171252% — 4.502862475,

b1 o(w) = —0.005539052% + 8.5249901752% — 0.7160405752
—1.951958875 — 5.94679321252~1 — 6.5782447252 2
—11.4539477125273 — 9.80564081252* — 5.966960052 °
—2.51726516252"6 — 0.759940652~7 — 0.021101852 8,

b7 (w) = —0.10222065z" — 0.329943152° — 1124377162527
—2.2867514252% — 3.35355391252° — 4.9409987524
—6.398968852% — 8.76563821252% — 1.0503917752
—6.8726085375 — 0.23549207521 — 1.6521377252 72
—0.084216825273 — 0.001143452~4,

b7 o(w) = —3.2873747375 + 6.947540825z —9.2278012z 4
—8.7316757272 — 5.725103262522 = 0.61187812522
—0.005539052* — 0.22228402523 + 0.1845571252 1
—2.28715016252~7 — 0.775470152% — 5.2160547252 6
—8.21910746252° — 0.021101852 7.

According to Theorem 3.5, {¢‘(z)}¢; and {Jé(x)}‘zzl can generate a
pair of dual two-direction frames in (H%R), H~'(R)). For ¢ = 1,2,
construct

¢(z) + ¢(—z) ¢(x) — ¢(—x) )T

() = (¢1(2), ¢2(2)" = ( 5 , 5 7
B(a) = Gu(aedoli)” = (AL D) AT o)y
oy Ly D) — O (—

V() = (W) ()T = (L )+21/1( ) ¥i(=) 2¢( .

and

=~ =~ s e V(—x) f(z) — ol (—a
\I/E({L') ), (\I/(i(x),\llg(m))T _ (¢ ( )"’_21/} ( )’ w ( ) ;/J ( ))T

According to Theorem 2.1, X!(®; U!, ¥2) and X_l(ff; Wl \TIQ) gener-
ate a pair of dual symmetric d-multiwavelet frames in (H*(R), H~*(R)).
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