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Abstract. We introduce a new concept of general G-η-monotone
operator generalizing the general (H, η)-monotone operator [2, 3],
general H− monotone operator [26] in Banach spaces, and also
generalizing G-η-monotone operator [29], (A, η)-monotone opera-
tor [24], A-monotone operator [23], (H, η)-monotone operator [11],
H-monotone operator [10, 12], maximal η-monotone operator [8]
and classical maximal monotone operators [28] in Hilbert spaces.
We provide some examples and study some properties of general
G-η-monotone operators. Moreover, the generalized proximal map-
ping associated with this type of monotone operator is defined and
its Lipschitz continuity is established. Finally, using Lipschitz con-
tinuity of generalized proximal mapping under some conditions a
new system of variational inclusions is solved.

1. Introduction

The variational inequality was introduced by Hartmann and Stam-
pacchia [13] in 1966, and was later expanded by Stampacchia in several
important papers; see, for example [22] and references therein. It is in-
teresting to remark that in 1966 Karamardian also obtained existence
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results for variational inequalities in his Ph.D. dissertation [19], where
he used the fixed-point theory which is totally different from that used
by Hartmann and Stampacchia [13].

In the early sixties we have had a great impact and influence in the
development of almost all branches of pure and applied sciences and have
witnessed an explosive growth in theoretical advances and algorithmic
developments. Variational inequality theory provides us with a simple,
natural, general and unified framework for studying a wide class of un-
related problems arising in mechanics, physics, optimization, control,
nonlinear programming, economics, transportation equilibrium, and en-
gineering sciences; for more details, see [16, 17] and references therein.
In recent years, variational inequalities have been extended and general-
ized in different directions using new, novel and innovative techniques,
both for their own sake and for the applications. A useful and signif-
icant generalization of variational inequalities is set-valued variational
inclusion. Variational inclusion problems are among the most interest-
ing and intensively studied classes of mathematical problems and have
wide applications in many fields of pure and applied sciences.

Maximal monotone operators were first introduced in [20] and [27],
and can be seen as a two-way generalization: a nonlinear generaliza-
tion of linear endomorphisms with positive semi-definite matrices, and
a multidimensional generalization of nondecreasing functions of a real
variable; that is, of derivatives of convex and differentiable functions.
Thus, not surprisingly, the main example of this kind of operator in
a Banach space is the Frechet derivative of a smooth convex function,
or, in the set-valued realm, the subdifferential of an arbitrary lower
semi-continuous convex function. Monotone operators are the key in-
gredients of monotone variational inequalities and monotone variational
inclusions, which extend to the realm of set-valued mappings the con-
strained convex minimization problem. More details can be found in
[4, 18, 28] and references therein.

Proximal mapping and resolvent operator techniques play crucial roles
in computing approximate solutions of generalized variational and quasi-
variational inequalities, and generalized variational and quasi-variational
inclusions. Rockafellar [21] used the resolvent operator associated with
maximal monotone operators for solving the variational inclusion 0 ∈
T (x), where T is a maximal monotone operator on a Hilbert space.
Fang and Huang [10] introduced the concept of H-monotone operators
and resolvent operators associated with an H-monotone operator as a
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generalization of maximal monotone operators and resolvent operators
associated with maximal monotone operators. Moreover, as an exten-
sion of H-monotone operators, Fang and Huang introduced and studied
a new class of monotone operators, the so-called (H, η)-monotone op-
erators and then they studied a new system of variational inclusions
involving (H, η)-monotone operators in Hilbert spaces. Further more, in
[12], by the resolvent operator method associated with (H, η)-monotone
operators due to Fang and Huang, the existence and uniqueness of solu-
tions for a new system of variational inclusions are proved and also a new
algorithm for approximating the solution of this system of variational
inclusions is constructed and the convergence of the iterative sequence
generated by this algorithm is discussed. Verma announced the notion
of the A-monotone operators to the solvability of nonlinear variational
inclusions and systems of nonlinear variational inclusions [23]. Very re-
cently, Zhang in [29] and Verma in [24] independently introduced the
new classes of (A, η)-monotone and G-η-monotone mappings.

