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ITERATIVE ALGORITHMS FOR FAMILIES OF
VARIATIONAL INEQUALITIES FIXED POINTS AND

EQUILIBRIUM PROBLEMS

S. SAEIDI

Communicated by Heydar Radjavi

Abstract. We introduce an iterative algorithm for finding a com-
mon element of the set of fixed points for an infinite family of nonex-
pansive mappings, the set of solutions of the variational inequalities
for a family of α-inverse-strongly monotone mappings and the set
of solutions of a system of equilibrium problems in a Hilbert space.
We prove the strong convergence of the proposed iterative algo-
rithm to the unique solution of a variational inequality, which is
the optimality condition for a minimization problem. Moreover, we
apply our result to the problem of finding a common fixed point of
a family of strictly pseudocontractive mappings.

1. Introduction

Let C be a closed convex subset of a Hilbert space H. Then, a map-
ping S of C into itself is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖,
for all x, y ∈ C. We denote by Fix(S) the set of fixed points of S.

Recall that a mapping B : C → H is called α-inverse-strongly mono-
tone [3] if there exists a positive real number α such that

〈Bx−By, x− y〉 ≥ α‖Bx−By‖2, ∀x, y ∈ C.
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It is easy to see that if B : C → H is α-inverse-strongly monotone, then
it is a 1

α -Lipschitzian mapping.
Let B : C → H be a mapping. The classical variational inequality

problem is to find u ∈ C such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of this variational inequality is denoted by V I(C,B).
For finding an element of Fix(S) ∩ V I(C,B), Takahashi and Toyoda

[27] introduced the following iterative scheme:

xn+1 = εnxn + (1− εn)SPC(xn − λnBxn), n ≥ 0,

where, x0 = x ∈ C, {εn} is a sequence in (0, 1), and {λn} is a sequence
in (0, 2α).

On the other hand, Moudafi [16] introduced the viscosity approxima-
tion method for nonexpansive mappings. Let f be a contraction on a
Hilbert space H (i.e., ‖f(x)−f(y)‖ ≤ l‖x−y‖, x, y ∈ H and 0 ≤ l < 1).
Starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recur-
sively by

(1.1) xn+1 = (1−εn)Sxn+εnf(xn), n ≥ 0,

where, {εn} is a sequence in (0, 1). It is proved [16, 30] that, under
certain appropriate conditions imposed on {εn}, the sequence {xn} gen-
erated by (1.1) strongly converges to the unique solution x∗ in F :=
Fix(S) of the variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ F .

Iterative methods for nonexpansive mappings have recently been applied
to solve convex minimization problems and variational inequalities; see,
e.g., [4, 10, , 21, 28, 29, 31, 32]. A typical problem is to minimize a
quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

(1.2) min
x∈F

1
2
〈Ax, x〉−〈x, u〉,

where, F is the fixed point set of a nonexpansive mapping S on H and
u is a given point in H. Assume A is strongly positive; that is, there is
a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2, for all x ∈ H.
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Xu [28] (see also [31]) proved that the sequence {xn}, defined by the
iterative method

(1.3) xn+1 = (I−εnA)Sxn+εnu, n ≥ 0,

with the initial guess x0 ∈ H chosen arbitrarily, converges strongly to
the unique solution of the minimization problem (1.2) provided that the
sequence {εn} satisfies certain conditions.

Marino and Xu [15] combined the iterative method (1.3) with the vis-
cosity approximation method (1.1) and considered the following general
iterative method:

(1.4) xn+1 = (I−εnA)Sxn+εnγf(xn), n ≥ 0,

where, 0 < γ < γ/α. They proved that if the sequence {εn} satis-
fies appropriate conditions, then the sequence {xn}, generated by (1.4),
converges strongly to the unique solution of the variational inequality,

(1.5) 〈(A−γf)x∗, x−x∗〉 ≥ 0, x ∈ F ,

which is the optimality condition for the minimization problem,

(1.6) min
x∈F

1
2
〈Ax, x〉−h(x)

where, h is a potential function for γf (i.e., h′(x) = γf(x), for x ∈ H).
Finding an optimal point in the intersection F of the fixed point sets

of a family of nonexpansive mappings is a task frequently arising from
various areas of mathematical sciences and engineering. For example,
the well-known convex feasibility problem reduces to finding a point
in the intersection of the fixed point sets of a family of nonexpansive
mappings; see, e.g., [1, 8]. A simple algorithmic solution to the problem
of minimizing a quadratic function over F is of an extreme value in many
applications including set theoretic signal estimation; see, e.g., [14, 33].

On the other hand, let C be a nonempty closed convex subset of H.
Let F : C × C → R be a bifunction. The equilibrium problem for F is
to determine its equilibrium points, i.e., the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.

Let G = {Fi}i∈I be a family of bifunctions from C × C to R. The
system of equilibrium problems for G = {Fi}i∈I is to determine common
equilibrium points for G = {Fi}i∈I , i.e., the set

(1.7) EP (G) := {x ∈ C : Fi(x, y) ≥ 0 ∀y ∈ C ∀i ∈ I}.
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Many problems in applied sciences, such as monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimiza-
tion problems, Nash equilibria in noncooperative games, vector equi-
librium problems, as well as certain fixed point problems reduce into
finding some element of EP (F ); see [2, 9, 11]. The formulation (1.7) ex-
tends this formalism to systems of such problems, covering, in particular,
various forms of feasibility problems [9, 12].

Given any r > 0, the operator JF
r : H → C, defined by

JF
r (x) := {z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C},

is called the resolvent of F (see [9, 12]).
It is shown [5, 7] that under suitable hypotheses on F , JF

r : H → C is
single-valued and firmly nonexpansive and satisfies Fix(JF

r ) = EP (F ),
∀r > 0.

