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Abstract. In [H. Mansouri and C. Roos, Numer. Algorithms 52
(2009) 225-255.], Mansouri and Ross presented a primal-dual in-
feasible interior-point algorithm with full-Newton steps whose it-
eration bound coincides with the best known bound for infeasible
interior-point methods. Here, we introduce a slightly different al-
gorithm with a different search direction and show that the same
complexity result is obtained using a simpler analysis.

1. Introduction

For a comprehensive study of interior-point methods (IPMs), we re-
fer to Roos et al. [9] and deKlerk [1]. Ross in [8], presented a full-
Newton step infeasible interior-point algorithm for linear optimization
(LO); Later, this algorithm was extended to semidefinite optimization
by Mansouri and Ross [5]. Here, we present a slightly different algorithm
obtained by changing the definition of the search direction in the algo-
rithm given in [5]. We show that the analysis of the new algorithm is
easier than the one for the algorithm in [5], whereas the iteration bound
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essentially remains the same.

We consider the semidefinite optimization (SDO) problem given in the
following standard form:

(P ) min Tr (CX)
s.t. Tr (AiX) = bi, i = 1, 2, . . . ,m, X � 0,

and its dual,

(D) max bT y

s.t.
∑m

i=1 yi Ai + S = C, S � 0,

where, each Ai, i = 1, · · · , m, and C are symmetric, i.e., Ai, C ∈ Sn

and b ∈ Rm. Furthermore, X � 0 (X � 0) means that X is symmetric
and positive semidefinite (symmetric and positive definite). Without
loss of generality, we assume that the matrices Ai are linearly inde-
pendent. As usual for infeasible interior-point methods (IIPMs), we
use the starting point as in [4, 5] that one knows a positive scalar
ζ such that X∗ + S∗ � ζI for some optimal solution (X∗, y∗, S∗)
of (P ) and (D) such that Tr (XS) = 0 and the initial iterates are(
x0, y0, S0

)
= ζ (I, 0, I), where I denotes the identity matrix of size

n × n. Using Tr
(
X0S0

)
= nζ2, the total number of iterations for the

algorithm in [5] is bounded above by

20 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

,(1.1)

where, r0
b and R0

c are the initial values of the primal and dual residuals:(
r0
b

)
i

= bi −Ai •X0, i = 1, . . . , m,(1.2)

R0
c = C −

m∑
i=1

y0
i Ai − S0.(1.3)

Up to a constant factor, the iteration bound (1.1) was first obtained by
Kojima et al. [3] and Potra and Sheng [7], and it is still the best-known
iteration bound for IIPMs.

To describe our aim here, we need to recall the main ideas underlying the
algorithm in [5]. For any ν with 0 < ν ≤ 1, we consider the perturbed
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problem (Pν) to be defined by

(Pν) min

(
C − ν

(
C −

m∑
i=1

y0
i Ai − S0

))
•X

s.t. Ai •X = bi − ν
(
bi −Ai •X0

)
, X � 0,

and its dual problem (Dν) given be

(Dν) max
m∑

i=1

(
bi − ν

(
bi −Ai •X0

))
yi

s.t.
m∑

i=1

yiAi + S = C − ν

(
C −

m∑
i=1

y0
i Ai − S0

)
, S � 0.

Note that if ν = 1, then X = X0 yields a strictly feasible solution of
(Pν), and (y, S) = (y0, S0) gives a strictly feasible solution of (Dν). We
conclude that if ν = 1, then (Pν) and (Dν) are strictly feasible, which
means that both perturbed problems satisfy the well-known interior-
point condition (IPC). More generally, one has the following lemma [5,
Lemma 4.1 ].

Lemma 1.1. Let the original problems, (P ) and (D), be feasible. Then,
for each ν satisfying 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν)
are strictly feasible.

Assuming that (P ) and (D) are feasible, it follows from Lemma 1.1
that the problems (Pν) and (Dν) satisfy the IPC for each ν ∈ (0, 1].
But then their central paths exist. This means that the system

bi −Ai •X = ν
(
r0
b

)
i
, i = 1, 2, . . . ,m, X � 0(1.4)

C −
m∑

i=1

yiAi − S = νR0
c , S � 0(1.5)

XS = µI,

has a unique solution, for every µ > 0. In the sequel, this unique solution
is denoted by (X(µ, ν), y(µ, ν), S(µ, ν)). These are the µ-centers of the
perturbed problems (Pν) and (Dν).

