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APPROXIMATING FIXED POINTS OF GENERALIZED
NONEXPANSIVE MAPPINGS

A. RAZANI∗ AND H. SALAHIFARD

Communicated by Fraydoun Rezakhanlou

Abstract. Let C be a nonempty closed convex subset of a com-
plete CAT (0) space and T : C → C be a generalized nonexpansive
mapping with F (T ) = {x ∈ C : T (x) = x} 6= ∅. Suppose {xn} is
generated iteratively by x1 ∈ C,

xn+1 = tnT [snTxn ⊕ (1− sn)xn]⊕ (1− tn)xn,

for all n ≥ 1, where {tn} and {sn} are real sequences in [0, 1] such
that one of the following two conditions is satisfied:
(i) tn ∈ [a, b] and sn ∈ [0, 1], for some a, b with 0 < a ≤ b < 1,
(ii) tn ∈ [a, 1] and sn ∈ [a, b], for some a, b with 0 < a ≤ b < 1.
Then, the sequence {xn}, ∆-converges to a fixed point of T . Our
results extend the ones in Laokul and Panyanak [T. Laokul and
B. Panyanak, Int. J. Math. Anal. 3 (2009) 1305–1315.] and also
the ones in Nanjaras et al. [B. Nanjaras, B. Panyanak and W.
Phuangrattana, Nonlinear Anal. Hybrid Syst. 4 (2010) 25-31.].

1. Introduction

Recently, Suzuki [17] introduced condition (C) as follows.
Condition(C): Let T be a mapping on a subset C of Banach space E.
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Then, T is said to satisfy condition (C) (or generalized nonexpansive
mapping) if

1
2
||x− Tx|| ≤ ||x− y|| implies ||Tx− Ty|| ≤ ||x− y||,

for all x, y ∈ C.

Proposition 1.1. Every nonexpansive mapping satisfies condition (C),
but the inverse is not true.

Example 1.2. Define a mapping T on [0, 3] by

T (x) =
{

0 ifx 6= 3,
1 ifx = 3.

Then, T satisfies condition (C), but T is not nonexpansive.

The purpose of this paper is to study the iterative scheme defined as
follows.
Let C be a nonempty closed convex subset of a complete CAT (0) space
and T : C → C be a generalized nonexpansive mapping with F (T ) 6= ∅.
Suppose {xn} is generated iteratively by x1 ∈ C,

(1.1) xn+1 = tnT [snTxn ⊕ (1− sn)xn]⊕ (1− tn)xn,

for all n ≥ 1, where, {tn} and {sn} are real sequences in [0, 1] such that
one of the following two conditions is satisfied:
(1.2)

(i) tn ∈ [a, b] and sn ∈ [0, 1], for some a, b with 0 < a ≤ b < 1,
(ii) tn ∈ [a, 1] and sn ∈ [a, b], for some a, b with 0 < a ≤ b < 1.

We show that the sequence {xn}, defined by (1.1), ∆-converges to a
fixed point of T .

2. CAT (0) Spaces

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X
(or more briefly, a geodesic from x to y) is a map c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t́) = |t− t́|, for
all t, t́ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image
α of c is called a geodesic (or metric) segment joining x and y. When it
is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to
be a geodesic space if every two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining
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Approximating fixed points of generalized nonexpansive mappings 237

x to y, for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y
includes every geodesic segment joining any two of its points. A geodesic
triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of4) and a geodesic segment between each pair
of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in the
Euclidean plane E2 such that dE2(x̄i, x̄j) = d(xi, xj), for i, j ∈ {1, 2, 3}.
A geodesic metric space is said to be a CAT (0) space [1] if all geodesic
triangles of appropriate size satisfy the following comparison axiom. Let
4 be a geodesic triangle in X and let 4̄ be a comparison triangle for 4.
Then, 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and
all comparison points x̄, ȳ ∈ 4̄, d(x, y) ≤ dE2(x̄, ȳ). It is known that in
a CAT (0) space, the distance function is convex [1].
Complete CAT (0) spaces are often called Hadamard spaces. Finally, we
observe that if x, y1, y2 are points of a CAT (0) space and if y0 is the
midpoint of the segment [y1, y2], which we will denote by y1⊕y2