The development of an efficient iterative algorithm to compute ap-
proximate solutions of variational inequalities and variational inclusions
is interesting and important. One of the most efficient numerical tech-
niques for solving variational inequalities and variational inclusions in
Hilbert spaces is the projection method and its variant forms. Since
the standard projection method strictly depends on the inner product
property of Hilbert spaces, it can no longer be applied for variational
inequalities and variational inclusions in Banach spaces. This fact mo-
tivates us to develop alterative methods to study iterative algorithms
for approximating solutions of variational inclusions in Banach spaces.
In this setting, Ding and Xia [7] introduced a new notion of J-proximal
mapping for a nonconvex lower semicontinuous subdifferentiable proper
function, and used it to study a class of completely generalized quasi-
variational inequality in Banach spaces. Xia and Huang [26] introduced
a new notion of general H-monotone operator, which generalizes the
notions of J-proximal mapping [7] and H-monotone mapping [10] and
defined proximal mapping associated with the general H-monotone op-
erator, which is different from the resolvent operator associated with the
H-accretive operator [9]. By using the proximal mapping, they intro-
duced a new class of variational inclusion with the general H-monotone
operator and constructed an iterative algorithm for solving this class of
variational inclusion.
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Motivated and inspired by the above recent research works, here the
existence of a unique solution for a system of variational inclusions with
G-η-monotone mappings is considered.

2. Preliminaries

Let H, H1 and H2 be real Hilbert spaces. Let X be a real Banach
space with dual space X∗ and let η : X ×X −→ X be a single valued
mapping. The mapping η is called γ-Lipschitz continuous, if there exists
some γ > 0 such that ∥η(x, y)∥ ≤ γ∥x− y∥, for all x, y ∈ X. For a set-
valued map T : X ( Y , the graph of T is Gph(T ) = {(x, y) : y ∈ T (x)}
and the inverse T−1 of T is {(y, x) : (x, y) ∈ Gph(T )}. For a real number
c, let cT = {(x, cy) : (x, y) ∈ Gph(T )}. If S and T are any set-valued
mappings, then define S + T = {(x, y + z) : (x, y) ∈ Gph(S), (x, z) ∈
Gph(T )}.

Definition 2.1. [2, 10, 24] A single valued map A : X −→ X∗ is said
to be

(a) η-monotone, if ⟨A(x)−A(y), η(x, y)⟩ ≥ 0, for all x, y ∈ X.
(b) r-strongly η-monotone, if there exists some constant r > 0 such

that ⟨A(x)−A(y), η(x, y)⟩ ≥ r∥x− y∥2, for all x, y ∈ X.
(c) m-relaxed η-monotone, if there exists some constant r > 0 such

that ⟨A(x)−A(y), η(x, y)⟩ ≥ −m∥x− y∥2, for all x, y ∈ X.
(d) δ-Lipschitz, if ∥A(x)−A(y)∥ ≤ δ∥x− y∥, for all x, y ∈ X.

Definition 2.2. [2, 10, 24] A set-valued map T : X ( X∗ is said to be

(a) r-strongly monotone, if there exists some constant r > 0 such
that ⟨x∗ − y∗, x − y⟩ ≥ r∥x − y∥2, for all x, y ∈ X and all x∗ ∈
T (x), y∗ ∈ T (y).

(b) r-strongly η-monotone, if there exists some constant r > 0 such
that ⟨x∗ − y∗, η(x, y)⟩ ≥ r∥x − y∥2, for all x, y ∈ X and all
x∗ ∈ T (x), y∗ ∈ T (y).

(c) m-relaxed monotone, if there exists some constant m > 0 such
that ⟨x∗ − y∗, x − y⟩ ≥ −m∥x − y∥2, for all x, y ∈ X and all
x∗ ∈ T (x), y∗ ∈ T (y).

(d) m-relaxed η-monotone, if there exists some constant m > 0 such
that ⟨x∗ − y∗, η(x, y)⟩ ≥ −m∥x − y∥2, for all x, y ∈ X and all
x∗ ∈ T (x), y∗ ∈ T (y).
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Definition 2.3. [10, 11] Let H : H → H is a single-valued mapping. A
set-valued map T : H ( H is said to be

(a) H-monotone operator, if it is monotone and (H +λT )(H) = H,
for all λ > 0.

(b) (H, η)-monotone operator, if it is η-monotone and (H+λT )(H) =
H, for all λ > 0.