Note that since X0S0 = µ0I, X0 is the µ0-center of the perturbed
problem (P1) and (y0, S0) is the µ0-center of (D1). In other words,(

X
(
µ0, 1

)
, y
(
µ0, 1

)
, S
(
µ0, 1

))
=
(
X0, y0, S0

)
.
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In the sequel, we will always have µ = ν µ0, and we will accordingly
denote (X(µ, ν), y(µ, ν), S(µ, ν)), simply by (X(ν), y(ν), S(ν)).

We measure proximity of iterates (X, y, S) to the µ-center of the per-
turbed problems (Pν) and (Dν) by the quantity δ (X, S; µ), which is
defined as follows:

(1.6)
δ (X, S, µ) := δ (V ) := 1

2

∥∥V −1 − V
∥∥ ,

where, V := 1√
µD−1XD−1 = 1√

µDSD.

Here, D = P−
1
2 with

P := X
1
2

(
X

1
2 SX

1
2

)−1
2

X
1
2 = S

−1
2

(
S

1
2 XS

1
2

) 1
2
S
−1
2 ,(1.7)

which is a symmetric nonsingular matrix. For more details, see [6].

Initially, we have X = S = ζI and µ = ζ2, where, V = I and

δ (X, S; µ) = 0.

In the sequel, we assume that at the start of each iteration, δ (X, S; µ)
is smaller than or equal to a (small) threshold τ > 0. So, this is certainly
true at the start of the first iteration.

We now describe one iteration of our algorithm. Suppose that for some
ν ∈ (0, 1], we have X, y and S satisfying the feasibility conditions (1.4)
and (1.5) and such that

Tr (XS) = nµ, and δ (X, S; µ) ≤ τ,(1.8)

where, µ = νζ2. Each main iteration consists of one so-called feasibility
step, a µ-update, and a few centering steps, respectively. First, we find
new iterates Xf , yf and Sf that satisfy equations (1.4) and (1.5), with
ν replaced by ν+. As we will see, by taking θ small enough, this can
be realized by one feasibility step, as discussed subsequently. Therefore,
as a result of the feasibility step, we obtain iterates that are feasible
for (Pν+) and (Dν+). Then, we reduce ν to ν = (1− θ) ν, with θ ∈
(0, 1), and apply a limited number of centering steps with respect to the
µ+-centers of (Pν+) and (Dν+). The centering steps keep the iterates
feasible for (Pν+) and (Dν+), and their purpose is to get the iterates
X+, y+ and S+ such that Tr (X+S+) = nµ+, where, µ+ = ν+ζ2 and
δ (X+, S+; µ+) ≤ τ . This process is repeated until the duality gap and
the norms of residual vectors are less than some prescribed accuracy
parameter ε.
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Before describing the search directions used in the feasibility step and
the centering step, we give a more formal description of the algorithm
in Fig. 1.

Primal-Dual Infeasible IPM

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ, 0 < τ ≤ 1√

2
;

X0 � 0, S0 � 0, y0 = 0 and µ0 > 0 such that X0S0 = µ0I.

begin
X := X0, S := S0, y := y0; µ := µ0;
while max (Tr (XS) , ‖rb‖ , ‖Rc‖) ≥ ε do
begin

feasibility step:
(X, y, S) := (X, y, S) +

(
∆fX, ∆fy, ∆fS

)
;

µ-update:
µ := (1− θ)µ;

centering steps:
while δ (X, S, µ) ≥ τ do
begin

(X, y, S) := (X, y, S) + (∆X, ∆y, ∆S);
end

end
end

Figure 1. Infeasible Full-Newton-Step Algorithm.
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For the feasibility step, in [5] we used the search directions ∆fX, ∆fy
and ∆fS,

Tr
(
Ai∆fX

)
= θν

(
r0
b

)
i
, i = 1, . . . , m,(1.9)

m∑
i=1

∆fyiAi + ∆fS = θνR0
c ,(1.10)