2 , then
the CAT (0) inequality implies

(2.1) d(x,
y1 ⊕ y2

2
)
2

≤ 1
2
d(x, y1)

2 +
1
2
d(x, y2)

2 − 1
4
d(y1, y2)

2,

because equality holds in the Euclidean metric. In fact (see [1, page
163]), a geodesic metric space is a CAT (0) space if and only if it satisfies
inequality (2.1) (which is known as the CN inequality of Bruhat and Tits
[2]).
The following lemmas can be found in [4].

Lemma 2.1. Let (X, d) be a CAT (0) space. For x, y ∈ X and t ∈ [0, 1],
there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for this unique z.

Lemma 2.2. Let (X, d) be a CAT (0) space. Then,

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all t ∈ [0, 1] and x, y, z ∈ X.

The following result is of Xu [18].

Lemma 2.3. Let R > 1 be a fixed number and X be a Banach space.
Then, X is uniformly convex if and only if there exists a continuous,
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strictly increasing, and convex function g : [0,∞) → [0,∞) with g(0) = 0
such that

||λx + (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||),
for all x, y ∈ BR(0) = {x ∈ X : ||x|| ≤ R} and λ ∈ [0, 1].

Therefore, by Lemma 2.2, it turns out that CAT (0) spaces offer nice
examples of uniformly convex metric spaces. It is worth mentioning that
the results in CAT (0) spaces can be applied to any CAT (κ) space with
κ ≤ 0, since any CAT (κ) space is a CAT (κ́) space, for every κ́ ≥ κ(see
[1, page 165]).

Now, we recall some definitions from [15].
Let X be a complete CAT (0) space and (xn) be a bounded sequence in
X. For x ∈ X, set

r(x, (xn)) = lim supn→∞ d(x, xn).

The asymptotic radius r((xn)) of (xn) is given by

r((xn)) = inf{r(x, (xn)) : x ∈ X},
and the asymptotic center A((xn)) of (xn) is the set

A((xn)) = {x ∈ X : r(x, (xn)) = r((xn))}.

Definition 2.4. (see [9, Definition 3.1]) A sequence (xn) in a CAT (0)
X is said to ∆-converge to x ∈ X if x is the unique asymptotic center of
(un), for every sequence (un) of (xn). In this case, we write ∆−limn xn =
x and call x the ∆-lim of (xn).

It is known that in a CAT (0) space, A((xn)) consists of exactly one
point [6]. Also, every CAT (0) space has the Opial property, i.e., if (xn)
is a sequence in K and ∆-lim xn = x, then for each y(6= x) ∈ K,

lim sup
n

d(xn, x) < lim sup
n

d(xn, y).

Lemma 2.5. [9] Every bounded sequence in a complete CAT (0) space
always has a ∆-convergent subsequence.

Lemma 2.6. [5] Let C be a closed convex subset of a complete CAT (0)
space and {xn} be a bounded sequence in C. Then, the asymptotic center
of {xn} is in C.
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Lemma 2.7. [17] Let C be a closed convex subset of a complete CAT (0)
space X, and T : C → C be a generalized nonexpansive mapping. Then,

d(x, Ty) ≤ 3d(x, Tx) + d(x, y),

for all x, y ∈ C.

The following result is a consequence of Lemma 2.9 in [10].

Lemma 2.8. Let X be a complete CAT (0) space and x ∈ X. Suppose
{tn} is a sequence in [b, c], for some b, c ∈ (0, 1), and {xn}, {yn} are
sequences in X such that lim supnd(xn, x) ≤ r, lim supnd(yn, x) ≤ r,
and limn d((1− tn)xn ⊕ tnyn, x) = r, for some r ≥ 0. Then,

lim
n→∞

d(xn, yn) = 0.