Using this result, Takahashi and Takahashi [26] introduced a viscosity
approximation method for finding a common element of EP (F ) and
Fix(S), where S is a nonexpansive mapping. Starting with an arbitrary
element x1 in H, they defined the sequence {xn} recursively by

(1.8) xn+1 = εnf(xn)+(1−εn)SJF
rn
xn.

They proved that, under certain appropriate conditions over εn and
rn, the sequences {xn} and {JF

rn
xn} both converge strongly to x∗ =

PFix(S)∩EP (F )f(x∗).
By combining the schemes (1.4) and (1.8), Plubtieng and Punpaeng

[17] proposed the following iterative scheme:

(1.9) xn+1 = εnγf(xn)+(I−εnA)SJF
rn
xn.

They proved that if the sequences {εn} and {rn} of parameters sat-
isfy appropriate conditions, then the sequences {xn} and {JF

rn
xn} both

converge strongly to the unique solution x∗ ∈ F := Fix(S) ∩ EP (F ) of
the variational inequality (1.5), being the optimality condition for the
minimization problem (1.6). Note that the result in [15] is a particular
case of this, corresponding to the choice F (x, y) = 0 (so that JF

rn
= I).

Very recently, Colao et al. [6] proposed the following explicit scheme
with respect to W -mappings for a finite family of nonexpansive map-
pings:

(1.10) xn+1 = εnγf(xn)+βxn+((1−β)I−εnA)WnJ
F
rn
xn.
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They proved, under weaker hypotheses, that both sequences {xn} and
{JF

rn
xn} converge strongly to a point x∗ ∈ F , which is the unique solu-

tion of the variational inequality (1.5).
Here, motivated by Colao, et al. [6], Takahashi and Toyoda [27] and

some of our previous results [19, 20], we introduce an iterative algorithm
(Theorem 3.1) for finding a common element of the set of solutions of
a system of equilibrium problems EP (G) for a family G = {Fi : i =
1, . . . ,M} of bifunctions, the set of solutions of variational inequalities
V I(C,Bj) for a family {Bj : j = 1 . . . N} of α-inverse-strongly monotone
mapping from C into H and the set of fixed point for an infinite family of
nonexpansive mappings ϕ = {Si : C → C}, with respect to W -mappings
defined in [22]. We prove the strong convergence of the proposed iter-
ative process to the unique solution of the variational inequality (1.5).
Our results cover all previous schemes specified by (1.1), (1.3), (1.4),
(1.8), (1.9) and (1.10). Moreover, we apply our result to the problem of
finding a common fixed point of a family of strictly pseudocontractive
mappings (Theorem 3.2).

2. Preliminaries

Let C be a nonempty closed and convex subset of H. Let F : C×C →
R be a bifunction. The equilibrium problem for F is to determine its
equilibrium points, i.e., the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.

Given any r > 0, the operator JF
r : H → C, defined by

JF
r (x) := {z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C},

is called the resolvent of F ; See [9, 12].

Lemma 2.1. ([9, 12]) Let C be a nonempty closed convex subset of H
and F : C × C → R satisfy

(A1) F (x, x) = 0, for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, for all x, y ∈ C.
(A3) for all x, y, z ∈ C,

lim inf
t→0

F (tz + (1− t)x, y) ≤ F (x, y);
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(A4) for all x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.
Then,

(1) JF
r is single-valued;

(2) JF
r is firmly nonexpansive, i.e.,

‖JF
r x− JF

r y‖2 ≤ 〈JF
r x− JF

r y, x− y〉, for all x, y ∈ H;

(3) Fix(JF
r ) = EP (F );

(4) EP (F ) is closed and convex.

Recall that the metric (nearest point) projection PC from a Hilbert
space H to a closed convex subset C of H is defined as follows: given
x ∈ H, PCx is the only point in C with the property,

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.
It is known that PC is a nonexpansive mapping and satisfies

(2.1) ‖PCx−PCy‖2 ≤ 〈PCx−PCy, x−y〉, ∀x, y ∈ H.
PC is characterized as follows:

y = PCx ⇐⇒ 〈x− y, y − z〉 ≥ 0, ∀z ∈ C.
In the context of the variational inequality problem, this implies:

(2.2) u ∈ V I(C,B) ⇐⇒ u = PC(u−λBu), ∀λ > 0.

A set-valued mapping T : H → 2H is said to be monotone if for all
x, y ∈ H, f ∈ Tx, and g ∈ Ty, we have 〈f − g, x− y〉 ≥ 0. A monotone
mapping T : H → 2H is said to be maximal if the graph G(T ) of T is
not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping is maximal if and only if, for
(x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0, and (y, g) ∈ G(T ), we have f ∈ Tx.
Let B : C → H be an inverse-strongly monotone mapping and let NCv
be the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C},
and define

Tv =
{
Bv +NCv, v ∈ C,
∅, v 6∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,B)
(see [13, 18]).

The following lemma is an immediate consequence of the inner prod-
uct on H.
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Lemma 2.2. For all x, y ∈ H, we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3. ([29]) Assume {an} is a sequence of nonnegative real num-
bers such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where, {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then, limn→∞ an = 0.

Lemma 2.4. ([23]) Let {xn} and {zn} be bounded sequences in a Ba-
nach space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn

and lim supn→∞ βn < 1. Suppose

xn+1 = βnxn + (1− βn)zn,

for all integers n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then, limn→∞ ‖xn − yn‖ = 0.