∆fX + P∆fSP T = µS−1 −X,(1.11)

where, we used the NT-‘trick’ to symmetrize ∆fX with P as defined in
(1.7). It is easy to see that if (X, y, S) is feasible for the perturbed prob-
lems (Pν) and (Dν), then after the feasibility step the iterates satisfy the
feasibility conditions for (Pν+) and (Dν+), provided that they satisfy the
positive semidfinite conditions. Assuming that the step δ (X, S; µ) ≤ τ
holds, before hand and by taking θ small enough, it can be guaranteed
that after the step, the iterates

Xf = X + ∆fX,(1.12)

yf = y + ∆fy,

Sf = S + ∆fS,(1.13)

are semidefinite and moreover δ
(
Xf , Sf ; µ+

)
≤ 1√

2
, where,

µ+ = (1− θ) µ.

So, after the µ-update, the iterates are feasible for (Pν+) and (Dν+), and
µ is such that δ

(
Xf , Sf ; µ+

)
≤ 1√

2
.

In the centering steps, starting at iterates (X, y, S) =
(
Xf , yf , Sf

)
and

targeting at the µ-centers, the search directions ∆X, ∆y and ∆S are the
usual primal-dual NT directions, (uniquely) defined by

Ai •∆X = 0, i = 1, 2, . . . , m,
m∑

i=1

∆yiAi + ∆S = 0,(1.14)

∆X + P∆SP T = µS−1 −X,

where, matrix P is defined as in (1.7). Denoting the iterates after a
centering step as X+, y+ and S+, we recall the following from [1].
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Lemma 1.2. If δ := δ (X, S; µ) ≤ 1, then the primal-dual NT step
is feasible, i.e., X+ and S+ are nonnegative, and Tr (X+S+) = nµ.
Moreover, if δ = δ (X, S; µ) ≤ 1√

2
, then δ = δ (X, S; µ) ≤ δ2.

The centerting steps serve to get iterates that satisfy Tr (XS) = nµ+

and δ (X, S; µ+) ≤ τ , where τ is much smaller than 1√
2
. By using

Lemma 1.2, the required number of centering steps can easily be ob-
tained. This goes as follows. After µ-update, we have δ

(
Xf , Sf ; µ+

)
≤

1√
2
, and hence after k centering steps, the iterates (X, y, S) satisfy

δ
(
X, S, µ+

)
≤
(

1√
2

)2k

.

Just as in [5], this implies that no more than

log2

(
log2

1
τ2

)
(1.15)

centering steps are needed.

Having described the approach taken in [5], we are now able to explain
our aim here. We present a slightly different algorithm which is obtained
by changing the definition of the feasibility step, replacing (1.11) by

∆fX + P∆fSP T = 0.(1.16)

As we will see, this simplifies the analysis of our algorithm, whereas the
iteration bound essentially remains the same.

The rest of the paper is organized as follows. Section 2 is devoted to
the analysis of the new feasibility step, which is the main part of our
work. We will see that the new search direction requires a different
analysis, but at some places we can use the results obtained in [5]. In
such cases, we will cite these results without repeating their proofs. The
final iteration bound is derived in Section 3. The concluding remarks
are given in Section 4.

Notations

Some notations used throughout the paper are as follows. The su-
perscript T denotes transpose. Rn, Rn

+ and Rn
++ denote the set of

vectors with n components, the set of nonnegative vectors and the
set of positive vectors, respectively. For any x = (x1; x2; . . . ; xn) ∈
Rn, xmin = min (x1; x2; . . . ; xn) and xmax = max (x1; x2; . . . ; xn).
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Rm×n is the space of all m × n matrices. Sn, Sn
+ and Sn

++ denote
the cone of symmetric, symmetric positive semidefinite and symmet-
ric positive definite n × n matrices, respectively. P and D denote the
feasible sets of the primal and dual problem respectively. The relative
interior of a convex set C is denoted as ri (C). I denotes the n × n
identity matrix. We use the classical Löwner partial order � for sym-
metric matrices. So, A � B (A � B) means that A − B is positive
semidefinite (positive definite). The sign ∼ denotes similarity of two
matrices. The matrix inner product is defined by A • B = Tr

(
AT B

)
.