3. Main Result

Here, our main result is presented.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete
CAT (0) space X and T : C → C be a generalized nonexpansive mapping.
Suppose x1 ∈ C and {xn} is defined by (1.1), where sequences {tn}, {sn}
are given by (1.2). Then, limn→∞ d(xn, x∗) exists, for all x∗ ∈ F (T ).

Proof. Set yn = snTxn⊕(1−sn)xn. Since T is generalized nonexpansive
and x∗ ∈ F (T ),

1
2
d(x∗, Tx∗) = 0 ≤ d(x∗, yn),

and
1
2
d(x∗, Tx∗) = 0 ≤ d(x∗, xn),

for all n ≥ 1. It implies d(Tx∗, T yn) ≤ d(x∗, yn) and d(Tx∗, Txn) ≤
d(x∗, xn). So,

d(xn+1, x
∗) = d(tnT [snTxn ⊕ (1− sn)xn]⊕ (1− tn)xn, x∗)
≤ tnd(Tyn, x∗) + (1− tn)d(xn, x∗)
≤ tnd(yn, x∗) + (1− tn)d(xn, x∗)
≤ tn(snd(Txn, x∗) + (1− sn)d(xn, x∗)) + (1− tn)d(xn, x∗)
≤ d(xn, x∗).

This implies d(xn, x∗) is decreasing and bounded below, and so limn

d(xn, x∗) exists. �
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Theorem 3.2. Let C be a nonempty closed convex subset of a complete
CAT (0) space X and T : C → C be a generalized nonexpansive map-
ping. From arbitrary x1 ∈ C, define the sequence {xn} by (1.1), where
sequences {tn}, {sn} are given by (1.2). Then, F (T ) is nonempty if and
only if {xn} is bounded and limn d(Txn, xn) = 0.

Proof. Suppose that F (T ) is nonempty and x∗ ∈ F (T ). Then, by The-
orem 3.1, limn d(xn, x∗) exists and {xn} is bounded. Set

(3.1) c = lim
n

d(xn, x∗)

and yn = snTxn ⊕ (1− sn)xn, for all n ≥ 1. Since

1
2
d(x∗, Tx∗) = 0 ≤ d(x∗, yn),

and
1
2
d(x∗, Tx∗) = 0 ≤ d(x∗, xn),

for all n ≥ 1, then d(Tx∗, T yn) ≤ d(x∗, yn) and d(Tx∗, Txn) ≤ d(x∗, xn).
Thus,

d(Tyn, x∗) ≤ d(yn, x∗)
= d(snTxn ⊕ (1− sn)xn, x∗)
≤ snd(Txn, x∗) + (1− sn)d(xn, x∗)
≤ snd(xn, x∗) + (1− sn)d(xn, x∗)
= d(xn, x∗).

Therefore,

(3.2) lim sup
n

d(Tyn, x∗) ≤ lim sup
n

d(yn, x∗) ≤ c.

Furthermore, we have

(3.3) lim
n

d(tnTyn ⊕ (1− tn)xn, x∗) = lim
n

d(xn+1, x
∗) = c.

Case 1 : 0 < a ≤ tn ≤ b < 1 and 0 ≤ sn ≤ b < 1.
By (3.1), (3.2), (3.3) and Lemma 2.8, we have limn d(Tyn, xn) = 0. Since
for each sn ∈ [0, b],

d(Txn, xn) ≤ d(Txn, yn) + d(yn, xn)
≤ (1− sn)d(xn, Txn) + d(yn, xn),

then we have
snd(xn, Txn) ≤ d(yn, xn).