Definition 2.5. Let {Si : C → C} be an infinite family of nonexpansive
mappings and {µi} be a nonnegative real sequence with 0 ≤ µi < 1,
∀i ≥ 1. For any n ≥ 1, define a mapping Wn : C → C as follows:

Un,n+1 := I,
Un,n := µnSnUn,n+1 + (1− µn)I,
Un,n−1 := µn−1Sn−1Un,n + (1− µn−1)I,

...
Un,k := µkSkUn,k+1 + (1− µk)I,
Un,k−1 := µk−1Sk−1Un,k + (1− µk−1)I,

...
Un,2 := µ2S2Un,3 + (1− µ2)I,

(2.3) Wn := Un,1 = µ1S1Un,2 + (1− µ1)I.

Such a mapping Wn is nonexpansive from C to C and it is called the
W -mapping, generated by Sn, Sn−1, . . . , S1 and µn, µn−1, . . . , µ1.
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The concept of W -mappings was introduced in [24, 25]. It is now a
main tool in studying convergence of iterative methods to common fixed
points of nonlinear mappings.

Lemma 2.6. ([22]) Let C be a nonempty closed convex subset of a
Hilbert space H, ϕ = {Si : C → C} be an infinite family of nonexpansive
mappings with Fix(ϕ) := ∩∞i=1Fix(Si) 6= ∅, and {µi} be a real sequence
such that 0 < µi ≤ b < 1, ∀i ≥ 1. Then,

(1) Wn is nonexpansive and Fix(Wn) = ∩n
i=1Fix(Si), for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, limn→∞ Un,kx exists;
(3) the mapping W : C → C, defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x,

is a nonexpansive mapping satisfying Fix(W ) = Fix(ϕ) and it is called
the W -mapping, generated by S1, S2, . . . and µ1, µ2, . . . ;
(4) if K is any bounded subset of C, then

lim
n→∞

sup
x∈K

‖Wx−Wnx‖ = 0.

Lemma 2.7. ([15]) Assume A is a strongly positive linear bounded op-
erator on a Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1.
Then, ‖I − ρA‖ ≤ 1− ργ.

3. Main Results

The following is our main result.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert
space H, ϕ = {Si : C → C} be an infinite family of nonexpansive
mappings, G = {Fj : j = 1, . . . ,M} be a finite family of bifunctions
from C × C into R which satisfy (A1)-(A4), {Bk : k = 1 . . . N} be a
finite family of α-inverse-strongly monotone mappings from C into H,
and F := ∩N

k=1V I(C,Bk) ∩ Fix(ϕ) ∩ EP (G) 6= ∅.
Let A be a strongly positive bounded linear operator with coefficient γ,

f be an l-contraction on H, for some 0 < l < 1, {εn} be a sequence in
(0, 1), {λk,n}N

k=1 be sequences in [a, b] with 0 < a ≤ b < 2α, {rj,n}M
j=1 be

sequences in (0,∞) and γ and β be two real numbers such that 0 < β < 1
and 0 < γ < γ/l. Assume:
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(C1) limn εn = 0;
(C2)

∑∞
n=1 εn = ∞;

(D1) lim infn rj,n > 0, for every j ∈ {1, . . . ,M};
(D2) limn rj,n/rj,n+1 = 1, for every j ∈ {1, . . . ,M};
(D3) limn |λk,n − λk,n+1| = 0, for every k ∈ {1, . . . , N}.
For every n ∈ N, let Wn be the W -mapping defined by (2.3). If {xn}

is the sequence generated by x1 ∈ H and ∀n ≥ 1,

(3.1)


zn = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(I − λN,nBN ) . . . PC(I − λ2,nB2)PC(I − λ1,nB1)zn,

xn+1 = εnγf(xn) + βxn + ((1− β)I − εnA)Wnyn,

then {xn} and {JFk
rk,n

xn}M
k=1 converge strongly to x∗ ∈ F := ∩N

k=1V I(C,Bk)
∩Fix(ϕ)∩EP (G), which is the unique solution of the variational inequal-
ity (1.5). Equivalently, we have PF (I −A+ γf)x∗ = x∗.

Proof. Since εn → 0, we shall assume that εn ≤ (1 − β)‖A‖−1 and
1− εn(γ − lγ) > 0. Observe that if ‖u‖ = 1, then

〈((1− β)I − εnA)u, u〉 = (1− β)− εn〈Au, u〉 ≥ (1− β − εn‖A‖) ≥ 0.

By Lemma 2.7, we have

(3.2) |(1−β)I−εnA‖ ≤ 1−β−εnγ.
Moreover, by taking

J k
n := JFk

rk,n
. . . JF2

r2,n
JF1

r1,n
, ∀k ∈ {1, . . . ,M},

J 0
n := I,

and

Pk
n := PC(I−λk,nBk) . . . PC(I−λ2,nB2)PC(I−λ1,nB1), ∀k ∈ {1, . . . , N},

P0
n := I,

we write the scheme (3.1) as:

(3.3) xn+1 = εnγf(xn)+βxn+((1−β)I−εnA)WnPN
n JM

n xn.

We shall divide the proof into several steps.

Step 1. The sequence {xn} is bounded.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

256 Saeidi

Proof of Step 1. Let v ∈ F . Since, for each k ∈ {1, . . . ,M}, JFk
rk,n

is
nonexpansive, we have

‖JM
n xn − v‖ = ‖JM

n xn − JM
n v‖ ≤ ‖xn − v‖.