For any symmetric positive definite matrix Q ∈ Sn
++, the expression

Q
1
2 denotes the symmetric square root of Q. For any symmetric ma-

trix G, λmin (G) (λmax (G)) denotes the minimal (maximal) eigenvalue
of G. When λ is a vector, we denote the diagonal matrix diag (λ)
with entries λi by Λ. For any V ∈ Sn

++, we denote by λ (V ) the
vector of eigenvalues of V arranged in non-increasing order, that is,
λmax (V ) = λ1 (V ) ≥ λ2 (V ) ≥ . . . ≥ λn (V ) = λmin (V ). The Frobenius
matrix norm is given by ‖U‖2 :=

∑m
i=1

∑n
j=1 U2

ij = Tr
(
UT U

)
.

For any p × q matrix A, vec (A) denotes the pq-vector obtained by
stacking the columns of A. The Kronecker product of two matrices A
and B is denoted by A⊗B (we refer to [2] for a comprehensive treatment
of Kronecker products and related topics).

2. Analysis of the Feasibility Step

Let X, y and S denote the iterates at the start of an iteration with
Tr (XS) = nµ and δ (X, S, µ) ≤ τ . Recall that at the start of first
iteration this is certainly true, because Tr

(
X0S0

)
= nµ0 and

δ
(
X0, S0, µ0

)
= 0.

Before dealing with the analysis of the algorithm, we recall a lemma
that will be needed.

Lemma 2.1 (Lemma A.1 in [1]). Let Q ∈ Sn
++, and let M ∈ Rn×n be

skew-symmetric (i.e., M = −MT ). Then, det (Q + M) > 0. Moreover,
if the eigenvalues of Q + M are real, then

0 < λmin (Q) ≤ λmin (Q + M) ≤ λmax (Q + M) ≤ λmax (Q) .
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2.1. The feasibility step and the choice of τ and θ.

As established in Section 1, the feasibility step generates new iter-
ates Xf , yf and Sf that satisfy the feasibility conditions for (Pν+) and
(Dν+), except for possibly the positive semidefinite conditions. A cru-
cial element in the analysis is to show that after the feasibility step,
δ
(
Xf , Sf ; µ+

)
≤ 1√

2
, i.e., that the new iterates are positive and within

the region, where the NT process targeting at the µ+-centers of (Pν+)
and (Dν+) is quadratically convergent.

We introduce scaled versions of the search directions ∆fX and ∆fS as
follows:

(2.1)
Df

X := 1√
µD−1∆fXD−1, Df

S := 1√
µD∆fSD,

(
V f
)2 := 1

µ+ D−1XfSfD,

with D as defined in Section 1. By using (2.1) and replacing (1.11) by
(4.1), we can rewrite (1.9)-(1.11) as follows:

Tr
(
DAiDDf

X

)
=

1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m,

m∑
i=1

∆fyi√
µ

DAiD + Df
S =

1
√

µ
θνDR0

cD,(2.2)

Df
X + Df

S = 0.

From the third equation in (2.2), we obtain, by multiplying both sides
on the left with V ,

V Df
X + V Df

S = 0.(2.3)

Using (1.6), (1.12), (1.13) and (2.1), we obtain

Xf = X + ∆fX =
√

µD
(
V + Df

X

)
D,

Sf = S + ∆fS =
√

µD−1
(
V + Df

S

)
D−1.

Therefore,

XfSf = µD
(
V + Df

X

)(
V + Df

S

)
D−1.
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The last equality shows that the matrix XfSf is similar to

µ
(
V + Df

X

)(
V + Df

S

)
.

This means that we have

XfSf ∼ µ
(
V + Df

X

)(
V + Df

S

)
.

To simplify the notation, in the sequel we use

Df
XS :=

1
2

(
Df

XDf
S + Df

SDf
X

)
,(2.4)

and

M :=
(
Df

XV − V Df
X

)
+

1
2

(
Df

XDf
S −Df

SDf
X

)
.(2.5)

Note that Df
XS is symmetric and M is skew-symmetric. Now, we may

write, using (2.3),(
V + Df

X

)(
V + Df

S

)
= V 2 + V Df

S + Df
XV + Df

XDf
S

= V 2 − V Df
X + Df

XV + Df
XDf

S .