Definition 2.4. [30] Let η : X ×X −→ X∗ be a single-valued mapping.
The set-valued mapping T : X ( X is said to be

(a) η-accretive, if ⟨u − v, η(x, y)⟩ ≥ 0, for all x, y ∈ X and all u ∈
T (x), v ∈ T (y),

(b) g-η-accretive, if T is η-accretive and (g+λT )(X) = X, for every
λ > 0.

Definition 2.5. [5, 29] Suppose A,B : H −→ H are two single valued
mappings. B is said to be s-strongly monotone with respect to A, if
⟨B(u)−B(v), A(u)−A(v)⟩ ≥ s∥x− y∥2, for all x, y ∈ H.

Definition 2.6. [5, 29] Suppose X is a nonempty set.

(a) The map f : H ×X −→ H is said to be r-strongly η-monotone
with respect to A in first argument, if f(., x) is r-strongly mono-
tone with respect to A, for all x ∈ X.

(b) The map g : X × H −→ H is said to be r-strongly η-monotone
with respect to A in second argument, if g(x, .) is r-strongly
monotone with respect to A, for all x ∈ X.

Definition 2.7. [5, 29] Suppose X1 and X2 are two real Banach spaces.

(a) The map f : X1 ×X2 −→ X1 is δ-Lipschitz continuous in first
argument, if f(., y) is δ-Lipschitz continuous, for all y ∈ X2.

(b) The map g : X1×X2 −→ X2 is δ-Lipschitz continuous in second
argument, if g(x, .) is δ-Lipschitz continuous, for all x ∈ X1.

3. Main results

Here, we introduce a new concept of the general A-monotone and gen-
eral G-η-monotone operators, give the definition of the proximal map-
ping, and prove the Lipschitz continuity of the proximal mapping in
Banach spaces. In terms of these results, we deal with existence of
a unique solution for a system of variational inclusions with the G-η-
monotone mappings.
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Definition 3.1. [3] Let H : X −→ X∗ be a single-valued mapping. The
set-valued map T : X ( X∗ is said to be a general (H, η)-monotone
operator, if T is η-monotone and (H + λT )(X) = X∗ holds, for every
λ > 0.

Example 3.2. [3] Let X = R and η : R × R −→ R be defined by
η(x, y) = y3 − x3. Consider the set-valued mapping T : R ( R, defined
by

T (x) =

 {−x− 1} x > 0
{−1, 1} x = 0
{−x+ 1} x < 0.

Then, T is η-monotone and (I + λT )(R) ̸= R, for λ ≥ 1. Therefore,
T is not maximal η-monotone. On the other hand, for single valued
mapping H : R −→ R, defined by

H(x) =

{
x2 x ≥ 0
−x2 x < 0,

T is a general (H, η)-monotone operator.

Example 3.3. [3] Let X = R and η : R × R −→ R be defined by
η(x, y) = x3− y3. Then, T : R ( R, defined by T (x) = {x}, is maximal
η-monotone. Also, for single valued mapping H : R −→ R, defined by
H(x) = x2, we have T is not a general (H, η)-monotone operator.

Definition 3.4. A set-valued map T : X ( X∗ satisfying (A+λT )(X) =
X∗ is said to be

(a) general A-monotone mapping, if it is m-relaxed monotone,

(b) general G-η-monotone mapping, if it is m-relaxed η-monotone.

Example 3.5. [29] Let X = R, T (x) = 2x, A(x) = x3, η(x, y) = y− x,
for all x, y ∈ X. Then, T is G-η-monotone and also clearly it is not
g-η-accretive.

Example 3.6. [29] Let X = R,

T (x) =

{
[−

4√
λ3

2 ,
4√
λ3

2 ] x = 0
{ 1
x} x ̸= 0,

A(x) = x3, η(x, y) = xy(x − y), for all x, y ∈ X. Then, T is G-η-
monotone, but it is not A-monotone and H-monotone.
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Theorem 3.7. Suppose A : X −→ X∗ is an r-strongly η-monotone
mapping and T : X ( X∗ is a general G-η-monotone mapping. Then,
(A+ λT )−1 : X∗ −→ X is single-valued, for 0 < λ < r

m .