On the other hand, since for each k ∈ {1, . . . N}, the mapping Bk : C →
H is an α-inverse-strongly monotone mapping, for any x, y ∈ C and
λk,n ∈ [a, b] ⊂ [0, 2α], we have

‖(I − λk,nBk)x− (I − λk,nBk)y‖2 = ‖(x− y)− λk,n(Bkx−Bky)‖2

= ‖x− y‖2 − 2λk,n〈x− y,Bkx−Bky〉+ λ2
k,n‖Bkx−Bky‖2

≤ ‖x− y‖2 + λk,n(λk,n − 2α)‖Bkx−Bky‖2 ≤ ‖x− y‖2,

which implies that PC(I − λk,nBk) is nonexpansive, and consequently
that the mappings Pk

n are nonexpansive. From Lemma 2.6 and (2.2),
we have PN

n v = v = Wnv. It follows that

‖xn+1 − v‖ = ‖((1− β)I − εnA)(WnPN
n JM

n xn −WnPN
n JM

n v)

εnγ(f(xn)− f(v)) + εn(γf(v)−Av) + β(xn − v)‖

≤ (1− εn(γ − lγ))‖xn − v‖+ εn(γ − lγ)
‖γf(v)−Av‖

γ − lγ
,

which gives

‖xn − v‖ ≤ max{‖x1 − v‖, ‖γf(v)−Av‖
γ − lγ

}, ∀n ≥ 1.

Step 2. Let {ωn} be a bounded sequence in H. Then,

(3.4) lim
n→∞

‖J k
n+1wn−J k

nωn‖ = 0,

for every k ∈ {1, . . . ,M}.
Proof of Step 2. From [6, Step 2], we have that

(3.5) lim
n
‖JFk

rk,n+1
ωn−JFk

rk,n
ωn‖ = 0,

for for every k ∈ {1, . . . ,M}. Note that for every k ∈ {1, . . . ,M}, we
have

J k
n = JFk

rk,n
J k−1

n .

So,
‖J k

n+1wn − J k
nωn‖ ≤ ‖JFk

rk,n+1
J k−1

n+1wn − JFk
rk,n

J k−1
n+1wn‖

+ ‖JFk
rk,n

J
Fk−1
rk−1,n+1J k−2

n+1wn − JFk
rk,n

J
Fk−1
rk−1,nJ k−2

n+1wn‖ + . . .

+ ‖JFk
rk,n

J
Fk−1
rk−1,n . . . J

F3
r3,n

JF2
r2,n+1

JF1
r1,n+1

ωn−JFk
rk,n

J
Fk−1
rk−1,n . . . J

F3
r3,n

JF2
r2,n

JF1
r1,n+1

ωn‖
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+ ‖JFk
rk,n

J
Fk−1
rk−1,n . . . J

F3
r3,n

JF2
r2,n

JF1
r1,n+1

ωn − JFk
rk,n

J
Fk−1
rk−1,n . . . J

F3
r3,n

JF2
r2,n

JF1
r1,n

ωn‖
≤ ‖JFk

rk,n+1
J k−1

n+1wn − JFk
rk,n

J k−1
n+1wn‖

+ ‖JFk−1
rk−1,n+1J k−2

n+1wn − J
Fk−1
rk−1,nJ k−2

n+1wn‖
+ · · ·+ ‖JF2

r2,n+1
JF1

r1,n+1
ωn − JF2

r2,n
JF1

r1,n+1
ωn‖+ ‖JF1

r1,n+1
ωn − JF1

r1,n
ωn‖

=
∑k

j=1 ‖J
Fj
rj,n+1(J

j−1
n+1wn)− J

Fj
rj,n(J j−1

n+1wn)‖.

Now, apply (3.5) to conclude (3.4).

Step 3. Let {ωn} be a bounded sequence in C. Then,

lim
n→∞

‖PC(I − λk,n+1Bk)wn − PC(I − λk,nBk)ωn‖ = 0,

and
lim

n→∞
‖Pk

n+1wn − Pk
nωn‖ = 0,

for every k ∈ {1, . . . , N}.
Proof of Step 3. Since {ωn} is bounded and Bk, for k ∈ {1, . . . , N},

is a Lipschitzian mapping, we know that

L := sup
n
{‖Bkωn‖} <∞.

Now,
‖PC(I − λk,n+1Bk)wn − PC(I − λk,nBk)ωn‖
≤ ‖(I − λk,n+1Bk)wn − (I − λk,nBk)ωn‖

= |λk,n+1 − λk,n|‖Bkωn‖ ≤ |λk,n+1 − λk,n|L→ 0, as n→∞.

From this and applying a technique similar to that used in proof of Step
2, it is easy to prove the second assertion.

Step 4. limn→∞ ‖xn+1 − xn‖ = 0.
Proof of Step 4. Define a sequence {zn} by zn = (xn+1 − βxn)/(1− β)

so that xn+1 = βxn + (1− β)zn.
Now, compute

(3.6) ‖zn+1−zn‖ =
1

1− β
‖(xn+2−βxn+1−(xn+1−βxn)‖

=
1

1− β
‖γ(εnf(xn+1)−εnf(xn))+((1−β)I−εn+1A)Wn+1PN

n+1JM
n+1xn+1

−((1− β)I − εnA)WnPN
n JM

n xn‖

= ‖ γ

1− β
(εnf(xn+1)− εnf(xn))− 1

1− β
(εn+1AWn+1PN

n+1JM
n+1xn+1
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−εnAWnPN
n JM

n xn) +Wn+1PN
n+1JM

n+1xn+1 −WnPN
n JM

n xn‖.
Since {xn} is bounded and by (3.6), we have for some big enough con-
stant K > 0,

(3.7) ‖zn+1−zn‖ ≤ ‖Wn+1PN
n+1JM

n+1xn+1−WnPN
n JM

n xn‖+K(εn+1+εn)

≤ ‖Wn+1PN
n+1JM

n+1xn+1 −Wn+1PN
n+1JM

n+1xn‖
+‖Wn+1PN

n+1JM
n+1xn −Wn+1PN

n+1JM
n xn‖

+‖Wn+1PN
n+1JM

n xn −Wn+1PN
n JM

n xn‖
+‖Wn+1PN

n JM
n xn −WnPN

n JM
n xn‖+K(εn+1 + εn)

≤ ‖xn+1 − xn‖+ ‖JM
n+1xn − JM

n xn‖+ ‖PN
n+1JM

n xn − PN
n JM

n xn‖
+‖Wn+1PN

n JM
n xn −WnPN

n JM
n xn‖+K(εn+1 + εn).