By adding and subtracting 1
2Df

SDf
X to the last expression, we get

V 2 +
1
2

(
Df

XDf
S + Df

SDf
X

)
+
(
Df

XV − V Df
X

)
+

1
2

(
Df

XDf
S −Df

SDf
X

)
.

Using (2.4) and (2.5), we obtain

XfSf ∼ µ
(
V 2 + Df

XS + M
)

.(2.6)

Lemma 2.2. Let X � 0 and S � 0. Then, the iterates
(
Xf , yf , Sf

)
are strictly feasible if

V 2 + Df
XS � 0.

Proof. The proof is similar to the proof of Lemma 4.4 in [5]. �

By the Rayleigh-Ritz theorem (see [2]), we easily have the following
result.

Lemma 2.3. Let A, B ∈ Sn. One has

λi (A + B) ≥ λmin (A)− |λmax (B)| , i = 1, · · · , n,

where, λmin (A) denotes the smallest eigenvalue of A and λmax (B) is the
largest eigenvalue of B.
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Proof. By the Rayleigh-Ritz theorem, there exists x0 ∈ Rn such that

λi (A + B) ≥ λmin (A + B) =
xT

0 (A + B) x0

xT
0 x0

=
xT

0 Ax0

xT
0 x0

+
xT

0 Bx0

xT
0 x0

≥ xT
0 Ax0

xT
0 x0

−
∣∣∣∣xT

0 Bx0

xT
0 x0

∣∣∣∣ ≥ min
x6=0

xT Ax

xT x
−max

x6=0

∣∣∣∣xT Bx

xT x

∣∣∣∣
= λmin (A)− |λmax (B)| .

This completes the proof. �

From the third equation in (2.2), we have Df
S = −Df

X , and therefore
by replacing in (2.4), we have

Df
XS :=

1
2

(
Df

XDf
S + Df

SDf
X

)
= −

(
Df

X

)2
.(2.7)

The equation (2.7) and lemmas 2.2 and 2.3 imply the following result.

Lemma 2.4. The iterates
(
Xf , yf , Sf

)
are strictly feasible if∣∣∣λi

(
Df

X

)∣∣∣ ≤ λmin (V ) , i = 1, · · · , n.

We continue this section by recalling a lemma from [9] that is crucial
in the analysis of the algorithm.

Lemma 2.5 (cf. Lemma II.60 in [9]). Let δ = δ (V ) be given by (1.6).
Then,

1
ρ (δ)

≤ λi (V ) ≤ ρ (δ) ,(2.8)

where,

ρ (δ) := δ +
√

1 + δ2.(2.9)

Assuming V 2 +Df
XS � 0, which according to Lemma 2.4 implies that

the iterates
(
Xf , yf , Sf

)
are strictly feasible, we proceed by deriving an

upper bound for δ
(
Xf , Sf ; µ+

)
. According to Definition 1.6, we have

(2.10)
δ
(
Xf , Sf ; µ+

)
:= 1

2

∥∥∥V f −
(
V f
)−1
∥∥∥ ,

where, V f = 1√
µ+

D−1XfD−1 = 1√
µ+

DSfD.

In the sequel, we also denote δ
(
Xf , Sf ; µ+

)
by δ

(
V f
)
. We need some

technical results which give information on the eigenvalues and the norm
of V f .
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Lemma 2.6. One has

λmin

((
V f
)2
)
≥ 1

1− θ

(
1

ρ (δ)2
−
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥) .

Proof. Using (2.6), after division of both sides into µ+ = (1− θ) µ, we
get

(
V f
)2
∼

µ
(
V 2 + Df

XS + M
)

µ+
=

V 2 + Df
XS + M

1− θ
.(2.11)

It follows that

λi

((
V f
)2
)

=
1

1− θ
λi

(
V 2 + Df

XS + M
)

.

Since M is skew-symmetric, lemmas 2.1 and 2.3 and (2.7) imply

λmin

((
V f
)2
)

≥ 1
1− θ

λmin

(
V 2 + Df

XS

)
≥ 1

1− θ

(
λmin

(
V 2
)
−
∣∣∣∣λmax

((
Df

X

)2
)∣∣∣∣) .