Proof. Let x∗ ∈ X∗, and x and y be two distinct elements in (A +
λT )−1(x∗). Then, x∗ ∈ (A + λT )(x) and x∗ ∈ (A + λT )(y). Hence,
there exist t∗ ∈ T (x) and s∗ ∈ T (y), for which x∗ = A(x) + λt∗ and
x∗ = A(y)+λs∗. Since A is r-strongly η-monotone and since − r

λ < −m,
so

⟨t∗ − s∗, η(x, y)⟩ = ⟨x
∗ −A(x)

λ
− x∗ −A(y)

λ
, η(x, y)⟩

= − 1

λ
⟨A(x)−A(y), η(x, y)⟩

≤ − r

λ
∥x− y∥2

< −m∥x− y∥2.

This contradicts the fact that T is m-relaxed η-monotone.

Definition 3.8. Suppose A : X −→ X∗ is an r-strongly η-monotone
mapping and T : X ( X∗ is a general G-η-monotone mapping. For

any λ > 0, the generalized proximal mapping RA,η
T,λ : X∗ −→ X is defined

by RA,η
T,λ(x

∗) = (A+ λT )−1(x∗).

Remark 3.9. For appropriate and suitable choices of X,A, T and η
one can obtain many known resolvent operators and proximal mappings
considered in the recent literature; for example, see [1, 2, 3, 10, 11, 12,
14, 23, 24, 25, 26, 28, 29] and references therein.

Theorem 3.10. Let A : X −→ X∗ be an r-strongly η-monotone single-
valued mapping, η : X × X −→ X be γ-Lipschitz continuous and T :
X ( X∗ be a general G-η-monotone mapping. Then, the generalized

proximal mapping RA,η
T,λ is γ

r−λm -Lipschitz continuous.

Proof. For any two points x∗, y∗ ∈ X∗, with ∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥ ̸=
0, since

RA,η
T,λ(x

∗) = (A+ λT )−1(x∗) and RA,η
T,λ(y

∗) = (A+ λT )−1(y∗),

we have

x∗ −A(RA,η
T,λ(x

∗))

λ
∈ T (RA,η

T,λ(x
∗))(3.1)
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and

y∗ −A(RA,η
T,λ(y

∗))

λ
∈ T (RA,η

T,λ(y
∗)).(3.2)

T is a general G-η-monotone mapping, and thus (3.1) and (3.2) imply
that

⟨
x∗ −A(RA,η

T,λ(x
∗))

λ
−

y∗ −A(RA,η
T,λ(y

∗))

λ
, η(RA,η

T,λ(x
∗), RA,η

T,λ(y
∗))⟩

≥ −m∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥2.
Therefore,

⟨x∗ − y∗, η(RA,η
T,λ(x

∗), RA,η
T,λ(y

∗))⟩ ≥ ⟨A(RA,η
T,λ(x

∗))−A(RA,η
T,λ(y

∗)),

η(RA,η
T,λ(x

∗), RA,η
T,λ(y

∗))⟩ − λm∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥2.
Since η : X × X −→ X is γ-Lipschitz continuous and A is r-strongly
η-monotone,

γ∥x∗ − y∗ ∥ ∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥

≥ ∥x∗ − y∗∥∥η(RA,η
T,λ(x

∗), RA,η
T,λ(y

∗))∥

≥ ⟨x∗ − y∗, η(RA,η
T,λ(x

∗), RA,η
T,λ(y

∗))⟩

≥ ⟨A(RA,η
T,λ(x

∗))−A(RA,η
T,λ(y

∗)), η(RA,η
T,λ(x

∗), RA,η
T,λ(y

∗))⟩

−λm∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥2

≥ (r − λm)∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥2.

That RA,η
T,λ is γ

r+λβ -Lipschitz continuous follows from the fact that

∥RA,η
T,λ(x

∗)−RA,η
T,λ(y

∗)∥ ̸= 0.

Problem 3.11. Consider single valued mappings ηi : X1 ×X2 −→ Xi,
Ai : Xi −→ X∗

i and Si : X1 × X2 −→ X∗
i , for i = 1, 2. Also, suppose

that the set-valued mappings Ti : Xi ( X∗
i are general G-ηi-monotone

operator. Our problem is finding (x1, x2) ∈ X1 ×X2, for which{
0 ∈ S1(x1, x2) + T1(x1)
0 ∈ S2(x1, x2) + T2(x2).