Now, since εn → 0 and by Steps 2, 3 and Lemma 2.6, we immediately
conclude from (3.7) that

lim sup
n

(‖zn+1 − zn‖ − ‖xn+1 − xn‖)

≤ lim sup
n

{‖JM
n+1xn − JM

n xn‖+ ‖PN
n+1JM

n xn − PN
n JM

n xn‖

+‖Wn+1PN
n JM

n xn −WnPN
n JM

n xn‖+K(εn+1 + εn)} ≤ 0.
Apply Lemma 2.4 to get limn ‖xn+1−xn‖ = (1−β) limn ‖xn− zn‖ = 0.

Step 5. limn→∞ ‖J k
n xn − J k+1

n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.
Proof of Step 5. Let v ∈ F and k ∈ {0, 1, . . . ,M − 1}. Since JFk+1

rk+1,n is
firmly nonexpansive, we obtain

‖v − J k+1
n xn‖2 = ‖JFk+1

rk+1,nv − J
Fk+1
rk+1,nJ k

n xn‖2

≤ 〈JFk+1
rk+1,nJ k

n xn − v,J k
n xn − v〉

=
1
2
(‖JFk+1

rk+1,nJ k
n xn − v‖2 + ‖J k

n xn − v‖2 − ‖J k
n xn − J

Fk+1
rk+1,nJ k

n xn‖2).

It follows that

(3.8) |J k+1
n xn−v‖2 ≤ ‖xn−v‖2−‖J k

n xn−J k+1
n xn‖2.

Set tn = γf(xn)−AWnPN
n JM

n xn and let λ > 0 be a constant such that

λ > sup
n,k
{‖tn‖, ‖xk − v‖}.

Using Lemma 2.2 and noting that ‖.‖2 is convex, we derive, using (3.8),

(3.9) ‖xn+1 − v‖2 = ‖(1− β)(WnPN
n JM

n xn − v) + β(xn − v) + εntn‖2
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≤ ‖(1− β)(WnPN
n JM

n xn − v) + β(xn − v)‖2 + 2εn〈tn, xn+1 − v〉

≤ (1− β)‖WnPN
n JM

n xn − v‖2 + β‖xn − v‖2 + 2λ2εn.

So,

‖xn+1 − v‖2 ≤ (1− β)‖J k+1
n xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β)(‖xn − v‖2 − ‖J k
n xn − J k+1

n xn‖2) + β‖xn − v‖2 + 2λ2εn

= ‖xn − v‖2 − (1− β)‖J k
n xn − J k+1

n xn‖2 + 2λ2εn.

It follows, by Step 4 and condition (C1), that

‖J k
n xn − J k+1

n xn‖2 ≤ 1
1− β

(‖xn − v‖2 − ‖xn+1 − v‖2 + 2λ2εn)

≤ 1
1− β

(2λ‖xn − xn+1‖+ 2λ2εn) → 0, as n→∞.

Step 6. limn→∞ ‖xn −WnPN
n JM

n xn‖ = 0.
Proof of Step 6. Observe that

‖xn −WnPN
n JM

n xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −WnPN
n JM

n xn‖

= ‖xn−xn+1‖+‖εn(γf(xn)−AWnPN
n JM

n xn)+β(xn−WnPN
n JM

n xn)‖

≤ ‖xn−xn+1‖+εn(γ‖f(xn)‖+‖AWnPN
n JM

n xn‖)+β‖xn−WnPN
n JM

n xn‖.
It follows from Step 4 that

‖xn −WnPN
n JM

n xn‖

≤ 1
1− β

(‖xn−xn+1‖+εn(γ‖f(xn)‖+‖AWnPN
n JM

n xn‖) → 0, as n→∞.

Step 7. limn→∞ ‖Pk
nJM

n xn − Pk+1
n JM

n xn‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.
Proof of Step 7. Since {Bk : k = 1 . . . N} are α-inverse-strongly

monotone, by the assumptions imposed on {λn}, for given v ∈ F and
k ∈ {0, 1, . . . , N − 1}, we have

‖WnPN
n JM

n xn − v‖2 ≤ ‖Pk+1
n JM

n xn − v‖2

= ‖PC(I − λk+1,nBk+1)Pk
nJM

n xn − PC(I − λk+1,nBk+1)v‖2

≤ ‖(I − λk+1,nBk+1)Pk
nJM

n xn − (I − λk+1,nBk+1)v‖2

≤ ‖Pk
nJM

n xn − v‖2 + λk+1,n(λk+1,n − 2α)‖Bk+1Pk
nJM

n xn −Bk+1v‖2

≤ ‖xn − v‖2 + a(b− 2α)‖Bk+1Pk
nJM

n xn −Bk+1v‖2.
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Thus, by (3.9), we have

‖xn+1 − v‖2 ≤ (1− β)‖WnPN
n JM

n xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β){‖xn − v‖2 + a(b− 2α)‖Bk+1Pk
nJM

n xn −Bk+1v‖2}
+ β‖xn − v‖2 + 2λ2εn

= (1− β)a(b− 2α)‖Bk+1Pk
nJM

n xn −Bk+1v‖2

+ ‖xn − v‖2 + 2λ2εn.