By using Lemma 2.5, we easily obtain

λmin

((
V f
)2
)
≥ 1

1− θ

(
1

ρ (δ)2
−
∥∥∥∥(Df

X

)2
∥∥∥∥) .

Since V 2 is a positive semidefinte matrix, we have

λmin

((
V f
)2
)
≥ 1

1− θ

(
1

ρ (δ)2
−
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥) .

This completes the proof. �

Lemma 2.7. One has∥∥∥∥I − (V f
)2
∥∥∥∥ ≤ 1

1− θ

(√
n (θ − 1) +

∥∥∥∥V 2 +
(
Df

X

)2
∥∥∥∥) .

Proof. The proof is the same as the proof of Lemma 4.8 in [5]. �

Using (2.10) and lemmas 2.6 and 2.7, we have the following result.
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Lemma 2.8. One has

2δ
(
V f
)
≤

ρ (δ)
(
√

n (θ − 1) +
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥)√

(1− θ)
(

1− ρ (δ)2
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥)

.

We conclude this section by presenting a value that we do not allow∥∥∥∥V 2 +
(
Df

X

)2
∥∥∥∥ to exceed. Since we need to have δ

(
V f
)
≤ 1√

2
, it follows

from Lemma 2.8 that it suffices to have

ρ (δ)
(
√

n (θ − 1) +
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥)√

(1− θ)
(

1− ρ (δ)2
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥)

≤
√

2.

At this stage, we decide to choose

τ =
1
8
, θ =

α

2
√

n
, α ≤ 1.(2.12)

Then, for n ≥ 1 and δ ≤ τ , one may verify that∥∥∥∥V 2 +
(
Df

X

)2
∥∥∥∥ ≤ 1 ⇒ δ

(
V f
)
≤ 1√

2
.(2.13)

Since
∥∥∥∥V 2 +

(
Df

X

)2
∥∥∥∥ ≤ ∥∥V 2

∥∥+∥∥∥∥(Df
X

)2
∥∥∥∥, it is possible to replace (2.13)

by a weaker condition as follows:

∥∥V 2
∥∥+

∥∥∥∥(Df
X

)2
∥∥∥∥ ≤ 1 ⇒ δ

(
V f
)
≤ 1√

2
.(2.14)

Using (2.14), we find out that in order to have δ
(
V f
)
≤ 1√

2
, we should

have
∥∥V 2

∥∥ +
∥∥∥∥(Df

X

)2
∥∥∥∥ ≤ 1. Therefore, since

∥∥∥∥(Df
X

)2
∥∥∥∥ ≤ ∥∥V 2

∥∥, it

suffices to have V 2 satisfy
∥∥V 2

∥∥ ≤ 1
2 . So, we have δ

(
V f
)
≤ 1√

2
if∣∣∣λi

(
Df

X

)∣∣∣ ≤ 1√
2
, for all i = 1, · · · , n. We proceed by considering the

vector Df
X in more detail.
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2.2. An upper bound for
∥∥∥Df

X

∥∥∥.
It is clear from system (2.2) that Df

X is the unique solution of the
system

Tr
(
DAiDDf

X

)
=

1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m,

m∑
i=1

∆fyi√
µ

DAiD + Df
S =

1
√

µ
θνDR0

cD.

To derive an upper bound for
∥∥∥Df

X

∥∥∥, we recall a result from [5]. There,
we proved that if the matrix Q satisfies

Tr (DAiDQ) =
1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m,

m∑
i=1

∆fyi√
µ

DAiD + Q =
1
√

µ
θνDR0

cD,

then it follows that

‖Q‖ ≤ θ

ζλmin (V )
Tr (X + S) .

By using almost the same arguments, we also have

∥∥∥Df
X

∥∥∥ ≤ θ

ζλmin (V )
Tr (X + S) .

This inequality implies that, for all i = 1, · · · , n,∣∣∣λi

(
Df

X

)∣∣∣ ≤ θ

ζλmin (V )
Tr (X + S) .(2.15)

2.3. Bounds for Tr (X + S) and λmin (V ): The choice of τ and α.

Recall that X is feasible for (Pν) and (y, S) is feasible for (Dν), and
δ (X, S; µ) ≤ τ . We need to find an upper bound for Tr (X + S) and a
lower bound for the eigenvalues of V . From Lemma 2.5, we have

1
ρ (δ)

≤ λi (V ) ≤ ρ (δ) .(2.16)
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Using Lemma 4.16 in [5], we get

Tr (X + S) ≤
(
ρ (δ)2 + 1

)
nζ.