Remark 3.12. By appropriate and suitable choices of X1, X2, A1, A2,
S1, S2, η1, η2, T1 and T2 one can obtain many known and new classes of
variational inequalities and variational inclusions as special cases of the
Problem 3.11. For example, see [1, 6, 12, 15, 25] and references therein.
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Theorem 3.13. Suppose Ai : Xi −→ Xi is an ri-strongly ηi-monotone
operator and Ti : Xi ( Xi is a general G-ηi-monotone operator, for
i = 1, 2. Define F : X1 × X2 −→ X1, G : X1 × X2 −→ X2 and

Q : X1 ×X2 −→ X1 ×X2, respectively, by F (x1, x2) = RA1,η1
T1,λ

[A1(x1)−
λS1(x1, x2)], G(x1, v) = RA2,η2

T2,µ
[A2(x2) − µS2(x1, x2)] and Q(x1, x2) =

(F (x1, x2), G(x1, x2)), for all (x1, x2) ∈ X1 × X2. Then, the following
statements are equivalent.

(a) (x1, x2) ∈ X1 ×X2 is a solution of Problem 3.11.

(b) x1 = RA1,η1
T1,λ

[A1(x1) − λS1(x1, x2)] and x2 = RA2,η2
T2,µ

[A2(x2) −
µS2(x1, x2)].

(c) (x1, x2) is a fixed point of Q.

Proof. These are immediate consequences of Definition 3.8.

Theorem 3.14. Suppose X1 and X2 are two real Banach spaces. Also,
suppose, for i = 1, 2,

(a) ηi : Xi ×Xi −→ Xi is γi-Lipschitz continuous,
(b) Ai : Xi −→ Xi is ri-strongly ηi-monotone and θi-Lipschitz con-

tinuous,
(c) Ti : Xi ( Xi is general G-ηi-monotone operator,
(d) Si : X1 ×X2 −→ Xi is δi-Lipschitz continuous in first argument

and ξi-Lipschitz continuous in second argument. If{
γ1

r1−λm(θ1 + λδ1) +
γ2µξ2
r2−ρm < 1, 0 < λ < r1

m
γ1λξ1
r1−λm + γ2

r2−µm(θ2 + µδ2) < 1, 0 < µ < r2
m ,

then Problem 3.11 has a unique solution.

Proof. Let F,G and Q be defined as in Theorem 3.13. For any
elements (x1, x2) and (x′1, x

′
2) in X1 ×X2, it follows from Theorem 3.10

that

∥ F (x1, x2)− F (x′1, x
′
2)∥ =

∥RA1,η1
T1,λ

[A1(x1)− λS1(x1, x2)]−RA1,η1
T1,λ

[A1(x
′
1)− λS1(x

′
1, x

′
2)]∥

≤ γ1
r1 − λm

(∥A1(x1)−A1(x
′
1)∥+ λ∥S1(x1, x2)− S1(x

′
1, x

′
2)∥

≤ γ1
r1 − λm

(θ1∥x1 − x′1∥+ λ∥S1(x1, x2)− S1(x
′
1, x2)∥

+λ∥S1(x
′
1, x2)− S1(x

′
1, x

′
2)∥)
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≤ γ1
r1 − λm

(θ1∥x1 − x′1∥+ λδ1∥x1 − x′1∥+ λξ1∥x2 − x′2∥)

=
γ1

r1 − λm
(θ1 + λδ1)∥x1 − x′1∥+

γ1λξ1
r1 − λm

∥x2 − x′2∥,

that is,
∥F (x1, x2)− F (x′1, x

′
2)∥

≤ γ1
r1 − λm

(θ1 + λδ1)∥x1 − x′1∥+
γ1λξ1

r1 − λm
∥x2 − x′2∥.(3.3)

Similarly, one can deduce that
∥G(x1, x2)−G(x′1, x

′
2)∥ ≤

γ2µξ2
r2 − µm

∥x1 − x′1∥+
γ2

r2 − µm
(θ2 + µδ2)∥x2 − x′2∥.(3.4)

Set

(3.5) k := max{ γ1
r1 − λm

(θ1 + λδ1) +
γ2µξ2

r2 − µm
,

γ1λξ1
r1 − λm

+
γ2

r2 − µm
(θ2 + µδ2)}.