So,

(1− β)a(2α− b)‖Bk+1Pk
nJM

n xn −Bk+1v‖2

≤ ‖xn − v‖2 − ‖xn+1 − v‖2 + 2λ2εn

≤ ‖xn − xn+1‖(‖xn − v‖+ ‖xn+1 − v‖) + 2λ2εn.

Since 0 < β < 1, and ‖xn − xn+1‖ → 0, we obtain:

(3.10) |Bk+1Pk
nJM

n xn−Bk+1v‖ → 0 (n→∞).

Again from (2.1) and the fact that I − λk+1,nBk+1 is nonexpansive, we
have

‖Pk+1
n JM

n xn − v‖2
= ‖PC(I − λk+1,nBk+1)Pk

nJM
n xn − PC(I − λk+1,nBk+1)v‖2

≤ 〈(Pk
nJM

n xn − λk+1,nBk+1Pk
nJM

n xn)− (v − λk+1,nBk+1v),Pk+1
n JM

n xn − v〉
= 1

2{‖(P
k
nJM

n xn − λk+1,nBk+1Pk
nJM

n xn)− (v − λk+1,nBk+1v)‖2
+ ‖Pk+1

n JM
n xn − v‖2

−‖(Pk
nJM

n xn−λk+1,nBk+1Pk
nJM

n xn)−(v−λk+1,nBk+1v)−(Pk+1
n JM

n xn−v)‖2}
≤ 1

2{‖P
k
nJM

n xn − v‖2 + ‖Pk+1
n JM

n xn − v‖2
−‖Pk

nJM
n xn − Pk+1

n JM
n xn − λk+1,n(Bk+1Pk

nJM
n xn −Bk+1v)‖2}

= 1
2{‖P

k
nJM

n xn − v‖2 + ‖Pk+1
n JM

n xn − v‖2 − ‖Pk
nJM

n xn − Pk+1
n JM

n xn‖2
+2λk+1,n〈Pk

nJM
n xn − Pk+1

n JM
n xn, Bk+1Pk

nJM
n xn −Bk+1v〉

−λ2
k+1,n‖Bk+1Pk

nJM
n xn −Bk+1v‖2}.

This implies:

‖Pk+1
n JM

n xn − v‖2 ≤ ‖Pk
nJM

n xn − v‖2 − ‖Pk
nJM

n xn − Pk+1
n JM

n xn‖2

+2λk+1,n〈Pk
nJM

n xn − Pk+1
n JM

n xn, Bk+1Pk
nJM

n xn −Bk+1v〉
−λ2

k+1,n‖Bk+1Pk
nJM

n xn −Bk+1v‖2.

Then, by (3.9), we have

‖xn+1 − v‖2 ≤ (1− β)‖WnPN
n JM

n xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β)‖Pk+1
n JM

n xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β){‖Pk
nJM

n xn − v‖2 − ‖Pk
nJM

n xn − Pk+1
n JM

n xn‖2
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+2λk+1,n〈Pk
nJM

n xn − Pk+1
n JM

n xn, Bk+1Pk
nJM

n xn −Bk+1v〉
−λ2

k+1,n‖Bk+1Pk
nJM

n xn −Bk+1v‖2}+ β‖xn − v‖2 + 2λ2εn

≤ ‖xn − v‖2 − (1− β)‖Pk
nJM

n xn − Pk+1
n JM

n xn‖2

+2(1−β)λk+1,n〈Pk
nJM

n xn−Pk+1
n JM

n xn, Bk+1Pk
nJM

n xn−Bk+1v〉+2λ2εn,

which implies:

(1− β)‖Pk
nJM

n xn − Pk+1
n JM

n xn‖2 ≤ ‖xn − v‖2 − ‖xn+1 − v‖2 + 2λ2εn

+2(1− β)λk+1,n‖Pk
nJM

n xn − Pk+1
n JM

n xn‖‖Bk+1Pk
nJM

n xn −Bk+1v‖.
Hence, it follows from Step 4 and (3.10) that

‖Pk
nJM

n xn − Pk+1
n JM

n xn‖ → 0.

Step 8. The weak ω-limit set of {xn}, ωw(xn), is a subset of F .
Proof of Step 8. Let z0 ∈ ωw(xn) and let {xnm} be a subsequence of

{xn} weakly converging to z0. From steps 5 and 7, we also obtain that

J k
nm
xnm ⇀ z0,

for all k ∈ {1, . . . ,M}, and

Pk
nm
JM

nm
xnm ⇀ z0,

for all k ∈ {1, . . . , N}. We need to show that z0 ∈ F . First, we prove
z0 ∈ ∩N

i=1V I(C,Bi). For this purpose, let k ∈ {1, . . . , N} and Tk be the
maximal monotone mapping defined by

Tkx =
{
Bkx+NCx, x ∈ C;
∅, x 6∈ C.

For any given (x, u) ∈ G(Tk), u− Bkx ∈ NCx. Since Pk
nJM

n xn ∈ C, by
the definition of NC , we have

(3.11) 〈x−Pk
nJM

n xn, u−Bkx〉 ≥ 0.

On the other hand, since Pk
nJM

n xn = PC(Pk−1
n JM

n xn−λk,nBkPk−1
n JM

n xn),
we have

〈x− Pk
nJM

n xn,Pk
nJM

n xn − (Pk−1
n JM

n xn − λk,nBkPk−1
n JM

n xn)〉 ≥ 0.