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Approximating fixed points of generalized nonexpansive mappings 241

Since T is generalized nonexpansive, by choosing sn = 1
2 , we obtain

d(Txn, T yn) ≤ d(xn, yn), and so it follows:

d(Txn, xn) ≤ d(Txn, T yn) + d(Tyn, xn)
≤ d(xn, yn) + d(Tyn, xn)
= d(snTxn ⊕ (1− sn)xn, xn) + d(Tyn, xn)
≤ snd(Txn, xn) + d(Tyn, xn).

Thus, we have (1− b)d(Txn, xn) ≤ (1− sn)d(Txn, xn) ≤ d(Tyn, xn).
Therefore, limn d(Txn, xn) ≤ 1

(1−b) limn d(Tyn, xn) = 0.

Case 2 : 0 < a ≤ tn ≤ 1 and 0 < a ≤ sn ≤ b < 1.
Since we have d(Txn, x∗) ≤ d(xn, x∗), for all n ≥ 1, we get

(3.4) lim sup
n

d(Txn, x∗) ≤ c.

Now,

d(xn+1, x
∗) ≤ tnd(Tyn, x∗) + (1− tn)d(xn, x∗)
≤ tnd(yn, x∗) + (1− tn)d(xn, x∗)
= tnd(yn, x∗) + d(xn, x∗)− tnd(xn, x∗),

which implies
d(xn+1, x

∗)− d(xn, x∗)
tn

≤ d(yn, x∗)− d(xn, x∗).

Taking lim inf from both sides of the above inequality, we have

lim inf
d(xn+1, x

∗)− d(xn, x∗)
tn

≤ lim inf(d(yn, x∗)− d(xn, x∗)).

Since lim d(xn+1, x
∗) = lim d(xn, x∗) = c, then

0 ≤ lim inf(d(yn, x∗)− d(xn, x∗)).

On the other hand, since d(yn, x∗) − d(xn, x∗) ≤ 0, lim inf(d(yn, x∗) −
d(xn, x∗)) ≤ 0. Therefore, lim inf(d(yn, x∗)− d(xn, x∗)) = 0. This shows

0 = lim inf(d(yn, x∗)− d(xn, x∗))
≤ lim inf d(yn, x∗)− lim inf d(xn, x∗).

Therefore, lim inf d(xn, x∗) ≤ lim inf d(yn, x∗). This means that c ≤
lim infn d(yn, x∗). By combining this inequality and (3.2), we have

c ≤ lim inf
n

d(yn, x∗) ≤ lim sup
n

d(yn, x∗) ≤ c.

Therefore,

(3.5) c = lim
n

d(yn, x∗) = lim
n

d(snTxn ⊕ (1− sn)xn, x∗).
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By (3.5), (3.4), (3.1) and Lemma 2.8, we have limn d(Txn, xn) = 0.
Conversely, suppose that {xn} is bounded and limn d(xn, Txn) = 0. Let
A((xn)) = {x}. Then, x ∈ C, by Lemma 2.6. Since T is generalized
nonexpansive, we have, by Lemma 2.7,

d(xn, Tx) ≤ 3d(xn, Txn) + d(xn, x),

which implies

lim supn d(xn, Tx) ≤ lim supn[3d(xn, Txn) + d(xn, x)]
= lim supn d(xn, x).

By the uniqueness of asymptotic centers, we get Tx = x. Therefore, x
is a fixed point of T . �

Theorem 3.3. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and T : C → C be a generalized nonexpansive mapping
with F (T ) 6= ∅. Suppose {xn} is defined by (1.1), where {tn} and {sn}
are given by (1.2). Then, {xn}, ∆-converges to a fixed point of T .

Proof. Theorem 3.2 guarantees that {xn} is bounded and

lim
n

d(xn, Txn) = 0.

Let Ww(xn) :=
⋃

A({un}), where the union is taken over all sub-
sequences {un} of {xn}. We claim that Ww(xn) ⊂ F (T ).
Let u ∈ Ww(xn). Then, there exists a subsequence {un} of {xn} such
that A((un)) = {u}. By Lemmas 2.5 and 2.6, there exists a subsequence
vn of un such that ∆− limn vn = v ∈ C. Since limn d(vn, T vn) = 0 and
T is generalized nonexpansive, then, by Lemma 2.7,

d(vn, T v) ≤ 3d(vn, T vn) + d(vn, v).