By substituting into (2.15), we get∣∣∣λi

(
Df

X

)∣∣∣ ≤ nθρ (δ)
(
1 + ρ (δ)2

)
, for all i = 1, · · · , n.

Since δ ≤ τ = 1
8 and ρ (δ) is monotonically increasing in δ, we have∣∣∣λi

(
Df

X

)∣∣∣ ≤ nθρ (δ)
(
1 + ρ (δ)2

)
≤ nθρ

(
1
8

)(
1 + ρ

(
1
8

)2
)

= 2.586nθ.

By using θ = α
2
√

n
, we obtain the following upper bound for

∣∣∣λi

(
Df

X

)∣∣∣:∣∣∣λi

(
Df

X

)∣∣∣ ≤ 2.586nα

2
√

n
.

In Section 2.1, we found that in order to have δ
(
V f
)
≤ 1√

2
, we should

have
∣∣∣λi

(
Df

X

)∣∣∣ ≤ 1√
2
. Since

∣∣∣λi

(
Df

X

)∣∣∣ ≤ 2.586nα
2
√

n
, the latter inequality

is satisfied if we take

α =
1

2
√

n
,(2.17)

because √
2

2.586
= 0.546 ≥ 1

2
.

3. Complexity

As already shown in Section 1, with τ as defined in (2.12), according
to (1.15) we need at most

log2

(
log2

1
τ2

)
= log2 (log2 64) ≤ 3

centering steps to get iterates satisfing δ (X, S; µ+) ≤ τ . So, each it-
eration consists of one feasibility step and at most 3 centering steps.
In each iteration, both the duality gap and the norms of the residual
vectors are reduced by the factor 1− θ. Hence, using Tr

(
X0S0

)
= nζ2,

the total number of iterations is bounded above by

1
θ

log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

.
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Due to (2.12) and (2.17), we have

θ =
α

2
√

n
=

1
4n

.

Hence, the total number of inner iterations is bounded above by

16 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

.

We have the following main result.

Lemma 3.1. If (P ) and (D) have optimal solutions (X∗, y∗, S∗) such
that X∗ + S∗ � ζI, then after at most

16 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

iterations the algorithm finds an ε-solution of (P ) and (D).

The above theorem gives a convergence result under the assumption
that (P ) and (D) have optimal solutions (X∗, y∗, S∗), with zero duality
gap, and such that the eigenvalues of X∗ and S∗ do not exceed ζ. One
might ask what happens if this condition is not satisfied.

Our analysis of the algorithm has made clear that as long as we have
δ(Xf , Sf ;µ+) ≤ 1/

√
2 after each feasibility step, then the algorithm will

generate an ε-solution of (P ) and (D), and the number of iterations will
be as given by Theorem 3.1. So, if during the execution of the algorithm
it happens that after the feasibility step, δ(Xf , Sf ;µ+) > 1/

√
2, then we

must conclude that there exists no optimal solution (X∗, y∗, S∗) with
zero duality gap such that the eigenvalues of X∗ and S∗ do not exceed
ζ. In that case, one might rerun the algorithm with larger values of ζ.
If this does not help, then eventually one should realize that (P ) and/or
(D) do not have optimal solutions at all, or they have optimal solutions
with positive duality gaps.

4. Concluding Remarks

We presented a slightly different algorithm from our previously pro-
posed one, obtained by changing the definition of the feasibility step.
The new step is defined by

∆fX + P∆fSP T = 0,
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whereas, the feasibility step in [5] was defined by

∆X + P∆SP T = µS−1 −X.

There is one more candidate for the definition of this step, namely,

∆fX + P∆fSP T = (1− θ) µS−1 −X.

It is certainly worthwhile to analyze a full-Newton step method based
on this candidate search direction. Other interesting endeavors are the
extension of the ideas discussed here to second-order cone optimization
and symmetric cone optimization.
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