So,

〈x− Pk
nJM

n xn,
Pk

nJM
n xn − Pk−1

n JM
n xn

λk,n
+BkPk−1

n JM
n xn〉 ≥ 0.

By (3.11) and the α-inverse monotonicity of Bk, we have

〈x− Pk
nm
JM

nm
xnm , u〉 ≥ 〈x− Pk

nm
JM

nm
xnm , Bkx〉
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≥ 〈x− Pk
nm
JM

nm
xnm , Bkx〉

−〈x− Pk
nm
JM

nm
xnm ,

Pk
nm
JM

nm
xnm − Pk−1

nm
JM

nm
xnm

λk,nm

+BkPk−1
nm

JM
nm
xnm〉

= 〈x− Pk
nm
JM

nm
xnm , Bkx−BkPk

nm
JM

nm
xnm〉

+〈x− Pk
nm
JM

nm
xnm , BkPk

nm
JM

nm
xnm −BkPk−1

nm
JM

nm
xnm〉

−〈x− Pk
nm
JM

nm
xnm ,

Pk
nm
JM

nm
xnm − Pk−1

nm
JM

nm
xnm

λk,nm

〉

≥ 〈x− Pk
nm
JM

nm
xnm , BkPk

nm
JM

nm
xnm −BkPk−1

nm
JM

nm
xnm〉

−〈x− Pk
nm
JM

nm
xnm ,

Pk
nm
JM

nm
xnm − Pk−1

nm
JM

nm
xnm

λk,nm

〉.

Since ‖Pk
nJM

n xn − Pk−1
n JM

n xn‖ → 0, Pk
nm
JM

nm
xnm ⇀ z0 and {Bk : k =

1, . . . , N} are Lipschitz continuous, we have

lim
m→∞

〈x− Pk
nm
JM

nm
xnm , u〉 = 〈x− z0, u〉 ≥ 0.

Again, since Tk is maximal monotone, then 0 ∈ Tkz0. This shows that
z0 ∈ V I(C,Bk). From this, it follows:

(3.12) z0 ∈ ∩N
i=1V I(C,Bi).

Note that by (A2) and given y ∈ C and k ∈ {0, 1, . . . ,M − 1}, we
have

1
rn,k+1

〈y − J k+1
n xn,J k+1

n xn − J k
n xn〉 ≥ Fk+1(y,J k+1

n xn).

Thus,

(3.13) 〈y−J k+1
nm

xnm ,
J k+1

nm
xnm − J k

nm
xnm

rnm,k+1
〉 ≥ Fk+1(y,J k+1

nm
xnm).

By condition (A4), Fi(y, .), ∀i, is lower semicontinuous and convex, and
thus weakly semicontinuous. Step 5 and condition lim infn rn,j > 0 imply
that

J k+1
nm

xnm − J k
nm
xnm

rnm,k+1
→ 0,

in norm. Therefore, letting m→∞ in (3.13), yields:

Fk+1(y, z0) ≤ lim
m
Fk+1(y,J k+1

nm
xnm) ≤ 0,
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for all y ∈ C and k ∈ {0, 1, . . . ,M −1}. Replacing y with yt := ty+(1−
t)z0 with t ∈ (0, 1) and using (A1) and (A4), we obtain:

0 = Fk+1(yt, yt) ≤ tFk+1(yt, y) + (1− t)Fk+1(yt, z0) ≤ tFk+1(yt, y).

Hence, Fk+1(ty + (1− t)z0, y) ≥ 0, for all t ∈ (0, 1) and y ∈ C. Letting
t → 0+ and using (A3), we conclude Fk+1(z0, y) ≥ 0, for all y ∈ C and
k ∈ {0, . . . ,M − 1}. Therefore,

(3.14) z0 ∈
M⋂

k=1

EP (Fk) = EP (G).

We next show z0 ∈ ∩∞i=1Fix(Si). By Lemma 2.6, we have, for every
z ∈ C,

(3.15) Wnmz →Wz,

and Fix(W ) = ∩∞i=1Fix(Ti). Assume that z0 6∈ Fix(W ). Then, z0 6=
Wz0. From Opial’ s property of Hilbert space, (3.12), (3.14), (3.15) and
Step 6, we have

lim inf
m

‖xnm − z0‖ < lim inf
m

‖xnm −Wz0‖

≤ lim inf
m

(‖xnm −WnmPN
nm
JM

nm
xnm‖

+‖WnmPN
nm
JM

nm
xnm −WnmPN

nm
JM

nm
z0‖+ ‖Wnmz0 −Wz0‖)

≤ lim inf
m

(‖xnm − z0‖+ ‖Wnmz0 −Wz0‖) = lim inf
m

‖xnm − z0‖.

This is a contradiction. Therefore, z0 belongs to Fix(W ) = ∩∞i=1Fix(Si).

Step 9. Let x∗ be the unique solution of the variational inequality,

(3.16) 〈(γf−A)x∗, x−x∗〉 ≤ 0, x ∈ F .

Then,

(3.17) lim sup
n→∞

〈(γf−A)x∗, xn−x∗〉 ≤ 0.

Proof of Step 9. Lemma 2.3 of Marino and Xu [15] guarantees that
PF (γf+(I−A)) has a unique fixed point x∗, which is the unique solution
of (3.16). Let {xnk

} be a subsequence of {xn} such that

(3.18) lim
k
〈(γf−A)x∗, xnk

−x∗〉 = lim sup
n→∞

〈(γf−A)x∗, xn−x∗〉.
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Without loss of generality, we can assume that {xnk
} weakly converges

to some z ∈ C. By Step 8, z ∈ F . Thus, combining (3.16) and (3.18),
we get

lim sup
n→∞

〈(γf −A)x∗, xn − x∗〉 ≤ 〈(γf −A)x∗, z − x∗〉 ≤ 0,

as required.