By taking lim and Opial property, we obtain v ∈ F (T ). Now, we claim
that u = v. If not, by Theorem 3.1, limn d(xn, v) exists, and thus by the
uniqueness of asymptotic centers,

lim supn d(vn, v) < lim supn d(vn, u)
≤ lim supn d(un, u)
< lim supn d(un, v)
= lim supn d(xn, v)
= lim supn d(vn, v),

which is a contradiction. So, u = v ∈ F (T ). In order to show {xn}, ∆-
converges to a fixed point of T , it suffices to show that Ww(xn) consists
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of exactly one point. Let {un} be a subsequence of {xn}. By lemmas 2.5
and 2.6, there exists a subsequence {vn} of {un} such that ∆− limn vn =
v ∈ C. Let A((un)) = {u} and A((xn)) = {x}. We have seen that v = u
and v ∈ F (T ). Therefore, we can complete the proof by showing that
v = x. If not, since {d(xn, v)} is convergent by the last argument, then,
by the uniqueness of asymptotic centers,

lim supn d(vn, v) < lim supn d(vn, x)
≤ lim supn d(xn, x)
< lim supn d(xn, v)
= lim supn d(un, v),

which is a contradiction, and hence the conclusion follows. �

We recall (see [16]), a mapping T : C → C is said to satisfy condi-
tion (I), if there exists a nondecreasing function f : [0,∞] → [0,∞)
with f(0) = 0 and f(r) > 0, for all r > 0, such that d(x, Tx) ≥
f (d(x, F (T ))) , for all x ∈ C, where, d (x, F (T )) = infz∈F (T ) d(x, z).

Theorem 3.4. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and T : C → C be a generalized nonexpansive mapping
satisfying condition (I) with F (T ) 6= ∅. Suppose {xn} is defined by (1.1),
where {tn} and {sn} are given by (1.2). Then, {xn} converges strongly
to some fixed point of T.

Proof. First, we show that F (T ) is closed. Let {xn} be a sequence in
F (T ) converging to some point z ∈ C. Since

1
2
d(xn, Txn) = 0 ≤ d(xn, z),

we have
lim supn d(xn, T z) = lim supn d(Txn, T z)

≤ lim supn d(xn, z)
= 0.

That is, {xn} converges to Tz. This implies Tz = z. Therefore, F (T )
is closed. By Theorem 3.2, we have limn→∞ d(Txn, xn) = 0. It follows
from condition (I) that

lim
n→∞

f (d (xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0.

Then, limn→∞ f (d (xn, F (T ))) = 0. Since f : [0,∞] → [0,∞) is a
nondecreasing function satisfying f(0) = 0, f(r) > 0, for all r ∈ (0,∞),
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we obtain limn→∞ d (xn, F (T )) = 0. Hence, we can choose a subsequence
{xnk

} of {xn} such that

d(xnk
, pk) ≤

1
2k

,

for all integer k ≥ 1 and some sequence {pk} in F (T ). Again, by Theo-
rem 3.1,

d(xnk+1
, pk) ≤ d(xnk

, pk) ≤
1
2k

.

Hence,

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xnk+1

, pk)

≤ 1
2k+1

+
1
2k

<
1

2k−1
,

which implies {pk} is a Cauchy sequence. Since F (T ) is closed, then
{pk} converges strongly to a point p in F (T ). It is readily seen that
{xnk

} converges strongly to p. Since limn d(xn, p) exists, it must be the
case that lim

n→∞
d(xn, p) = 0. �

Remark 3.5. Since every nonexpansive mapping is a generalized non-
expansive mapping, one can state all the above results for nonexpansive
mappings and obtain the results in [10]. Also, by setting sn = 0, one can
obtain the results in [13].
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