Equip X1 × X2 with ∥(x1, x2)∥× = ∥x1∥ + ∥x2∥, for all (x1, x2) ∈
X1×X2. It is well known that (X1×X2, ∥(., .)∥×) is a Banach space. On
the other hand, ∥Q(x1, x2) − Q(x′1, x

′
2)∥× = ∥F (x1, x2) − F (x′1, x

′
2)∥ +

∥G(x1, x2) − G(x′1, x
′
2)∥. It follows from assumption, (3.3), (3.4) and

(3.5) that Q is a contraction map. Now, the Banach contraction theorem
implies that Q has a unique fixed point. That Problem 3.11 has a unique
solution, follows from Theorem 3.13.

In the rest of our work, the ηi : Hi × Hi −→ Hi are single valued
mappings, for i = 1, 2. As a corollary of Theorem 3.14, we can resolve
the following problem which was considered in [1].

Problem 3.15. Consider single valued mappings ηi : Hi ×Hi −→ Hi,
Ai : Hi −→ Hi and Si : H1×H2 −→ Hi, for i = 1, 2. Also, consider the
set-valued mappings Ti : Hi ( Hi. Suppose Ti is an (Ai, ηi)-monotone
operator, for i = 1, 2. Our problem is finding (u, v) ∈ H1×H2, for which{

0 ∈ S1(u, v) + T1(u)
0 ∈ S2(u, v) + T2(v).

Corollary 3.16. [1] Suppose H1 and H2 are two real Hilbert spaces.
Also, suppose for i = 1, 2,

(a) ηi : Hi ×Hi −→ Hi is a γi-Lipschitz continuous mapping,
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(b) Ai : Hi −→ Hi is ri-strongly ηi-monotone and θi-Lipschitz con-
tinuous operator,

(c) Ti : Hi ( Hi is an (Ai, ηi)-monotone operator,
(d) Si : H1 × H2 −→ Hi is δi-Lipschitz continuous in the ith ar-

gument and si-strongly monotone with respect to Ai in the ith
argument,

(e) S1 is ξ1-Lipschitz continuous in second argument and S2 is ξ2-
Lipschitz continuous in first argument. If{

γ1
r1−λm

√
θ21 − 2λs1 + λ2δ21 +

µγ2ξ2
r2−µm < 1, 0 < λ < r1

m
λγ1ξ1
r1−λm + γ2

r2−µm

√
θ22 − 2µs2 + µ2δ22 < 1, 0 < µ < r2

m ,

then Problem 3.15 has a unique solution.

Corollary 3.17. [12] Let η : H×H → H be a Lipschitz continuous oper-
ator with constant σ(see Remark 3.18). Let H1 : H1 → H1 be a strongly
η-monotone, Lipschitz continuous operator with constants γ1 and τ1, and
H2 : H2 → H2 be a strongly η-monotone, Lipschitz continuous operator
with constants γ2 and τ2. Let M : H1 ( H1 be (H1, η)-monotone and
N : H2 ( H2 be (H2, η)-monotone. Let F : H1 × H2 → H1 be an
operator, such that, for any given (a, b) ∈ H1 × H2, F (., b) is strongly
monotone with respect to H1 and Lipschitz continuous with constants
rl and sl, respectively, and F (a, .) is Lipschitz continuous with the con-
stant θ. Let G : H1 ×H2 → H2 be an operator, such that, for any given
(x, y) ∈ H1 × H2, G(x, .) is strongly monotone with respect to H2 and
Lipschitz continuous with constant r2 and s2, respectively, and G(., y) is
Lipschitz continuous with the constant ξ. Let there exist constants ρ > 0
and λ > 0 such that

γ2σ
√

τ21 − 2ρr1 + ρ2s21 + γ1σλξ < γ1γ2

γ1σ
√

τ22 − 2λr2 + λ2s22 + γ2σρθ < γ1γ2.

Then, the following system admits a unique solution:{
0 ∈ F (a, b) +M(a)
0 ∈ G(a, b) +N(b).

Remark 3.18. In the context of Theorem 4.1 in [12], there is a minor
mistake. In fact, they should use ηi : Hi × Hi → Hi, instead of η :
H×H → H.
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