Step 10. The sequences {xn} and {JFk
rk,n

xn}M
k=1 converge strongly to x∗.

Proof of Step 10. Taking

un = WnPN
nm
JM

n xn, ∀n ≥ 1,

we have ‖un − x∗‖ ≤ ‖xn − x∗‖. By using lemmas 2.2 and 2.7, we have

‖xn+1 − x∗‖2 = ‖[((1− β)I − εnA)(un − x∗) + β(xn − x∗)]

+εn(γf(xn)−Ax∗)‖2

≤ ‖((1− β)I − εnA)(un − x∗) + β(xn − x∗)‖2

+2εn〈γf(xn)−Ax∗, xn+1 − x∗〉

≤ (1− β)‖((1− β)I − εnA)
1− β

(un − x∗)‖2 + β‖xn − x∗‖2

+2εnγ〈f(xn)− f(x∗), xn+1 − x∗〉+ 2εn〈γf(x∗)−Ax∗, xn+1 − x∗〉

≤ ‖(1− β)I − εnA‖2

1− β
‖un − x∗‖2 + β‖xn − x∗‖2

+2εnγl‖xn − x∗‖‖xn+1 − x∗‖+ 2εn〈γf(x∗)−Ax∗, xn+1 − x∗〉

≤ ‖(1− β)I − εnA‖2

1− β
‖xn − x∗‖2 + β‖xn − x∗‖2

+εnγl(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + 2εn〈γf(x∗)−Ax∗, xn+1 − x∗〉

≤ (
((1− β)− γεn)2

1− β
+ β + εnγl)‖xn − x∗‖2

+εnγl‖xn+1 − x∗‖2 + 2εn〈γf(x∗)−Ax∗, xn+1 − x∗〉.
It follows that

‖xn+1 − x∗‖2 ≤ (1− 2(γ − lγ)εn
1− lγεn

)‖xn − x∗‖2

+
εn

1− lγεn
(2〈γf(x∗)−Ax∗, xn+1 − x∗〉+

γ2εn
1− β

‖xn − x∗‖2).

Now, from conditions (C1) and (C2), Step 8 and Lemma 2.3, we get
‖xn − x∗‖ → 0; namely, xn → x∗, in norm. Finally, noticing ‖JFk

rk,n
xn −
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x∗‖ ≤ ‖xn − x∗‖, we have that, for all k ∈ {1, . . . ,M}, JFk
rk,n

xn → x∗, in
norm. �

A mapping T : C → H is called strictly pseudocontractive on C if
there exists k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.

If k = 0, then T is nonexpansive. Put B = I − T , where, T : C → H
is a strictly pseudocontractive mapping with k. It is known that B is
1−k
2 -inverse-strongly monotone and B−1(0) = Fix(T ).
Now, using Theorem 3.1, we state a strong convergence theorem for

a family of strictly pseudocontractive mappings as follows.

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert
space H, ϕ = {Si : C → C} be an infinite family of nonexpansive
mappings, G = {Fj : j = 1, . . . ,M} be a finite family of bifunctions
from C ×C into R which satisfy (A1)-(A4), ψ = {Tj : j = 1 . . . N} be a
finite family of strictly pseudocontractive mappings with 0 ≤ k < 1 from
C into C, and F := Fix(ϕ) ∩ EP (G) ∩ Fix(ψ) 6= ∅.

Let A be a strongly positive bounded linear operator with coefficient
γ, f be an l-contraction on H for some 0 < l < 1, {εn} be a sequence
in (0, 1), {λj,n}N

j=1 be sequences in [a, b], with 0 < a ≤ b < 1 − k,
{rj,n}M

j=1 be sequences in (0,∞) and γ and β be two real numbers such
that 0 < β < 1 and 0 < γ < γ/l. Assume:

(C1) limn εn = 0;
(C2)

∑∞
n=1 εn = ∞;

(D1) lim infn rj,n > 0, for every j ∈ {1, . . . ,M};
(D2) limn rj,n/rj,n+1 = 1, for every j ∈ {1, . . . ,M};
(D3) limn |λj,n − λj,n+1| = 0, for every j ∈ {1, . . . , N}.
For every n ∈ N, let Wn be the W -mapping defined by (2.3). If {xn}

is the sequence generated by x1 ∈ H and ∀n ≥ 1,
zn = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

yn = ((1− λN,n)I + λN,nTN ) . . . ((1− λ2,n)I + λ2,nT2)
×((1− λ1,n)I + λ1,nT1)zn,

xn+1 = εnγf(xn) + βxn + ((1− β)I − εnA)Wnyn,

then {xn} and {JFk
rk,n

xn}M
k=1 converge strongly to x∗ ∈ F := Fix(ϕ) ∩

EP (G)∩Fix(ψ), which is the unique solution of the variational inequal-
ity (1.5). Equivalently, we have PF (I −A+ γf)x∗ = x∗.
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Proof. Put Bj = I − Tj , for every j ∈ {1, . . . , N}. Then, Bj is 1−k
2 -

inverse-strongly monotone. We have that Fix(Tj) is the solution set of
V I(C,Bj); i.e., Fix(Tj) = V I(C,Bj). Therefore, by Theorem 3.1, the
result follows. �

Remark 3.3. We may put

vn = PC(I−λN,n(I−TN )) . . . PC(I−λ2,n(I−T2))PC(I−λ1,n(I−T1))un,

in the scheme of Theorem 3.2, and obtain a scheme for families of non-
self strictly pseudocontractive mappings.
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